Connecting Systems Using Fixed Network Configuration in Oracle® Solaris 11.1

Part No: E28987–01 October 2012 Copyright © 2011, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de la décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l'utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s'applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour ce type d'applications.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une marque déposée d'The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation.

Contents

	Preface
1	Overview of Fixed Network Configuration
	What Is Fixed Network Configuration?
	Highlights of Profile-Managed Network Configuration
	Network Configuration Tools
	dladm Command
	ipadm Command13
2	Configuring a System for the Network
	Configuring the Network (Task Map)15
	▼ SPARC: How to Ensure That the MAC Address of Each Interface Is Unique
	▼ How to Change the Active NCP On the System
	▼ How to Configure an IP Interface
	Other Network Configuration and Administration Tasks
3	Working With Datalinks
	Basic dladm Commands
	Displaying General Information About Datalinks (dladm)
	Displaying a System's Datalinks (dladm show-link)26
	Displaying Physical Attributes of Datalinks (dladm show-phys)
	Deleting a Datalink (dladm delete-phys)27
	Renaming a Datalink (dladm rename-link)27
	Customizing Datalink Properties
	Overview of Datalink Properties
	Enabling Support for Jumbo Frames
	Modifying Link Speed Parameters

	Setting the STREAMS Module on Datalinks	30
	Setting the e1000g Driver to Use Direct Memory Access Binding	
	Manually Setting the Interrupt Rate	
	Obtaining Status Information About Datalink Properties	
	Other Configuration Tasks With the dladm Command	
	▼ How to Switch Primary Interfaces on a System	
	\blacksquare How to Replace a Network Interface Card With Dynamic Reconfiguration	35
4	Working With IP Interfaces	
	Basic ipadm Commands	39
	Removing an IP Interface Configuration (ipadm delete-ip)	
	Disabling an IP Interface Configuration (ipadm disable-ip)	40
	Removing an Interface's Address (ipadm delete-addr)	40
	Setting IP Interface Properties	41
	Enabling Packet Forwarding	41
	Setting IP Address Properties	42
	Setting TCP/IP Protocol Properties	43
	Enabling Packet Forwarding Globally	44
	Setting Up a Privileged Port	45
	Implementing Symmetric Routing on Multihomed Hosts	46
	Implementing Traffic Congestion Control	47
	Changing the TCP Receive Buffer Size	48
	Monitoring IP Interfaces and Addresses	50
	Obtaining General Information About IP Interfaces	50
	Obtaining Information About IP Interfaces	51
	Obtaining Information About IP Interface Properties	52
	Obtaining Information About IP Addresses	53
	Obtaining Information About IP Address Properties	54
5	Configuring Wireless Networking on Laptops Running Oracle Solaris	
-	WiEi Communications Task Man	55

Wirt Communications Task Map	55
▼ How to Connect to a WiFi Network	56
▼ How to Monitor the WiFi Link	59
Secure WiFi Communications	61
	01
▼ How to Set Up an Encrypted W1F1 Network Connection	61

A	Comparison Map: ifconfig and ipadm Commands	65
В	Comparison Map: ndd and ipadm Commands	69
	Index	.73

Preface

Welcome to *Connecting Systems Using Fixed Network Configuration in Oracle Solaris 11.1*. This book is part of the series *Establishing An Oracle Solaris 11.1 Network* that cover basic topics and procedures to configure Oracle Solaris networks. This book assumes that you have already installed Oracle Solaris. You should be ready to configure your network or ready to configure any networking software that is required on your network.

Note – This Oracle Solaris release supports systems that use the SPARC and x86 families of processor architectures. The supported systems appear in the *Oracle Solaris OS: Hardware Compatibility Lists*. This document cites any implementation differences between the platform types.

For supported systems, see the Oracle Solaris OS: Hardware Compatibility Lists.

Who Should Use This Book

This book is intended for anyone responsible for administering systems that run Oracle Solaris, which are configured in a network. To use this book, you should have at least two years of UNIX system administration experience. Attending UNIX system administration training courses might be helpful.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

TABLE P-1 Typographic Conventions

Typeface	Description	Example
AaBbCc123	The names of commands, files, and directories,	Edit your . login file.
	and onscreen computer output	Use ls -a to list all files.
		machine_name% you have mail.
AaBbCc123	What you type, contrasted with onscreen	machine_name% su
	computer output	Password:
aabbcc123	Placeholder: replace with a real name or value	The command to remove a file is rm <i>filename</i> .
AaBbCc123	Book titles, new terms, and terms to be	Read Chapter 6 in the User's Guide.
	emphasized	A <i>cache</i> is a copy that is stored locally.
		Do <i>not</i> save the file.
		Note: Some emphasized items appear bold online.

Shell Prompts in Command Examples

The following table shows the default UNIX system prompt and superuser prompt for shells that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed in command examples varies, depending on the Oracle Solaris release.

