
1

Oracle® Fusion Middleware
Integration Guide for Oracle TopLink with Coherence Gird

11g Release 1 (11.1.1)

E16596-01

April 2010

Oracle TopLink 11g Release 1 (11.1.1) includes tight integration with Oracle Coherence.
This integration, provided through the TopLink Grid feature, marries the
standardization and simplicity of application development using the Java Persistence
API (JPA) with the scalability and distributed processing power of Oracle Coherence
Data Grid.

This document explains how to use:

■ TopLink Grid to leverage the Coherence data grid as the primary data store for
entities

■ Coherence as a distributed shared cache

■ Coherence's parallel processing support to perform JPQL queries on cached
entities

■ EclipseLink JPA's optimized CacheStore and CacheLoader implementations in
traditional Coherence applications

This document includes the following information:

■ Understanding the TopLink Grid Integration

■ "Traditional Coherence" Configuration

■ "JPA on the Grid" Configurations

■ Queries

■ Labs and Examples

■ Documentation Accessibility

For additional information, see the following documents:

■ Oracle Fusion Middleware Developer's Guide for Oracle TopLink

■ Oracle Coherence Developer’s Guide

■ Oracle Coherence Client Guide

Understanding the TopLink Grid Integration
TopLink Grid integrates the TopLink JPA implementation (EclipseLink) with Oracle
Coherence and provides two development approaches:

■ You can use the Coherence API with caches backed by TopLink Grid to access
relational data with JPA CacheLoader and CacheStore implementations. In this
"traditional" Coherence approach, TopLink Grid provides CacheLoader and
CacheStore implementations that are optimized for EclipseLink JPA.

2

Figure 1 "Traditional" Coherence Approach

In the Traditional Coherence approach, use the Coherence APIs (with caches backed
by TopLink) to access the database.

Refer to ""Traditional Coherence" Configuration" on page 4 and the Coherence
Integration Guide for details on this approach.

■ You can also build applications using JPA and transparently leverage the power of
the data grid for improved scalability and performance. In this "JPA on the grid"
approach, TopLink Grid provides a set of cache and query configuration options
that allow you to control how EclipseLink JPA uses Coherence.

Figure 2 "JPA on the Grid" Approach

3

In the JPA on the Grid approach, TopLink provides options to control how EclipseLink
uses Coherence.

You can configure Coherence as a distributed shared cache or use Coherence as the
primary data store. You can also configure Entities to execute queries in the
Coherence data grid instead of the database. This allows clustered application
deployments to scale beyond database-bound operations.

Refer to ""JPA on the Grid" Configurations" on page 8 and the Coherence Integration
Guide for details on this approach.

When integrating JPA applications with the Coherence Data Grid, you should be
aware of potential benefits and restrictions. You must understand how the grid works
and how it relates to your JPA configurations in order to realize the full potential.

This section includes information on the following configuration options:

■ Entity Caching

■ Reading and Querying

■ Writing

Entity Caching
By default, EclipseLink provides an EntityManagerFactory managed shared
Entity cache. This shared cache improves performance for multi-threaded and Java EE
server hosted applications running in a single JVM.

With TopLink Grid, you can replace the default EclipseLink Shared (L2) cache with
Coherence. This provides support for very large shared grid caches that span cluster
nodes, and removes the need for additional configuration to ensure individual shared
caches are coordinated. By configuring an Entity as Grid cached in Coherence, all
EntityManager.find() calls for that Entity will result in a get on the associated
Coherence cache. If Coherence doesn’t contain the object the database is queried.

See "Grid Cache" on page 8 for more information.

Reading and Querying
In addition to Grid cache configuration, you can configure TopLink Grid to direct
read queries to Coherence. By configuring a TopLink JPA CacheLoader, even when
there is no cache hit, the object can be read from the database and then placed in the
cache, thereby making it available for subsequent queries. Coherence's ability to
manage very large numbers of objects increases the likelihood of a cache hit as reads in
one cluster member become immediately available to others.

While using Coherence to spread an Entity Grid cache across the grid is useful,
support for non-primary key queries is especially beneficial. When you configure an
Entity as "Grid Read" all reads are directed to Coherence. JPQL queries are
automatically translated into Coherence filters and objects that match the filter are
retrieved from the grid. Coherence executes all filters in parallel on each member of a
cluster. This results in significantly faster processing for a query, compared to if all the
objects resided in a single member.

4

Because filters only apply to objects in the Coherence cache, the configuration of a
CacheStore or CacheLoader has no impact on ad-hoc query processing. By default,
with this configuration queries are not executed against the database. However, you
can override this behavior and with query hints by using the
oracle.eclipselink.coherence.integrated.querying.IgnoreDefaultRe
director class as shown in the following example:

query.setHint(QueryHints.QUERY_REDIRECTOR, new IgnoreDefaultRedirector());

This directs the query to the database instead of the Coherence cache.

For complete information on using EclipseLink JPA query hints, refer to the
EclipseLink documentation.

Writing
Another key configuration option is specifying how to write Entities to the database.
You can configure EclipseLink to:

■ Directly write Entities to the database, then put them in Coherence (so that it
reflects the database state)

or

■ Put entities into Coherence, then have Coherence write to the database using a
CacheStore.

The CacheStore method supports the Coherence write-behind feature to enable
asynchronous database writes. By using this applications do not have to wait for the
database to return in order to proceed.

However, this configuration contains some restrictions, such as the inability to use JTA
integration or other EclipseLink performance features (including batch writing,
parameter binding, stored procedures, and statement ordering).

"Traditional Coherence" Configuration
This section includes information on the CacheStore/CacheLoader configuration.

CacheStore/CacheLoader
The TopLink Grid CacheStore/CacheLoader configuration allows you to map classes
using JPA, but use the Coherence API to interact with the Coherence cache. This allows
Coherence to interact with the database.

You can also use asynchronous writing with the CacheStore/CacheLoader
configuration, by using the Coherence "write behind" configuration.

In general:

■ Through a CacheLoader, all read operations get objects from the database. See
"Reading Objects" on page 5.

■ Through a CacheLoader, all write operations update the database. See "Writing
Objects" on page 5.

5

See "Examples" on page 6 for detailed examples.

Reading Objects
In the Coherence CacheStore/CacheLoader, all read queries are directed to the
database by the TopLink CacheLoader.

Figure 3 Reading Objects

This figure illustrates a query in the Grid Read configuration:

1. Application issues a get query.

2. By using a CacheLoader, Coherence will load the from TopLink.

3. TopLink will query the database.

This figure illustrates a query in the Grid Read configuration:

1. Application issues a get query.

2. By using a CacheLoader, Coherence will load the from TopLink.

3. TopLink will query the database.

Writing Objects
In the Coherence CacheStore/CacheLoader, TopLink performs all database writes
(insert, update, delete) through the CacheStore.

6

Figure 4 Writing Objects

This figure illustrates a query in the Grid Read configuration:

1. Application issues a put query.

2. By using a CacheStore, Coherence will store the from TopLink.

3. TopLink will insert the object into the database.

This figure illustrates a query in the Grid Read configuration:

1. Application issues a put query.

2. By using a CacheStore, Coherence will store the from TopLink.

3. TopLink will insert the object into the database.

Examples
In the cache configuration (coherence-cache-config.xml) define the cache, as
shown in this example.