TABLE P-2 Shell Prompts

Shell	Prompt
Bash shell, Korn shell, and Bourne shell	\$
Bash shell, Korn shell, and Bourne shell for superuser	#
C shell	machine_name%
C shell for superuser	machine_name#

Overview of Fixed Network Configuration

On a system that runs Oracle Solaris 11, network configuration can either be reactive or fixed depending on the network configuration profile (NCP) that is active on the system. For an overview of reactive and fixed network configuration, see *Introduction to Oracle Solaris 11 Networking*. For detailed information about how to create and configure NCPs, see *Connecting Systems Using Reactive Network Configuration in Oracle Solaris 11.1*.

This chapter presents a general introduction to fixed network configuration and covers the following topics:

- "What Is Fixed Network Configuration?" on page 9
- "Highlights of Profile-Managed Network Configuration" on page 10
- "Network Configuration Tools" on page 11

What Is Fixed Network Configuration?

In Oracle Solaris 11, network configuration is managed by network configuration profiles (NCPs). The type of NCP that is operative on a specific system determines that system's network configuration. If the NCP is reactive, network configuration on that system is dynamically implemented. If the NCP is fixed, network configuration is statically implemented.

Fixed network configuration refers to the configuration mode in which a specific network setup is instantiated on the system. Unlike in a reactive network configuration mode, the instantiated configuration in a fixed configuration mode remains unchanged regardless of changes in the system's network environment. If changes in that environment occur, such as addition of interfaces, you must manually reconfigure the system's network setup to have the system adopt to the new environment.

Note – Do not confuse fixed network configuration with simply configuring static IP addresses. In fixed network configuration, you can assign a DHCP address to an interface. Likewise, in reactive network configuration, you can create NCPs where interfaces are configured with static IP addresses. Thus, fixed network configuration has a wider scope and specifically refers to the ability of the system's network configuration to change according to changes in the system's environment.

The following table presents a comparison between the two modes of network configuration.

Features	Reactive Network Configuration	Fixed Network Configuration
Automatically adapts to changes in system's network environment	Supported by means of multiple NCPs that can be configured	Not supported; requires manual reconfiguration as needed
Type of NCP operative on the system	Reactive (Automatic, or some other user-created NCP)	Fixed (DefaultFixed)
Multiple NCPs	Supported (but only one NCP can be active at a time)	Not supported
User created NCPs	Supported	Only one fixed NCP (DefaultFixed) exists, which is generated by the system. However, the contents of DefaultFixed is entirely determined by the user.

The following sections describe in more detail profile-managed network configuration and the tools used for network configuration.

Highlights of Profile-Managed Network Configuration

In Oracle Solaris 11, network configuration is based on profiles. A system's network configuration is managed by an NCP and a corresponding Location profile. For an introduction to profile-managed network configuration, see "Network Configuration Profiles" in *Introduction to Oracle Solaris 11 Networking*. For details about NCPs, see *Connecting Systems Using Reactive Network Configuration in Oracle Solaris 11.1*.

Note – For network configuration, the principal profile types are NCPs, Location profiles, external network modifiers (ENMs), and wireless local area networks (WLANs). Of these types, the main profile is the NCP. Throughout this documentation, unless specified otherwise, the term *profile* refers to the NCP.

The highlights of profile-based network configuration follow:

- Only one pair of NCP and location profiles can be active at one time to manage a system's network configuration. All other existing NCPs on the system are non-operational.
- The active NCP can be either *reactive* or *fixed*. With a reactive profile, the network configuration is monitored to adapt to changes in the system's network environment. With a fixed profile, the network configuration is instantiated but not monitored.
- If the active NCP is reactive, the system's networking configuration is adaptive. If the active NCP is fixed, the system's networking configuration is constant.
- The values of the different properties of an NCP constitute a policy that governs how the profile manages the network configuration.
- Changes to the NCP's properties are immediately implemented as new property values. These new values become part of the profile's policy that manages the network configuration.

If your system is configured for fixed networking, then the active NCP that manages its network configuration is DefaultFixed. This profile is generated by the OS and is the only fixed profile on the system. A system does not support multiple fixed profiles.

The properties of the DefaultFixed NCP reflect the persistent configuration that is created or modified while DefaultFixed NCP is active.

Network Configuration Tools

In Oracle Solaris 11, four network commands are available to configure the network:

- netcfg command
- netadm command
- dladm command
- ipadm command

The netcfg and netadm commands are used to administer reactive network configuration on the system. You use the netcfg command to create and configure profiles that implement reactive network configuration: NCPs, Location profiles, ENMs, and WLANs. However, on a system with fixed network configuration, you can use the netcfg command only to view the DefaultFixed profile. The netadm command is used to administer all the profiles on the system, particularly to list the system's network profiles as well as to replace one active NCP with another.

The dladm and ipadm commands are used to configure datalinks and IP interfaces respectively. The commands create persistent configurations and are applied to the profile that is active on the system when the commands are used.

For example, if a datalink net0 is configured with a specific maximum transmission unit (MTU) of 1200, and the active NCP is Automatic, then this MTU value becomes persistent for net0 in the Automatic NCP. Suppose then that you activated a second NCP called myncp. If you

issue the dladm command to set the MTU with a different value, then that value would be applied to myncp. Thus, net0 can have different MTU values in different profiles. Thus, the dladm and ipadm commands can also be used to indirectly configure profiles.

When you configure datalinks and IP interfaces with these the dladm or ipadm commands, be aware of the following scopes of their use:

- The two commands configure only the datalinks and IP interfaces for the active profile. To configure other properties of the profile, such as setting default routes, you use the netcfg command to configure the profile's property that refers to default routes. Or, you use the routeadm command that directly sets default routes on the system's routing table. In the latter case, the configuration applies to whichever profile is active on the system.
- You can use the dladm and ipadm commands on any reactive profile, provided that the
 profile is active. However, you cannot use the netcfg command to configure the
 DefaultFixed profile, which is the system's only fixed profile. You can only use the netadm
 and netcfg commands to view the properties of the DefaultFixed profile, but not to
 configure them.

The dladm and ipadm commands are effective on the active profile, either a reactive profile or a fixed profile. Consequently, before you use these commands, you must make sure of the following:

- Know which profile is active on the system to ensure that you make changes to the correct target profile.
- Know whether the target profile is reactive or fixed to avoid causing unexpected configuration behavior after using the commands. A reactive profile manages the network configuration differently than a fixed profile. Accordingly, the behavior of the two profiles also differs when changes are implemented.

The next sections describe the dladm and ipadm commands in detail.

dladm Command

Use the dladm command to configure datalinks. You can customize datalink properties by using the dladm command, provided that the link's network driver has been converted to the GLDv3 driver configuration framework, such as e1000g. To confirm whether your specific driver supports this feature, refer to the driver's man page.

The full implementation of the GLDv3 driver configuration framework has enhanced the configuration of network interface card (NIC) drivers in the following ways:

- Only a single command interface, the dladm command, is needed to configure network driver properties.
- A uniform syntax is used regardless of the properties: dladm *subcommand properties datalink*.

- Use of the dladm command applies to both public and private properties of the driver.
- Using the dladm command on a specific driver does not disrupt network connections of other NICs of similar types. Thus, you can configure datalink properties dynamically.
- Datalink configuration values are stored in a dladm repository and persist even after you reboot the system.

To avail of these advantages when you configure datalinks, you should use dladm as the configuration tool instead of the customary tools in previous releases, such as the ndd command.

For more details about the dladm command, refer to the dladm(1M) man page. For a list of subcommands to use with the dladm command, type the following:

```
# dladm help
The following subcommands are supported:
             : add-bridge create-bridge
                                             delete-bridge
Bridge
               modify-bridge remove-bridge
                                             show-bridge
Etherstub
             : create-etherstub delete-etherstub show-etherstub
TB
             : create-part delete-part
                                             show-ib
                                                            show-part
             : create-iptun delete-iptun
IP tunnel
                                             modify-iptun
                                                            show-iptun
Link Aggregation: add-aggr create-aggr
                                             delete-aggr
               modify-aggr
                              remove-aggr
                                             show-aggr
              : rename-link
Link
                              reset-linkprop set-linkprop
                show-link
                              show-linkprop
Secure Object : create-secobj delete-secobj
                                             show-secobj
                              delete-vlan
VLAN
              : create-vlan
                                             modify-vlan
                                                            show-vlan
VNIC
                              delete-vnic
                                             modify-vnic
                                                            show-vnic
              : create-vnic
Wifi
                              disconnect-wifi scan-wifi
              : connect-wifi
                                                            show-wifi
Miscellaneous : delete-phys
                              show-ether
                                             show-phys
                                                            show-usage
For more info, run: dladm help <subcommand>.
```

To use dladm command on datalinks, see Chapter 3, "Working With Datalinks."

ipadm Command

Advances in Oracle Solaris have surpassed the capabilities of traditional tools to efficiently administer various aspects of network configuration. The ifconfig command, for example, has been the customary tool to configure network interfaces. However, this command does not implement persistent configuration. Over time, ifconfig has undergone enhancements for added capabilities in network administration. However, as a consequence, the command has become complex and confusing to use.

Another issue with interface configuration and administration is the absence of simple tools to administer TCP/IP properties or tunables. The ndd command has been the prescribed customization tool for this purpose. However, like the ifconfig command, ndd does not implement persistent configuration. Previously, persistent configuration could be simulated for a network scenario by editing the boot scripts. With the introduction of service management

facility (SMF) in Oracle Solaris, using such workarounds can become risky because of the complexities of managing SMF dependencies, particularly in light of upgrades to an Oracle Solaris installation.

The ipadm command is introduced to eventually replace the ifconfig command for interface configuration. The command also replaces the ndd command to configure protocol properties.

As a tool for configuring interfaces, the ipadm command offers the following advantages:

- It manages IP interfaces and IP addresses more efficiently by being the tool uniquely for IP interface administration, unlike the ifconfig command, which is used for purposes other than interface configuration.
- It implements persistent interface and address configuration.