Example 1 Configuring the Cache

<cache-config>
<caching-scheme-mapping>
<cache-mapping>
<cache-name>Employee</cache-name>
<scheme-name>distributed-eclipselink</scheme-name>

</caching-scheme-mapping>
</caching-scheme-mapping>
<caching-schemes>

7

<distributed-scheme>
<scheme-name>distributed-eclipselink</scheme-name>
<service-name>EclipseLinkJPA</service-name>
<backing-map-scheme>
<read-write-backing-map-scheme>
<internal-cache-scheme>
<local-scheme />

</internal-cache-scheme>
<!--
Define the cache scheme

-->
<cachestore-scheme>
<class-scheme>
<!--
Since the client code is using Coherence API we need the

"standalone" version of the cache loader
-->
<class-name>oracle.eclipselink.coherence.standalone.EclipseLinkJPACa

cheStore</class-name>
<init-params>
<init-param>
<param-type>java.lang.String</param-type>
<param-value>{cache-name}</param-value>

</init-param>
<init-param>
<param-type>java.lang.String</param-type>
<param-value>employee</param-value>

</init-param>
</init-params>

</class-scheme>
</cachestore-scheme>

</read-write-backing-map-scheme>
</backing-map-scheme>
<autostart>true</autostart>

</distributed-scheme>
</caching-schemes>

</cache-config>

In Example 2, you set the employee information and add the new object to Coherence.
This issues an INSERT to the CacheStore.

Example 2 Inserting Objects

Employee employee = new Employee();
employee.setId(NEW_EMP_ID);
employee.setFirstName("John");
employee.setLastName("Doe");
// Putting a new object into Coherence will result in an INSERT in the CacheStore
employeeCache.put(NEW_EMP_ID, employee);

Getting an object from the cache produces no SQL statements. Getting an object that is
not in the cache produces a SELECT statement.

Example 3 Reading Objects

// Getting an object from cache produces no SQL

8

System.out.println("New Employee from cache is: " + employeeCache.get(NEW_EMP_
ID));

// Getting an object not in cache will produce a SELECT in the CacheStore
System.out.println("Non-existant Employee from cache is: " +
employeeCache.get(NON_EXISTANT_EMP_ID));

"JPA on the Grid" Configurations
This section includes information on the following configurations:

■ Grid Cache

■ Grid Read

■ Grid Entity

The sample code illustrated in the examples for each configuration can be obtained
from:
http://www.oracle.com/technology/products/ias/toplink/doc/11110/
grid/guide/TopLinkGrid-Examples.zip.

Grid Cache
The TopLink Grid Coherence Grid Cache configuration uses Coherence as the TopLink
shared (L2) cache. This brings the power of the Coherence data grid to JPA
applications that rely on database hosted data that cannot be entirely preloaded into a
Coherence cache for reasons including: extremely complex queries that exceed the
feature set of Coherence Filters, third party database updates that create stale caches,
reliance on native SQL queries, stored procedures or triggers, etc.

By using Coherence as its Grid cache, you can scale TopLink up into large clusters
while avoiding the need to coordinate local Grid caches. Updates made to entities are
available in all Coherence cluster members immediately, upon a transaction commit.

In general:

■ Primary key queries attempt to get entities first from Coherence and, if
unsuccessful, will query the database, updating Coherence with query results. See
"Reading Objects" on page 8.

■ Non-primary key queries are executed against the database and the results
checked against Coherence to avoid object construction costs for cached entities.
Newly queried entities are put into Coherence.

■ Write operations update the database and, if successfully committed, updated
entities are put into Coherence. See "Writing Objects" on page 10.

See "Examples" on page 10 for detailed examples.

Reading Objects
In the Coherence Grid Cache configuration, all read queries are directed to the
database except primary key queries, which are performed against the Coherence cache
first. Any cache misses will result in a database query.

9

All entities queried from the database are placed in the Coherence cache. This makes
them immediately available to all members of the cluster which is valuable because,
by default, TopLink leverages the cache to avoid constructing new entities from
database results.

For each row resulting from a query, TopLink uses the primary key of the result row to
query the corresponding entity from the cache. If the cache contains the entity then the
entity is used and a new entity isn’t built. This approach can greatly improve
application performance, especially with a warmed cache, as reduces the cost of a
query.

Figure 5 Reading Objects

This figure illustrates a query in the Coherence Cache configuration:

1. Application issues a find query.

2. For primary key queries, TopLink queries the Coherence cache first.

3. If the object does not exist in the Coherence cache, TopLink queries the database.

For all read queries except primary key queries, TopLink queries the database first.

4. Read objects are put into the Coherence cache.

This figure illustrates a query in the Coherence Grid Cache configuration:

1. Application issues a find query.

2. For primary key queries, TopLink queries the Coherence cache first.

3. If the object does not exist in the Coherence cache, TopLink queries the database.

For all read queries except primary key queries, TopLink queries the database first.

4. Read objects are put into the Coherence cache.

10

Writing Objects
In the Coherence Grid Cache configuration, TopLink performs all database writes
(insert, update, delete). The Coherence cache is then updated to reflect the changes
made to the database. TopLink offers a number of performance features when writing
large amounts of data including: batch writing, parameter binding, stored procedure
support, and statement ordering to ensure that database constraints are satisfied.

Figure 6 Writing and Persisting Objects

This figure illustrates a query in the Coherence Grid Cache configuration:

1. Application issues a commit query.

2. TopLink updates the database.

3. After a successful transaction, TopLink updates the Coherence cache.

This figure illustrates a query in the Coherence Grid Cache configuration:

1. Application issues a commit query.

2. TopLink updates the database.

3. After a successful transaction, TopLink updates the Coherence cache.

Examples
The sample code illustrated in these examples can be obtained from:
http://www.oracle.com/technology/products/ias/toplink/doc/11110/
grid/guide/TopLinkGrid-Examples.zip.

In the cache configuration (coherence-cache-config.xml) define the cache and
configure a wrapper serializer in order to support serialization of relationships, as
shown in this example:

11

Example 4 Configuring the Cache

<cache-config>
<caching-scheme-mapping>
<cache-mapping>
<cache-name>*</cache-name>
<scheme-name>eclipselink-distributed</scheme-name>

</cache-mapping>
</caching-scheme-mapping>
<caching-schemes>
<distributed-scheme>
<scheme-name>eclipselink-distributed</scheme-name>
<service-name>EclipseLinkJPA</service-name>
<!--
Configure a wrapper serializer to support serialization of relationships.

-->
<serializer>
<class-name>oracle.eclipselink.coherence.integrated.cache.WrapperSerialize

r</class-name>
</serializer>
<backing-map-scheme>
<!--
Backing map scheme with no eviction policy

-->
<local-scheme>
<scheme-name>unlimited-backing-map</scheme-name>

</local-scheme>
</backing-map-scheme>
</backing-map-scheme>
<autostart>true</autostart>

</distributed-scheme>
</caching-schemes>

</cache-config>

To configure an entity to use the Coherence Grid cache, use the
CoherencInterceptor class as shown in Example 5. This class intercepts all
TopLink calls to the internal TopLink Grid cache and redirects them to Coherence.

Example 5 Configuring the Entity

import oracle.eclipselink.coherence.integrated.cache.CoherenceInterceptor;
import org.eclipse.persistence.annotations.Customizer;

@Entity
@CacheInterceptor(value = CoherenceInterceptor.class)
public class Employee {
...