For a list of ifconfig options and their equivalent ipadm subcommands, see Appendix A, "Comparison Map: ifconfig and ipadm Commands."

As a tool for setting protocol properties, the ipadm command provides the following advantages over the ndd command:

- It can set temporary or persistent properties for these protocols: IP, Address Resolution Protocol (ARP), Stream Control Transmission Protocol (SCTP), and Internet Control Messaging Protocol (ICMP), as well as upper layer protocols such as TCP and User Datagram Protocol (UDP).
- It provides information about each TCP/IP property, such as a property's current and default value, as well as the range of possible values. Thus, debugging information is more easily obtained.
- It also follows a consistent command syntax and is therefore easier to use.

For a list of ndd options and their equivalent ipadm subcommands, see Appendix B, "Comparison Map: ndd and ipadm Commands."

For more details about the ipadm command, refer to the ipadm(1M) man page. For a list of subcommands to use with the ipadm, type the following:

# ipadm help				
The following subcomm	ands	are supported:		
Address	:	create-addr down-addr reset-addrprop show-addrprop	delete-addr enable-addr set-addrprop up-addr	disable-addr refresh-addr show-addr
Interface	:	disable-if set-ifprop	enable-if show-if	reset-ifprop show-ifprop
IP interface	:	create-ip	delete-ip	
IPMP interface	:	add-ipmp remove-ipmp	create-ipmp	delete-ipmp
Protocol property	:	reset-prop	set-prop	show-prop
VNI interface	:	create-vni	delete-vni	
For more info, run: i	padm	help <subcommar< td=""><td>nd>.</td><td></td></subcommar<>	nd>.	

Configuring a System for the Network

This chapter provides procedures you follow to configure an IP interface on a system that uses fixed network configuration. The following topics are discussed:

- "Configuring the Network (Task Map)" on page 15
- "Other Network Configuration and Administration Tasks" on page 22

Configuring the Network (Task Map)

This section describes basic configuration procedures for an IP interface. The following table describes configuration tasks and maps these tasks to their corresponding procedures.

Task	Description	For Instructions
Configure a system to support unique MAC addresses.	Configures a SPARC based system to allow unique MAC addresses for interfaces.	"SPARC: How to Ensure That the MAC Address of Each Interface Is Unique" on page 16
Determine which NCP is active on Displays the active NCP on the system and enables DefaultFixed.		"How to Change the Active NCP On the System" on page 17
Perform basic IP interface configuration by using the ipadm command.	Creates an IP interface and assigns valid IP addresses, either static or DHCP, to the interface.	"How to Configure an IP Interface" on page 18
Customize datalinks.	Customize datalinks further by setting link properties.	"Customizing Datalink Properties" on page 28
Customize IP interfaces.	Customizes IP interfaces further by setting interface properties.	"Setting IP Interface Properties" on page 41
Customize IP addresses.	Customizes IP addresses further by setting address properties.	"Setting IP Address Properties" on page 42

Task	Description	For Instructions
Customize protocols.	Customizes protocols further by setting protocol properties.	"Setting TCP/IP Protocol Properties" on page 43
Configure a wireless network.	Connect a laptop to the network using wireless networking.	Chapter 5, "Configuring Wireless Networking on Laptops Running Oracle Solaris"

SPARC: How to Ensure That the MAC Address of Each Interface Is Unique

Every SPARC based system has a system-wide MAC address, which by default is used by all interfaces. However, some applications require every interface on a host to have a unique MAC address. Certain types of interface configuration such as link aggregations and IP multipathing (IPMP) similarly require that interfaces must have their own MAC addresses.

The EEPROM parameter local-mac-address? determines whether all interfaces on a SPARC based system use the system-wide MAC address or their unique MAC address. The next procedure explains how to use the eeprom command to check the current value of local-mac-address? and change it, if necessary.

1 Become an administrator.

For more information, see "How to Use Your Assigned Administrative Rights" in Oracle Solaris 11.1 Administration: Security Services.

2 Determine whether all interfaces on the system currently use the system-wide MAC address.

eeprom local-mac-address?

local-mac-address?=false

In the example, the response to the eeprom command, local-mac-address?=false, indicates that all interfaces do use the system-wide MAC address. The value of local-mac-address?=false must be changed to local-mac-address?=true before the interfaces can become members of an IPMP group. You should also make this change for link aggregations.

3 If necessary, change the value of local-mac-address? as follows:

eeprom local-mac-address?=true

When you reboot the system in Step 6, the interfaces with factory-installed MAC addresses will use these factory settings, rather than the system-wide MAC address. Interfaces without factory-installed MAC addresses will continue to use the system-wide MAC address.

4 Check the MAC addresses of all the interfaces on the system.

Look for cases where multiple interfaces have the same MAC address. In this example, two interfaces use the system-wide MAC address 8:0:20:0:1.

```
# dladm show-linkprop -p mac-address
LINK
     PROPERTY
                  PERM VALUE
                                         DEFAULT
                                                          POSSIBLE
     mac-address rw 8:0:20:0:0:1
net0
                                         8:0:20:0:0:1
                                                          - -
      mac-address rw 8:0:20:0:0:1
                                         8:0:20:0:0:1
net1
                                                          - -
net3 mac-address rw 0:14:4f:45:c:2d 0:14:4f:45:c:2d
                                                          - -
```

Note – Continue to the next step only if two or more network interfaces have the same MAC address. Otherwise, proceed to the final step.

5 If necessary, manually configure the remaining interfaces so that all interfaces have unique MAC addresses.

dladm set-linkprop -p mac-address=mac-address interface

In the example in the previous step, you would need to configure net0 and net1 with locally administered MAC addresses. For example, to reconfigure net0 with the locally administered MAC address 06:05:04:03:02, you would type the following command:

```
# dladm set-linkprop -p mac-address=06:05:04:03:02 net0
```

Refer to the dladm(1M) man page for details about this command.

```
6 Reboot the system.
```

How to Change the Active NCP On the System

The type of NCP enabled on the system determines whether the system's network configuration is reactive or fixed. The system with reactive configuration behaves differently than with fixed network configuration. All the procedures in this book create persistent configurations which are applied to the active NCP. Therefore, before performing any procedure, you must know which NCP is active to apply the configuration to the correct profile. Thus, the system's network configuration behaves as you expect after completing the procedures.

1 List the profiles on the system.

<pre># netadm</pre>	list	
TYPE	PROFILE	STATE
ncp	DefaultFixed	online
ncp	Automatic	disabled
loc	Automatic	offline
loc	NoNet	offline
loc	User	offline
loc	DefaultFixed	online

The profile whose status is listed as online is the active NCP on the system.

For more detailed information about the NCPs on the system, use the -x option with the netadm command.

netadm list	- x		
TYPE	PROFILE	STATE	AUXILIARY STATE
ncp	DefaultFixed	online	active
ncp	Automatic	disabled	disabled by administrator
loc	Automatic	offline	conditions for activation are unmet
loc	NoNet	offline	conditions for activation are unmet
loc	User	offline	conditions for activation are unmet
loc	DefaultFixed	online	active

2 To switch between profile types, for example from a reactive profile to a fixed profile, type the following command:

netadm enable -p ncp NCP-name

where NCP-name is the name of a type of NCP.

For example, suppose that your system's network configuration is reactive. If you want the configurations that are created by the procedures in this book to apply to the DefaultFixed NCP, you would type the following:

```
# netadm enable -p ncp defaultfixed
```


Caution – When you switch active profiles, the existing network configuration is removed, and a new configuration is created. Any persistent configurations that were implemented on a previously active NCP are excluded in the new active NCP.

How to Configure an IP Interface

The following procedure provides the basic steps that you use to configure a system's IP interface.

Before You Begin Check which NCP is active on the system to make sure that you are applying the configuration to the correct profile.

1 Become an administrator.

For more information, see "How to Use Your Assigned Administrative Rights" in Oracle Solaris 11.1 Administration: Security Services.

2 Create the interface.

ipadm create-interface-class interface

interface-class Refers to one of three classes of interfaces that you can create:

- IP interface. This interface class is the most common that you create when you perform network configuration. To create this interface class, use the create-ip subcommand.
- STREAMS virtual network interface driver (VNI interface). To create this
 interface class, use the create-vni subcommand. For more information
 about VNI devices or interfaces, see the vni(7d) man page.
- IPMP interface. This interface is used when you configure IPMP groups. To create this interface class, use the create-ipmp subcommand. For more information about IPMP groups, see Chapter 5, "Introduction to IPMP," in *Managing Oracle Solaris 11.1 Network Performance*.
- *interface* Refers to the name of the interface. The name is identical to the name of the datalink over which the interface is being created. To know the datalinks on the system, use the dladm show-link command.

3 Configure the IP interface with a valid IP address by choosing one of the following commands.

• To configure a static address, type the following:

ipadm create-addr -a address [interface | addrobj]

-a *address* Specifies the IP address to configure on the interface.

Note – Tunnel configuration typically requires two addresses for the tunnel interface: a local address and a remote address. For information about local and remote addresses, as well as tunnel configuration, see Chapter 6, "Configuring IP Tunnels," in *Configuring and Administering Oracle Solaris 11.1 Networks*.

For a numeric IP address, use CIDR notation. If you do not use CIDR notation, the netmask is computed according to the sequence listed for netmask in the name-service/switch service or by using classful address semantics.

Optionally, you can specify a host name instead of a numeric IP address. Using a host name is valid if a corresponding numeric IP address is defined for that host name in the /etc/hosts file. If no numeric IP address is defined in the file, then the numeric value is uniquely obtained by using the resolver order that is specified for host in the name-service/switch service. If multiple entries exist for a given host name, an error is generated.