In Example 6, TopLink performs the insert to create a new employee. Entities are
persisted through the EntityManger and placed in the database.

Example 6 Inserting Objects

EntityManagerFactory emf = Persistence.createEntityManagerFactory("employee");

// Create an Employee with an Address and PhoneNumber

12

EntityManager em = emf.createEntityManager();
em.getTransaction().begin();
Employee employee = createEmployee();
em.persist(employee);
em.getTransaction().commit();
em.close();

After a successful transaction, the Coherence cache is updated.

In Example 7, when TopLink finds an employee, the read query is directed to
Coherence cache.

Example 7 Querying Objects

EntityManagerFactory emf = Persistence.createEntityManagerFactory("employee");

EntityManager em = emf.createEntityManager();
List<Employee> employees =
em.createNamedQuery("Employee.findByLastNameLike").setParameter("lastName",
"Smit%").getResultList();

for (Employee employee : employees) {
System.err.println(employee);
for (PhoneNumber phone : employee.getPhoneNumbers()) {

System.err.println("\t" + phone);
}

}

emf.close();

Grid Read
The TopLink Grid Read configuration should be used for entities that require fast
access to large amounts of (fairly stable) data and must write changes synchronously
to the database. In these entities, cache warming would typically be used to populate
the Coherence cache but individual queries could be directed to the database if
necessary.

In general:

■ Read operations get objects from the Coherence cache. Configuring a CacheLoader
has no impact on JPQL queries. See "Reading Objects" on page 12.

■ Write operations update the database and, if successfully committed, updated
entities are put into Coherence. See "Writing Objects" on page 14.

See "Examples" on page 15 for detailed examples.

Reading Objects
In the Grid Read configuration, all read queries for an entity are directed to the
Coherence cache. To reduce query processing time, TopLink Grid supports parallel
processing of queries across the data grid. Coherence contains data in object form,
avoiding the cost of database communication and object construction.

With the Grid Read configuration, if Coherence does not contain the Entity requested
by find(...) then null is returned. However, if a CacheLoader is configured for

13

the Entity's cache, Coherence will attempt to load the object from the database. This is
only true for primary key queries.

Configuring a CacheLoader has no impact on JPQL queries translated to Coherence
filters. When searching with a filter, Coherence will operate only on the set of Entities
in the caches; the database will not be queried. However, it is possible on a
query-by-query basis to direct a query to the database instead of to Coherence by
using the
oracle.eclipselink.coherence.integrated.querying.IgnoreDefaultRe
director class, as shown in following example:

query.setHint(QueryHints.QUERY_REDIRECTOR, new IgnoreDefaultRedirector());

Any objects retrieved by a database query will be added to the Coherence cache so
they are available for subsequent queries. Because, by default, this configuration
resolves all queries for an entity through Coherence, the Coherence cache should be
warmed with all the data that is to be queried.

A CacheStore is not compatible with the Grid Read configuration because
EclipseLink will be performing all database updates and then propagating the
updated objects into Coherence. If you use a CacheStore, Coherence will attempt to
write out the just-written objects again.

For complete information on using EclipseLink JPA query hints, refer to the
EclipseLink documentation.

Figure 7 Reading Objects with a Query

This figure illustrates a query in the Grid Read configuration:

1. Application issues a JPQL query.

2. TopLink executes a Filter on the Coherence cache.

3. TopLink returns results from the Coherence cache only; the database is not
queried.

14

This figure illustrates a query in the Grid Read configuration:

1. Application issues a JPQL query.

2. TopLink executes a Filter on the Coherence cache.

3. TopLink returns results from the Coherence cache only; the database is not
queried.

Writing Objects
In the Grid Read configuration, TopLink performs all database writes directly (insert,
update, delete). The Coherence caches are then updated to reflect the changes made to
the database. TopLink offers a number of performance features when writing large
amounts of data including: batch writing, parameter binding, stored procedure
support, and statement ordering to ensure that database constraints are satisfied.

This approach offers the best of both worlds: database updates are performed
efficiently and queries continue to be executed in parallel across the Coherence data
grid, with the option of directing individual queries to the database.

Figure 8 Writing and Persisting Objects

This figure illustrates a query in the Grid Read configuration:

1. Application issues a commit query.

2. TopLink updates the database.

3. After a successful transaction, TopLink updates the Coherence cache.

This figure illustrates a query in the Grid Read configuration:

1. Application issues a commit query.

2. TopLink updates the database.

3. After a successful transaction, TopLink updates the Coherence cache.

15

Examples
The sample code illustrated in these examples can be obtained from:
http://www.oracle.com/technology/products/ias/toplink/doc/11110/
grid/guide/TopLinkGrid-Examples.zip.

In the cache configuration (coherence-cache-config.xml) define the cache and
configure a wrapper serializer in order to support serialization of relationships, as
shown in this example:

Example 8 Configuring the Cache

<cache-config>
<caching-scheme-mapping>
<cache-mapping>
<cache-name>*</cache-name>
<scheme-name>eclipselink-distributed-readonly</scheme-name>

</cache-mapping>
</caching-scheme-mapping>
<caching-schemes>
<distributed-scheme>
<scheme-name>eclipselink-distributed-readonly</scheme-name>
<service-name>EclipseLinkJPAReadOnly</service-name>
<!--
Configure a wrapper serializer to support serialization of relationships.

-->
<serializer>
<class-name>oracle.eclipselink.coherence.integrated.cache.WrapperSerialize

r</class-name>
</serializer>
<backing-map-scheme>
<read-write-backing-map-scheme>
<internal-cache-scheme>
<local-scheme />

</internal-cache-scheme>
<!--
Define the cache scheme

-->
<cachestore-scheme>
<class-scheme>
<class-name>oracle.eclipselink.coherence.integrated.EclipseLinkJPACa

cheLoader</class-name>
<init-params>
<param-type>java.lang.String</param-type>
<param-value>{cache-name}</param-value>

</init-param>
<init-param>
<param-type>java.lang.String</param-type>
<param-value>employee</param-value>

</init-param>
</init-params>

</class-scheme>
</cachestore-scheme>
<!--
The read-only = true required when using a CacheLoader. If omitted,

Coherence will attempt to call CacheStore methods that are not available on
CacheLoader.

-->

16

<read-only>true</readonly>
</read-write-backing-map-scheme>

</backing-map-scheme>
<autostart>true</autostart>

</distributed-scheme>
</caching-schemes>

</cache-config>

To configure an entity to read through Coherence, use the
CoherenceReadCustomizer as shown in the following example:

Example 9 Configuring the Entity

import oracle.eclipselink.coherence.integrated.config.CoherenceReadCustomizer;
import org.eclipse.persistence.annotations.Customizer;

@Entity
@Customizer(CoherenceReadCustomizer.class)
public class Employee {
...
}

In Example 10, TopLink performs the insert to create a new employee. If the
transaction is successful, the new object is placed into Coherence under it’s primary
key.

Example 10 Inserting Objects

EntityManagerFactory emf = Persistence.createEntityManagerFactory("employee");

// Create an Employee with an Address and PhoneNumber
EntityManager em = emf.createEntityManager();
em.getTransaction().begin();
Employee employee = createEmployee();
em.persist(employee);
em.getTransaction().commit();
em.close();

emf.close();

When finding an employee, the read query is directed to Coherence cache. The JPQL
query is translated to Coherence filters, as shown in the following example.