Note – During the boot process, the creation of IP addresses precedes naming services being brought online. Therefore, you must ensure that any host name that is used in the network configuration must be defined in the /etc/hosts file.

[interface | addrobj] In Oracle Solaris, each address is identified by a corresponding address object and represented in the command by addrobj. For any subsequent configuration on the address, you would refer to the address object instead of the actual IP address. For example, you would type ipadm show-addr addrobj or ipadm delete-addr addrobj. To create the address object name automatically, specify the interface name for interface. Otherwise, provide the address object name directly.

- If you specify the interface name, then an address object is automatically named with the format *interface/address-family*. *Address family* is either v4 for an IPv4 address or v6 for an IPv6 address. Multiple addresses on the same interface have alphabetic letters appended to the address object names, such as net0/v4, net0/v4a, net0/v4b, net0/v6, net0/v6a, and so on.
- If you manually name the address object for *addrobj*, you must use the format *interface/user-specified-string*. *User-specified-string* refers to a string of alphanumeric characters that begins with an alphabetic letter and has a maximum length of 32 characters. For example, you can name address objects net0/static, net0/static1, net1/private, and so on.
- To configure a non-static address, type the following:

```
# ipadm create-addr -T address-type [interface | addrobj]
```

where *address-type* is either dhcp or addrconf. Addrconf refers to automatically generated IPv6 addresses.

For a fuller explanation about [*interface* | *addrobj*], refer to the previous description for creating static addresses.

4 (Optional) Display information about the newly configured IP interface.

You can use the following commands, depending on the information that you want to check:

ipadm [interface]

If you do not specify *interface*, information for all interfaces on the system is displayed.

For more information about the output of the ipadm show-* subcommand, see "Monitoring IP Interfaces and Addresses" on page 50.

5 If you are configuring a static IP address that uses a hostname, add entries for the IP address in the /etc/hosts file.

The entries in this file consist of IP addresses and their corresponding host names.

Note - If you are configuring a DHCP address, you do not need to update the /etc/hosts file.

6 Define the default route.

route -p add default address

You can verify the contents of the routing table with the netstat -r command.

For more information about managing routes, see route(1M) and routeadm(1M) man pages. See also "Routing Tables and Routing Types" in *Configuring and Administering Oracle Solaris 11.1 Networks*.

Example 2–1 Configuring a Network Interface With a Static IP Address

This example explains how to configure an interface with a static IP address. The example begins with enabling the DefaultFixed NCP on the system to allow you to use the dladm and ipadm commands for fixed network configuration.

netadm enable -p ncp DefaultFixed

# dladm : LINK net3	show-phys MEDIA Ethernet	STA up	TE	SPEED 100Mb	DUP ful	LEX l	DEVICE bge3
# dladm : LINK net3	show-link CLASS phys	MTU 1500	STATE up	BRI	DGE	OVER	
# ipadm create-ip net3 # ipadm create-addr -a 192.168.84.3/24 net3 ipadm: net3/v4							
# ipadm							
NAME	CLASS/T	YPE	STATE	UNDER		ADDR	
lo0	loopbac	k	ok				
l0/v4	st	atic	ok			127.0.0	.1/8
net3	ip		ok				
net3/	v4 st	atic	ok			192.168	8.84.3/24
<pre># vi /etc/hosts # Internet host table # 127.0.0.1 localhost 10.0.0.14 myhost 192.168.84.3 campus01</pre>							

# route -p add defau # netstat -r Routing Table: IPv4	lt 192.168.84.1						
Destination	Gateway	Flags	Ref	Use	e	Interf	ace
default 192.168.84.0 localhost	<pre>some.machine.com 192.168.84.3 localhost</pre>	U U UH	G 3 2	2	1(1810 12	0466 net3 lo0	
Routing Table: IPv6 Destination/Mask	Gateway			Flags	Ref	Use	If
solaris	solaris			UH	2	156	lo0

Note that if campus01 is already defined in the /etc/hosts file, you can use that host name when assigning the following address:

ipadm create-addr -a campus01 net3
ipadm: net3/v4

Example 2–2 Automatically Configuring a Network Interface With an IP Address

In this example, the IP interface is configured to receive its address from a DHCP server.

# dladm s LINK net3	show-phys MEDIA Etherne	s STA	ATE	SPEED 100Mb	DUF fu]	PLEX	DEVICE bge3
# dladm s	show-lin CLASS	k MTU	STATE	BRII	DGE	OVER	
net3	phys	1500	up				
<pre># ipadm (ipadm: ne # ipadm: ne # ipadm</pre>	create-ad et3v4	ddr -T d	ncp net3	3			
NAME	CLASS/	ГҮРЕ	STATE	UNDER		ADDR	
lo0	loopba	ck	ok				
l0/v4	S	tatic	ok			127.0.0).1/8
net3	ip		ok				
net3/v	v4 dl	пср	ok			10.0.1.	13/24