Example 11 Querying Objects

EntityManagerFactory emf = Persistence.createEntityManagerFactory("employee");
EntityManager em = emf.createEntityManager();
List<Employee> employees =
em.createNamedQuery("Employee.findByLastNameLike").setParameter("lastName",
"Smit%").getResultList();
for (Employee employee : employees) {
System.err.println(employee);
for (PhoneNumber phone : employee.getPhoneNumbers()) {
System.err.println("\t" + phone);

}

17

}
emf.close();

To get an object from the Coherence cache with a specific ID (key), use:
em.find(Entity.class, ID). You can also configure a Coherence CacheLoader
to query the database to find the object, if the cache does not contain one with the
specified ID.

Grid Entity
The Grid Entity configuration should be used by applications that require fast access
to large amounts of (fairly stable) data and that perform relatively few updates. This
configuration can be combined with a Coherence CacheStore using write-behind to
improve application response time by performing database updates asynchronously.

In general:

■ Read operations get objects from the Coherence cache. See "Reading Objects" on
page 17.

■ Write operations put objects into the Coherence cache. If a CacheStore is
configured, TopLink also performs write operations on the database. See "Writing
Objects" on page 17.

See "Examples" on page 18 for detailed examples.

Reading Objects
In the Grid Entity configuration, reading objects is identical to the Grid Read
configuration. See "Reading Objects" on page 12 for more information.

Writing Objects
In the Grid Entity configuration, all objects persisted, updated, or merged through an
EntityManger will be put in the appropriate Coherence cache. To persist objects in a
Coherence cache to the database, an EclipseLink CacheStore
(oracle.eclipselink.coherence.integrated.EclipseLinkJPACacheStor
e) must be configured for each cache.

You can also configure the CacheStore to use a "write behind" to asynchronously
batch-write updated objects. See the Coherence Developer’s Guide for more information.

Issues to be Aware of When Writing Objects This section includes information on items you
should be aware of when writing objects.

When using a CacheStore, Coherence assumes that all write operations succeed and
will not inform TopLink of a failure. This could result in the Coherence cache
differing from the database. You cannot use optimistic locking to protect against data
corrupts that may occur if the database is concurrently modified by Coherence and a
third-party application.

Because each class may be in a separate cache, Coherence may not issue the delete calls
to the stores in the required order or with correct timing. As a result, constraint
compliance is not guaranteed and write operations could fail with the following error:

org.eclipse.persistence.exceptions.DatabaseException
Internal Exception: java.sql.BatchUpdateException: ORA-02292: integrity constraint

18

violated - child record found
Error Code: 2292

The database foreign key restraints should be reviewed and may need to be removed.

Figure 9 Writing and Persisting Objects

This figure illustrates a query in the Grid Entity configuration:

1. Application issues a commit.

2. TopLink directs all queries to update the Coherence cache.

3. By configuring a Coherence CacheStore (optional), TopLink will also update the
database.

This figure illustrates a query in the Grid Entity configuration:

1. Application issues a commit.

2. TopLink directs all queries to update the Coherence cache.

3. By configuring a Coherence CacheStore (optional), TopLink will also update the
database.

Examples
In the cache configuration (coherence-cache-config.xml) configure a wrapper
serializer in order to support serialization of relationships, as shown in this example:

The sample code illustrated in these examples can be obtained from:
http://www.oracle.com/technology/products/ias/toplink/doc/11110/
grid/guide/TopLinkGrid-Examples.zip.

Example 12 Configuring the Cache

<cache-config>

19

<caching-scheme-mapping>
<cache-mapping>
<cache-name>*</cache-name>
<scheme-name>eclipselink-distributed-readwrite</scheme-name>

</cache-mapping>
</caching-scheme-mapping>
<caching-schemes>
<distributed-scheme>
<scheme-name>eclipselink-distributed-readwrite</scheme-name>
<service-name>EclipseLinkJPAReadWrite</service-name>
<!--
Configure a wrapper serializer to support serialization of relationships.

-->
<serializer>
<class-name>oracle.eclipselink.coherence.integrated.cache.WrapperSerialize

r</class-name>
</serializer>
<backing-map-scheme>
<read-write-backing-map-scheme>
<internal-cache-scheme>
<local-scheme />
</internal-cache-scheme>
<!--
Define the cache scheme

-->
<cachestore-scheme>
<class-scheme>
<class-name>oracle.eclipselink.coherence.integrated.EclipseLinkJPA

CacheStore</class-name>
<init-params>
<init-param>
<param-type>java.lang.String</param-type>
<param-value>{cache-name}</param-value>

</init-param>
<init-param>
<param-type>java.lang.String</param-type>
<param-value>employee</param-value>

</init-param>
</init-params>

</class-scheme>
</cachestore-scheme>

</read-write-backing-map-scheme>
</backing-map-scheme>
<autostart>true</autostart>

</distributed-scheme>
</caching-schemes>

</cache-config>

To configure an entity to read through Coherence, use the
CoherenceReadWriteCustomizer as shown in the following example:

Example 13 Configuring the Entity

import
oracle.eclipselink.coherence.integrated.config.CoherenceReadWriteCustomizer;
import org.eclipse.persistence.annotations.Customizer;

@Entity

20

@Customizer(CoherenceReadWriteCustomizer.class)
public class Employee {
...
}

In Example 14, TopLink performs the insert to create a new employee. Entities are
persisted through the EntityManger and placed in the appropriate Coherence cache.

Example 14 Persisting Objects

EntityManagerFactory emf = Persistence.createEntityManagerFactory("employee");

// Create an Employee with an Address and PhoneNumber
EntityManager em = emf.createEntityManager();
em.getTransaction().begin();
Employee employee = createEmployee();
em.persist(employee);
em.getTransaction().commit();
em.close();

When finding an employee, the read query is directed to Coherence cache, as shown in
the following example.

Example 15 Querying Objects

EntityManagerFactory emf = Persistence.createEntityManagerFactory("employee");

EntityManager em = emf.createEntityManager();
List<Employee> employees =
em.createNamedQuery("Employee.findByLastNameLike").setParameter("lastName",
"Smit%").getResultList();

for (Employee employee : employees) {
System.err.println(employee);
for (PhoneNumber phone : employee.getPhoneNumbers()) {

System.err.println("\t" + phone);
}

}

emf.close();

To get an object from the Coherence cache with a specific ID (key), use:
em.find(Entity.class, ID). You can also configure a Coherence CacheLoader
to query the database to find the object, if the cache does not contain one with the
specified ID.

Relationships
This section includes information on the following:

■ Wrapping and Unwrapping

21

Wrapping and Unwrapping
When storing Entities with relationships in the Coherence cache, TopLink Grid
generates a wrapper class that maintains the relationship information. In this way,
when the object is read from the Coherence cache (eager or lazy), the relationship can
be resolved.

If you read Entities directly from the Coherence cache using the Coherence API, the
wrappers are not automatically removed. You must configure automatic unwrapping
on a get in your code or by setting the property on the serializer, as shown in
Example 16. You can also set the system property as
eclipselink.coherence.not-eclipselink to automatically unwrap an entity.

 When configured properly, the read will return the wrapped Entity.

Example 16 Unwrapping an Entity

WrapperSerializer wrapperSerializer =
(WrapperSerializer)myCache.getCacheService().getSerializer();
wrapperSerializer.setNotEclipseLink(true); // to let the Serializer know it needs
to unwrap when clients get() from the cache

Queries
This section includes information on the following:

■ Querying Objects by ID

■ Querying Objects with Criteria

■ Limitations and Restrictions

Querying Objects by ID
To get an entity from the Coherence cache with a specific ID (key), use:
em.find(Entity.class, ID).

For example, em.find(Employee.class, 8) will get the entity with key 8, from
the Coherence Employee cache.

If the entity is not found in the Coherence cache, TopLink executes a SELECT
statement against the database. If a result is found, then the entity is constructed and
placed into Coherence.

Querying Objects with Criteria
To get an entity that matches a specific selection criteria, use:
em.createQuery("..."). For example, em.createQuery("select e from
Employee e where e.name=’John’") will execute a SELECT statement against
the database to find employees with the name of John.

The query’s specific behavior will depend on you Coherence cache configuration.

■ Grid Cache – The query will always check the database.

22

■ Grid Read and Grid Entity – The query will check the Coherence cache. If
Coherence does not contain the Entity then the database is queried.

You can use query hints to direct the query to the database instead of the
Coherence cache.

■ CacheStore/CacheLoader – Non-primary key queries will check the database.
Primary key queries are performed against the Coherence cache first.

Limitations and Restrictions
You should be aware of the following limitations when querying Coherence:

■ JPQL Bulk Updates and Deletes – This release of TopLink Grid does not provide
support for JPQL bulk updates and deletes.

■ Joins – Because the Coherence Filter framework is limited to a single cache, JPQL
join queries cannot be translated to Filters – all join queries will execute on the
database.

Coherence will continue to be used to avoid object constructions costs for the
query results.

■ Projection queries – This release of TopLink Grid does not provide support for
projection queries (reports).

Labs and Examples
This lab introduces how to use Oracle TopLink Grid feature to grid enable a Java
Persistence API (JPA) application with Oracle Coherence. TopLink Grid and Coherence
can be combined using two distinct application architectures:

■ a "traditional" Coherence application architecture with TopLink providing
database access, or

■ with Coherence backing TopLink in a "JPA on the Grid" architecture.

This lab will focuses on using TopLink Grid to build JPA on the Grid applications that
provide a way to scale JPA applications through the use of Coherence.

This document includes the following sections:

■ Configuring the Lab Environment

■ Running the Labs

■ Summary

Configuring the Lab Environment
This lab requires the following (minimum requirements):

■ Java 1.5 JDK/JRE

http://www.java.com/download

■ Coherence 3.5

http://www.oracle.com/technology/software/products/ias/htdocs
/coherence.html

23

■ TopLink 11g Release 1 (11.1.1), which includes EclipseLink

http://www.oracle.com/technology/software/products/ias/htdocs
/1111topsoft.html

■ Oracle Enterprise Pack for Eclipse (OEPE) 11g Release 1 (11.1.1)

http://www.oracle.com/technology/software/products/oepe/oepe_
11gR1.html

■ Oracle XE Database

http://www.oracle.com/technology/products/database/xe/index.h
tml

Setup
Before running the labs, you must install the necessary software and configure your
environment.

You can download the lab samples from:

http://www.oracle.com/technology/products/ias/toplink/doc/11110/
grid/labs/toplinkgridlab.zip

Software Installation Use this procedure to install the necessary software for the labs.

1. If not already installed on your machine, download and install a Java 1.5 or higher
JDK or JRE.

2. Download and unzip the lab .ZIP file into a folder, referred to as LAB_ROOT.
After unzipped unzipping the file, the folder will contain several sub-folders,
including toplink and coherence.

3. Download Oracle TopLink 11g Release 1 (11.1.1) and unzip into LAB_
ROOT/toplink.

4. Download Coherence 3.5 and unzip into LAB_ROOT. It will extract into the LAB_
ROOT/coherence folder.

5. Download OEPE 11g Release 1 (11.1.1), based on Eclipse Galileo (3.5), and unzip
into any folder, referred to as OEPE install.

6. Download and install Oracle XE. Follow the installation instructions included with
the download. You can install XE in any folder, referred to as ORACLE_XE_
ROOT.

7. Create or enable the Oracle database user scott with password tiger. Grant the
connect and resource permissions to the user scott.

The labs are configured for username scott with password tiger. To use a different
user, you must change the database login values used in the labs.

Environment Configuration Use this procedure to configure your lab environment.

1. Open OEPE by running eclipse.exe from the OEPE install directory.

Note: Confirm that the folder structure is correct; that you have
LAB_ROOT/coherence and not LAB_ROOT/coherence/coherence.

24

You'll be prompted for a workspace. Select the LAB_ROOT folder, which contains
your Eclipse workspace.

Figure 10 Select Workspace Directory dialog

2. If you've unzipped TopLink and Coherence into the correct folders, the
workspace will open with no errors in the Problems view.

If you do have errors, select Project > Clean from the menu and select Clean all
projects to recompile and revalidate the labs. If errors remain, confirm that you
have unzipped both TopLink and Coherence into the correct folders.

3. From the menu, select Window > Perspectives to open the JPA perspective.

Figure 11 Open Perspective dialog

4. In the JPA Perspective use the Data Source Explorer view to change the Oracle XE
connection, if needed. By default, the Oracle XE connection uses scott/tiger @
localhost.

25

Figure 12 Data Source Explorer

To use a different schema, right-click the Oracle XE connection in the Data Source
Explorer and select Properties, as shown in Figure 12. Select the Driver Properties
section and edit the values to reflect your connection as shown in Figure 13.

Figure 13 Driver Properties

Note: If you change the defaults, you must also edit the connection
values in the persistence.xml configuration files used in the labs.

26

Figure 14 Common connection properties

Running the Labs
Each of the three labs works with the same simple domain model shown in Figure 15.
It consists of an Employee entity with an Address and a collection of PhoneNumbers.

Figure 15 Lab Domain Model

The domain model for the labs consists of an Employee entity that has a 1:1
relationship with an Address and a 1:M collection of PhoneNumbers.

The entities are all pre-mapped, allowing you to focus on the TopLink Grid
configuration – not JPA mapping.

This document contains the following Labs:

■ Lab 1: Grid Cache Configuration

■ Lab 2: "Grid Read" Configuration

■ Lab 3: "Grid Entity" Configuration

27

Lab 1: Grid Cache Configuration
The most basic configuration is using Coherence with EclipseLink as a shared (L2)
cache. EclipseLink has a local, built-in shared-object cache that allows concurrent and
successive transactions to benefit from reads and updates performed by other
transactions. When entities are updated, after a successful database commit, the
updates are then applied to the shared cache, allowing transactions can see the
changes.

Replacing the local, built-in shared-object cache with Coherence maintains the same
cache semantics. Applications do not need to be changed – they are unaware that the
cache implementation has become a distributed cache rather than a local one.

Configuring Coherence as a shared cache involves:

■ Configuring entities to use Coherence

■ Defining a Coherence cache configuration for those entities

Lab 1 (see Figure 16) is provided as a ready-to-run JPA project in Eclipse.