Other Network Configuration and Administration Tasks

This book describes basic network configuration that connects your system to the network. Specifically, the information focuses on configuration of the system's datalinks and interfaces. Other network configuration and administration tasks can be performed that are described in other networking books. Assuming that your system is configured for fixed network configuration, you can refer to the following books for these other tasks:

- To configure systems as routers, network configuration servers, and so on, see *Configuring and Administering Oracle Solaris 11.1 Networks*.
- To perform advance datalink and IP interface configuration, see *Managing Oracle Solaris 11.1 Network Performance*.
- To build on the basic configuration and improve network performance, such as configuring link aggregations, IPMP groups, and so on, see *Managing Oracle Solaris 11.1 Network Performance.*
- To establish security for your network, see *Securing the Network in Oracle Solaris 11.1*.
- To implement network virtualization, see Using Virtual Networks in Oracle Solaris 11.1.

Other books that specialize on specific networking areas, such as DHCP, name services, and so on are also available in the library.

♦ ♦ CHAPTER 3

Working With Datalinks

This chapter discusses the dladm command and explains how to use the command on datalinks to display their current configuration, change the default values of their properties, or delete datalinks from the system. The following topics are discussed:

- "Basic dladm Commands" on page 25
- "Customizing Datalink Properties" on page 28
- "Other Configuration Tasks With the dladm Command" on page 34

Basic dladm Commands

This section describes basic dladm commands that you might regularly use on the system's datalinks. More dladm subcommands are supported than those listed in this section. For other subcommands, see the dladm(1M) man page.

Note – Except for the dladm subcommands that display datalink information, all other subcommands first require the removal of any existing interface configuration over the datalink. To remove IP interface configuration, see "Removing an IP Interface Configuration (ipadm delete-ip)" on page 39.

Displaying General Information About Datalinks (dladm)

If used by itself, the dladm command displays general information about the system's datalinks, including their class, state, and underlying physical links.

# dladm				
LINK	CLASS	MTU	STATE	OVER
net0	phys	1500	unknown	

net1	phys	1500	up	
net2	phys	1500	unknown	
net3	phys	1500	unknown	
net4	phys	1500	up	
aggr0	aggr	1500	up	net1,net4

The datalinks can be of different classes other than being physical links, such as link aggregations, virtual LANs (VLANs), or virtual NICs (VNICs). These other datalinks are also included in the default information displayed by the dladm command. For example, the output shows a link aggregation aggr0 configured over the physical datalinks net1 and net4.

For information about link aggregations and VLANs, see *Managing Oracle Solaris 11.1 Network Performance*. For information about VNICs, see *Using Virtual Networks in Oracle Solaris 11.1*.

Displaying a System's Datalinks (dladm show-link)

Use dladm show-link to display the datalinks on a system. A system has as many datalinks as installed NICs. You can use options with this command to customize the information you obtain. For example, using the -P option includes persistent configuration information about the datalinks. Based on the information provided by this command, you can proceed with further network configuration. For example, you can determine the number of NICs on the system, and you can select which datalink to use, over which you can configure IP interfaces.

When you issue the command, information similar to the following is displayed:

R

This example shows that a system has three datalinks that are directly associated with their corresponding physical NICs. No special datalinks exist, such as aggregations or virtual NICs, which are configured over the datalinks under the phys class.

Displaying Physical Attributes of Datalinks (dladm show-phys)

Use dladm show-phys to obtain information about the system's datalinks in relation to the physical NICs with which they are associated. Used without any options, the command displays information similar to the following:

# dladm	show-phys				
LINK	MEDIA	STATE	SPEED	DUPLEX	DEVICE
net0	Ethernet	up	100Mb	full	e1000g0
net1	Ethernet	down	0Mb		nge0

net2 Ethernet up 100Mb full bge0 net3 Infiniband -- 0Mb -- ibd0

The output shows, among other details, the physical NICs with which the datalinks with generic link names are associated. For example, net0 is the datalink name of the NIC e1000g0. To see information about flags that have been set for the datalinks, use the -P option. For example, a datalink that is flagged with r means that its underlying NIC has been removed.

Another useful option for the command is -L, which shows the physical location for each datalink. The location determines the instance number of the datalink such as net0, net1, and so on.

# dladm	show-phys	-L
LINK	DEVICE	LOCATION
net0	bge0	MB
net2	ibp0	MB/RISER0/PCIE0/PORT1
net3	ibp1	MB/RISER0/PCIE0/PORT2
net4	eoib2	<pre>MB/RISER0/PCIE0/PORT1/cloud-nm2gw-2/1A-ETH-2</pre>

Deleting a Datalink (dladm delete-phys)

Use dladm delete-phys to remove a datalink from the system.

Removing a datalink is only loosely connected to the removal of a physical NIC. For example, a physical NIC is removed from the system. The datalink configuration associated with that NIC remains because the software layer is no longer bound to the hardware layer, as described in "Network Stack in Oracle Solaris" in *Introduction to Oracle Solaris 11 Networking*. Thus you can still use the datalink configuration on a different underlying physical NIC by assigning that datalink's name to the other NIC's associated link.