Figure 16 Lab 1 Project

Getting Started Open the Employee, Address, and PhoneNumber entities and examine
how they are mapped.

Use the following procedure once, before configuring Coherence as the shared cache,
to confirm your environment is correct.

1. If your database connection differs from the defaults, you must update the
following EclipseLink JDBC properties in the META-INF/persistence.xml file:

■ eclipselink.jdbc.driver

■ eclipselink.jdbc.url

■ eclipselink.jdbc.user

■ eclipselink.jdbc.password

2. From the Project Explorer view, right-click the Lab 1-TopLink Grid Cache project
and select JPA > Generate Tables from Entities… from the menu to drop and
create the database tables used in the lab. You can safely ignore any errors due to

28

failures to DROP non-existent tables. Generating tables will log you into the
database.

3. Run gridcache.example.InsertExample to populate the database with an
Employee, Address, and a PhoneNumber. The createEmployee() method,
shown here, defines the entities:

public static Employee createEmployee() {
Employee employee = new Employee();
employee.setFirstName("Bob");
employee.setLastName("Smith");

Address address = new Address();
address.setCity("Toronto");
address.setPostalCode("L5J2B5");
address.setProvince("ON");
address.setStreet("1450 Acme Cr., Suite 4");
address.setCountry("Canada");
employee.setAddress(address);

employee.addPhoneNumber("Work", "613", "5558812");

return employee;
}

The console output displays the following:

[EL Fine]: Connection(876215)--UPDATE SEQUENCE SET SEQ_COUNT = SEQ_COUNT + ?
WHERE SEQ_NAME = ?
[EL Fine]: Connection(876215)--

bind => [50, SEQ_GEN]
[EL Fine]: Connection(876215)--SELECT SEQ_COUNT FROM SEQUENCE WHERE SEQ_NAME =
?

bind => [SEQ_GEN]
[EL Fine]: Connection(876215)--INSERT INTO GRIDCACHE_ADDRESS (ID, POSTALCODE,
STREET, PROVINCE, VERSION, COUNTRY, CITY) VALUES (?, ?, ?, ?, ?, ?, ?)
[EL Fine]: Connection(876215)--

bind => [2, L5J2B5, 1450 Acme Cr., Suite 4, ON, 1, Canada, Toronto]
[EL Fine]: Connection(876215)--INSERT INTO GRIDCACHE_EMPLOYEE (ID, LASTNAME,
FIRSTNAME, VERSION, ADDRESS_ID) VALUES (?, ?, ?, ?, ?)
[EL Fine]: Connection(876215)--

bind => [1, Smith, Bob, 1, 2]
[EL Fine]: Connection(876215)--INSERT INTO GRIDCACHE_PHONE (ID, AREACODE, NUM,
TYPE, VERSION, OWNER_ID) VALUES (?, ?, ?, ?, ?, ?)
[EL Fine]: Connection(876215)--

bind => [3, 613, 5558812, Work, 1, 1]
[EL Config]: Connection(14361585)--disconnect

EclipseLink updates an ID, generates the SEQUENCE table, and inserting the ID
into three tables. All tables in this lab are prefixed with GRIDCACHE_.

Note: f you encounter a Schema "null" cannot be resolved for table
"<TABLE_NAME>" error, you've hit a known Eclipse bug. To resolve
the issue, right-click the project and choose select Validate from menu.
Eclipse will clear the errors.

29

4. Run gridcache.example.QueryExample1. This queries all Employees with JPQL
and a single Employee with an EntityManager.find call, then prints the
results.

...
List<Employee> employees = em.createQuery("select e from Employee
e").getResultList();
...
Employee employee = em.find(Employee.class, employeeId);

...

The console output displays the following:

------------------JPQL Query
[EL Fine]: Connection(876215)--SELECT ID, LASTNAME, FIRSTNAME, VERSION,
ADDRESS_ID FROM GRIDCACHE_EMPLOYEE
l2.model.Employee@e33e18(1: Smith, Bob)
[EL Fine]: Connection(876215)--SELECT ID, POSTALCODE, STREET, PROVINCE,
VERSION, COUNTRY, CITY FROM GRIDCACHE_ADDRESS WHERE (ID = ?)

bind => [2]
City: Toronto

[EL Fine]: Connection(876215)--SELECT ID, AREACODE, NUM, TYPE, VERSION, OWNER_
ID FROM GRIDCACHE_PHONE WHERE (OWNER_ID = ?)

bind => [1]
l2.model.PhoneNumber@21d23b(3: Work: 613-5558812)

------------------em.find Query
l2.model.Employee@e33e18(1: Smith, Bob)
City: Toronto
l2.model.PhoneNumber@21d23b(3: Work: 613-5558812)

EclipseLink issues three SELECT statements:

■ To read all the Employees

■ To read the one Employee's Address

■ To read its PhoneNumbers

The EntityManager.find() does not result in a SQL statement because the
Employee is found in the local cache without needing a database query.

Configuring Coherence Grid Caching To instruct EclipseLink to cache in Coherence you
need to configure a CoherenceInterceptor as the cache interceptor for an Entity. A
Coherence interceptor will reroute all cache get and put operations to Coherence
instead of the built-in EclipseLink shared cache. This configuration, shown in
Figure 17, is referred to as "cache aside."

30

Figure 17 Coherence as Shared (L2) Cache

In the Coherence as Shared (L2) Cache approach, a Coherence interceptor will reroute
all cache get and put operations to Coherence instead of the built-in EclipseLink
shared cahce.

Add the @CacheInterceptor annotation to all lab entities with the
CoherenceInterceptor.class as its sole parameter, as shown in this example:

import oracle.eclipselink.coherence.integrated.cache.CoherenceInterceptor;
import org.eclipse.persistence.annotations.CacheInterceptor;

@CacheInterceptor(CoherenceInterceptor.class)
public class Employee implements Serializable {
...

Coherence Cache Configuration The labs include a coherence-cache-config.xml
file. In the lab configuration file, all entities are configured identically. Although there
is no need to edit the file, you should note and review the following elements:

<caching-scheme-mapping>
<cache-mapping>
<cache-name>*</cache-name>
<scheme-name>eclipselink-distributed</scheme-name>

</cache-mapping>
</caching-scheme-mapping>

The asterisk, *, in the cache-name element will match any entity name. By default,
TopLink Grid uses the entity name as the name of the associated cache. You can
override this behavior by using the EclipseLink @Property annotation on an entity,
as shown in this example:

@Property(name="coherence.cache.name", value="Employee")
@CacheInterceptor(CoherenceInterceptor.class)
public class Employee implements Serializable {
...

In these labs, the cache names are default to the entity name.

In the Grid Cache lab, all entities use a cache scheme named eclipselink-distributed
which is a distributed (partitioned) cache. The distributed backing map scheme

31

eclipselink-distributed has a serializer configured to support serialization of entity
relationships into Coherence, as shown in this example:

<caching-schemes>
<distributed-scheme>
<scheme-name>eclipselink-distributed</scheme-name>
<service-name>EclipseLinkJPA</service-name>

<!--
Configure a wrapper serializer to support serialization of
relationships.
-->
<serializer>
<class-name>
oracle.eclipselink.coherence.integrated.cache.WrapperSerializer

</class-name>
</serializer>

...

Running Lab 1 with Coherence Now that the entities are configured to be cached in
Coherence and a coherence-cache-config.xml file is defined, you can re-run the
lab with Coherence.

1. Reset the database by right-clicking the Lab 1-TopLinkGrid Grid Cache project in
the Project Explorer view and selecting JPA > Generate Tables from Entities…
from the pop-up menu to drop and create the lab tables.

2. Run gridcache.example.StartCacheServer to start the Coherence cache server.
After being configured to use Coherence, of the examples require a cache server to
be running.

Figure 18 Eclipse Console

3. Run gridcache.example.InsertExample to create example entities in the database
and populate the Coherence cache. In addition to Coherence boot messages and
INSERT statements in the console you will also see messages showing entities
being put into Coherence under their primary key, as shown in this example:

[EL Fine]: Coherence(PhoneNumber)::Put: 3 value: l2.model.PhoneNumber@59cbda(3:
Work: 613-5558812)
[EL Fine]: Coherence(Employee)::Put: 1 value: l2.model.Employee@11c55bb(1:
Smith, Bob)
[EL Fine]: Coherence(Address)::Put: 2 value: l2.model.Address@135133(Toronto)

4. Run gridcache.example.QueryExample1. In the console you will see a single
SELECT statement for all Employees resulting from the JQPL query select e
from Employee e -- that's all. You will also see the messages logging Coherence
interaction. Compare this output with the output generated when you ran
QueryExample1 before enabling the Coherence cache.

Tip: When running multiple programs in Eclipse, use the drop-down
list to switch between each program's console, as shown in Figure 18.
When reviewing the console output, be aware of which console you
are viewing: the cache server console or the example console.

32

5. Run gridcache.example.QueryExample2 to illustrate which database queries are
produced when you have a series of EntityManagers, such as for an application
deployed to an application server. This example is useful when compared to the
output generated in subsequent labs.

Lab 2: "Grid Read" Configuration
In "Lab 1: Grid Cache Configuration" you learned how to configure Coherence as a
shared entity cache. In this lab you will increase the use of Coherence by directing all
read queries (i.e., select and find) to Coherence. In this "Grid Read" configuration,
all read operations are directed to Coherence but write operations are handled by
EclipseLink and directed to the database. This configuration is described as "read
through," as shown in Figure 19. Use this configuration when you need highly
available data and a database that is always up-to-date. This configuration supports
JTA so you can participate in a distributed transaction, Coherence is only updated
once the entire JTA transaction commits.

Figure 19 Grid Read Configuration

In the "Grid Read" configuration, all read operations are directed to Coherence but
write operations are handled by EclipseLink and directed to the database

Configuring Grid Read The Grid Read configuration extends the Grid Cache
configuration. In addition to a cache interceptor, various read query types are also
directed to Coherence. To simplify configuration, TopLink Grid provides an
EclipseLink customizer class that performs the necessary configuration changes,
including setting the cache interceptor you configured in Lab 1.

The CoherenceReadCustomizer is configured using the EclipseLink @Customizer
annotation, as shown here:

import oracle.eclipselink.coherence.integrated.config.CoherenceReadCustomizer;
import org.eclipse.persistence.annotations.Customizer;

@Customizer(CoherenceReadCustomizer.class)
public class Employee implements Serializable {

Alternatively, you can also a Customizer in the persistence.xml and
eclipselink-orm.xml.

33

From the Project Explorer view, right click the Lab 2-TopLinkGrid Grid Read project
and select Open Project from the popup menu. Eclipse may report errors due to
missing tables that correspond to the JPA entities in the project-we'll resolve the errors
by generating the tables.

Add @Customizer(CoherenceReadCustomizer.class), as shown in the
previous code example, to all the lab entities.

Coherence Cache Configuration With all read queries directed to Coherence, the
coherence-cache-config.xml is different than in the Grid Cache configuration.
In particular, it makes sense to configure a CacheLoader so that Coherence can query
the database for an individual object if it doesn't contain it.

This example shows an excerpt of the coherence-cache-config.xml from Lab 2:

<distributed-scheme>
<scheme-name>eclipselink-distributed-readonly</scheme-name>
<service-name>EclipseLinkJPAReadOnly</service-name>
...
<backing-map-scheme>
<read-write-backing-map-scheme>
...
<!-- Define the cache scheme -->
<cachestore-scheme>
<class-scheme>
<class-name>
oracle.eclipselink.coherence.integrated.EclipseLinkJPACacheLoader

</class-name>
<init-params>
<init-param>
<param-type>java.lang.String</param-type>
<param-value>{cache-name}</param-value>

</init-param>
<init-param>
<param-type>java.lang.String</param-type>
<param-value>employee</param-value>

</init-param>
</init-params>

</class-scheme>
</cachestore-scheme>
<read-only>true</read-only>

</read-write-backing-map-scheme>
</backing-map-scheme>
<autostart>true</autostart>

</distributed-scheme>

We configure an EclipseLinkJPACacheLoader on the backing map from the
oracle.eclipselink.coherence.integrated package. Note the integrated
package name -- use this CacheLoader when using TopLink Grid with a JPA front
end, as in this lab.

When using a TopLink Grid CacheLoader in a traditional Coherence API based
application, use the EclipseLinkJPACacheLoader in the
oracle.eclipselink.coherence.standalone package.

Running Lab 2 with Coherence After configuring the entities with the
CoherenceReadCustomizer and configuring the caches in the
coherence-cache-config.xml with a CacheLoader you can run the lab.

34

1. Stop any CacheServers that may still be running from the previous Lab.

2. If your database connection differs from the defaults, you must update the
following EclipseLink JDBC properties in the META-INF/persistence.xml file:

■ eclipselink.jdbc.driver

■ eclipselink.jdbc.url

■ eclipselink.jdbc.user

■ eclipselink.jdbc.password

3. From the Project Explorer view, right-click the Lab 2 project and select JPA >
Generate Tables from Entities… from the pop-up menu to reset the database

4. Run gridread.example.StartCacheServer to start the a Coherence cache server.

5. Run gridread.example.InsertExample to create example entities in the database
and populate the Coherence cache. In addition to Coherence boot messages and
INSERT statements in the console you will also see messages showing entities
being put into Coherence under their primary key, as shown in this example.

[EL Fine]: Connection(4889213)--INSERT INTO GRIDREAD_ADDRESS (ID, POSTALCODE,
STREET, PROVINCE, VERSION, COUNTRY, CITY) VALUES (?, ?, ?, ?, ?, ?, ?)
[EL Fine]: Connection(4889213)--

bind => [2, L5J2B5, 1450 Acme Cr., Suite 4, ONT, 1, Canada, Toronto]
[EL Fine]: Connection(4889213)--INSERT INTO GRIDREAD_EMPLOYEE (ID, LASTNAME,
FIRSTNAME, VERSION, ADDRESS_ID) VALUES (?, ?, ?, ?, ?)
[EL Fine]: Connection(4889213)--

bind => [1, Smith, Bob, 1, 2]
[EL Fine]: Connection(4889213)--INSERT INTO GRIDREAD_PHONE (ID, AREACODE, NUM,
TYPE, VERSION, OWNER_ID) VALUES (?, ?, ?, ?, ?, ?)
[EL Fine]: Connection(4889213)--

bind => [3, 613, 5558812, Work, 1, 1]
[EL Fine]: Coherence(Employee)::Put: 1 value: read.model.Employee@948069(1:
Smith, Bob)
[EL Fine]: Coherence(Address)::Put: 2 value:
read.model.Address@1b59919(Toronto)
[EL Fine]: Coherence(PhoneNumber)::Put: 3 value:
read.model.PhoneNumber@1588325(3: Work: 613-5558812)

The console is similar to the console output from Lab 1 with the Grid Cache
configuration

6. Run gridread.example.QueryExample1. In the QueryExample1 console
EclipseLink does not issue a SELECT statement from the JQPL query select e
from Employee e because the query was translated to a Coherence Filter and
passed to Coherence for evaluation.

Compare this output with the output from gridcache.example.QueryExample1 in
"Lab 3: "Grid Entity" Configuration":

■ In Lab 1, JPQL queries were always translated to SQL and executed on the
database.

■ In Lab 2, the EntityManager.find(), is evaluated against Coherence and
produces no SQL.

Lab 3: "Grid Entity" Configuration
The Grid Entity configuration extends the Grid Read configuration, redirecting all
write queries (INSERT, UPDATE, and DELETE) to Coherence instead of the database.

35

This configuration is useful when you need quick response time and can use a
write-behind strategy to periodically flush updates to the database. This is achieved
through configuration of a CacheStore on the Coherence cache. This configuration may
be described to as both "read through" and "write through" (Figure 20).

Potential downsides to this configuration are the loss of JTA transaction participation,
EclipseLink write optimizations like batch writing, and the need to relax referential
integrity rules due to the unpredictable order in which Coherence caches may write
updates to the database.

Figure 20 Grid Entity Configuration

The Grid Entity configuration extends the Grid Read configuration, redirecting all
write queries (INSERT, UPDATE, and DELETE) to Coherence instead of the database.
This configuration is useful when you need quick response time and can use a
write-behind strategy to periodically flush updates to the database. This is achieved
through configuration of a CacheStore on the Coherence cache.

Configuring Grid Entity Like the "Lab 2: "Grid Read" Configuration", Grid Entity is
enabled by an EclipseLink Customizer, CoherenceReadWriteCustomizer, set on an
individual entity as shown in the following example:

import
oracle.eclipselink.coherence.integrated.config.CoherenceReadWriteCustomizer;
import org.eclipse.persistence.annotations.Customizer;

@Customizer(CoherenceReadWriteCustomizer.class)
public class Employee implements Serializable {

From the Project Explorer view, right-click the Lab 3-TopLinkGrid Grid Entity project
and select Open Project from the popup menu. As in the other labs, you may see
errors due to missing tables that correspond to the JPA entities in the project. These
will be resolved after generating the tables.

Add @Customizer(CoherenceReadWriteCustomizer.class), as shown in the
previous code example, to all the lab entities.

Coherence Cache Configuration To propagate updates to the database, a Coherence entity
cache needs to be configured with a CacheStore. A CacheStore is configured like a

36

CacheLoader. The difference is in the implementation which supports write operations
in addition to read operations.

<distributed-scheme>
<scheme-name>eclipselink-distributed-readwrite</scheme-name>
...
<cachestore-scheme>
<class-scheme>
<class-name>
oracle.eclipselink.coherence.integrated.EclipseLinkJPACacheStore

</class-name>
...

As in "Lab 2: "Grid Read" Configuration", the EclipseLinkJPACacheStore is in the
integrated package because we are using JPA as our programming API.

Running Lab 3 with Coherence After configuring the your entities with the
CoherenceReadWriteCustomizer and configuring the caches in the
coherence-cache-config.xml with a CacheStore, you can run the lab.

1. Stop any CacheServers that may still be running from the previous Lab.

2. If your database connection differs from the defaults, you must update the
following EclipseLink JDBC properties in the META-INF/persistence.xml file:

■ eclipselink.jdbc.driver

■ eclipselink.jdbc.url

■ eclipselink.jdbc.user

■ eclipselink.jdbc.password

3. From the Project Explorer view, right-click the Lab 3 project and select
JPA>Generate Tables from Entities… from the pop-up menu to reset the
database.

4. Run gridentity.example.StartCacheServer to start the Coherence cache server.

5. Run gridentity.example.InsertExample to create example entities in the database
and populate the Coherence cache. In the InsertExample console you will see
messages showing entities being put into Coherence under their primary key, but
no INSERT statements.

[EL Fine]: Coherence(Employee)::ConditionalPut: 1 value:
readwrite.model.Employee@b9b618(1: Smith, Bob)
[EL Fine]: Coherence(PhoneNumber)::ConditionalPut: 3 value:
readwrite.model.PhoneNumber@800aa1(3: Work: 613-5558812)
[EL Fine]: Coherence(Address)::ConditionalPut: 2 value:
readwrite.model.Address@169dd64(Toronto)

You will see database queries in the CacheServer console because with
CoherenceReadWrite configured, all queries in the QueryExample client program
are being directed to Coherence. When an entity is put into Coherence, the
CacheStore determines if the put entity is new, which will produce an INSERT
statement, or has been updated, which will produce an UPDATE statement.

6. Since the Grid Entity configuration has the same read behavior as the "Lab 2: "Grid
Read" Configuration" configuration, running gridentity.example.QueryExample1
will produce the same results as gridread.example.QueryExample1. In the
console, there are no SELECT statements resulting from the JQPL query select
e from Employee e.

37

Summary
TopLink Grid provides integration between EclipseLink JPA and Oracle Coherence.
This lab demonstrated configurations ranging from using Coherence as a shared L2
cache to using Coherence as data source with JPQL queries translated to Filters
executed in the grid.

As these labs illustrated, configuring Coherence with TopLink Grid is simple, straight
forward, and introduces limited changes to JPA applications.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Integration Guide for Oracle TopLink with Coherence Gird, Volume 1, 11g Release 1 (11.1.1)
E16596-01

Copyright © 1997, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them
to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions
and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the

38

additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any
inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications,
then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software.
Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation
and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services.
Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services.

	Understanding the TopLink Grid Integration
	Entity Caching
	Reading and Querying
	Writing

	"Traditional Coherence" Configuration
	CacheStore/CacheLoader
	Reading Objects
	Writing Objects
	Examples

	"JPA on the Grid" Configurations
	Grid Cache
	Reading Objects
	Writing Objects
	Examples

	Grid Read
	Reading Objects
	Writing Objects
	Examples

	Grid Entity
	Reading Objects
	Writing Objects
	Issues to be Aware of When Writing Objects

	Examples

	Relationships
	Wrapping and Unwrapping

	Queries
	Querying Objects by ID
	Querying Objects with Criteria
	Limitations and Restrictions

	Labs and Examples
	Configuring the Lab Environment
	Setup
	Software Installation
	Environment Configuration

	Running the Labs
	Lab 1: Grid Cache Configuration
	Getting Started
	Configuring Coherence Grid Caching
	Coherence Cache Configuration
	Running Lab 1 with Coherence

	Lab 2: "Grid Read" Configuration
	Configuring Grid Read
	Coherence Cache Configuration
	Running Lab 2 with Coherence

	Lab 3: "Grid Entity" Configuration
	Configuring Grid Entity
	Coherence Cache Configuration
	Running Lab 3 with Coherence

	Summary

	Documentation Accessibility