If you detach a NIC without replacing it and you no longer need its datalink configuration, then you can delete the datalink as follows:

```
# dladm delete-phys datalink
```

Tip – To confirm whether a datalink's NIC had been removed, use the dladm show-phys -P command.

Renaming a Datalink (dladm rename-link)

Use dladm rename-link to rename a datalink. On an Oracle Solaris 11 system, the OS automatically provides generic names to all datalinks. Generic datalink names are described in "Default Generic Link Names" in *Introduction to Oracle Solaris 11 Networking*.

By default, these generic names use the naming format net*n*, such as net0, net1, net2, and so on. Because the OS manages the names, you would not rename datalinks as a regular part of your administrative tasks. For a procedure that requires changing link names, see "How to Switch Primary Interfaces on a System" on page 34.

Customizing Datalink Properties

In addition to performing basic datalink configuration, you can also use the dladm command to set datalink properties and customize them according to the requirements of your network.

Three dladm subcommands are used for datalink properties:

- dladm show-linkprop [-p property] [datalink] displays the properties of a datalink and their current values. If you do not use the -p property option, then all the properties of a datalink are listed. If you do not specify a datalink, then all the properties of all datalinks are listed.
- dladm set-linkprop -p property=value datalink assigns a value to the datalink's property.
- dladm reset-linkprop -p property datalink resets the specific property to its default value.

Overview of Datalink Properties

Datalink properties that can be customized depend on the properties a specific NIC driver supports. Datalink properties that are configurable by using the dladm command fall into one of two categories:

- Public properties that can be applied to any driver of the given media type such as link speed, autonegotiation for Ethernet, or the maximum transmission unit (MTU) size that can be applied to all datalink drivers.
- Private properties that are particular to a certain subset of NIC drivers for a given media type. These properties can be specific to that subset because they are closely related either to the hardware that is associated with the driver or to the details of the driver implementation itself, such as debugging-related tunables.

Link properties typically have default values. However, certain networking scenarios might require you to change specific property values. For example, a NIC might be communicating with an old switch that does not properly perform autonegotiation. Or, a switch might have been configured to support Jumbo frames. Or, driver specific properties that regulate packet transmission or packet receiving might need to be modified for the specific driver. The following sections describe selected properties and explains how to change their values to function in your network environment.

Enabling Support for Jumbo Frames

MTU defines the size of the largest packet that a protocol can transmit from the system. By default, most NIC drivers define the MTU size to 1500. However, if Jumbo frames are traversing through the network, the default value is insufficient. Support for Jumbo frames requires the MTU size to be at least 9000.

To change the MTU size from its default value, type the following command:

dladm set-linkprop -p mtu=new-size datalink

After changing the MTU size, you can reconfigure an IP interface over the datalink

The following example shows the steps to enable support for Jumbo frames. The example assumes that you have already removed any existing IP interface configuration over the datalink.

# dladm	show-linkp	rop -p mtu	ı netl		
LINK	PROPERTY	VALUE	DEFAUL	T POSS	IBLE
net1	mtu	1500	1500		
# dladm	set-linkpro	op -p mtu=	9000 net1		
# dladm	show-link w	veb1			
LINK	CLASS	MTU	STATE	BRIDGE	OVER
web1	phys	9000	up		

Modifying Link Speed Parameters

Most network setups consist of a combination of systems with varying speed capabilities. Each system advertises speed capabilities to other systems in the network that informs how each system transmits and receives network traffic. The following paired datalink properties regulate the speed capabilities that are advertised by a system:

- adv_10gfdx_cap/en_10gfdx_cap
- adv_1000fdx_cap/en_1000fdx_cap
- adv_1000hdx_cap/en_1000hdx_cap
- adv_100fdx_cap/en_100fdx_cap
- adv_100hdx_cap/en_100hdx_cap
- adv_10fdx_cap/en_10fdx_cap
- adv_10hdx_cap/en_10hdx_cap

Each link speed capability is referred to by a pair of properties: the advertised speed (adv_*_cap) and the enabled advertised speed (en_*_cap). Further, datalink speed information is also provided for both full-duplex and half-duplex capabilities, as designated by the *fdx* and *hdx* in the property names. The advertised speed property is a read-only property that indicates whether the specific datalink speed is advertised. You determine whether a specific datalink speed is advertised by setting the corresponding en_*_cap property.

By default, all the speed and duplex capabilities of a datalink are advertised. However, cases might exist where a new system is communicating with an older system and autonegotiation is disabled or unsupported. To enable communication between these two systems, the advertised speed between an older system and a newer system might need to be changed to a lower value. The gigabit capabilities of the system might need to be switched off, and only the slower speed capabilities are advertised. In this case, you would type the following for both the full-duplex capability and the half-duplex capability.

```
# dladm set-linkprop -p en_1000fdx_cap=0 datalink
# dladm set-linkprop -p en_1000hdx_cap=0 datalink
```

The command switches off the advertisement of the gigabit capabilities of the system for full-duplex capability and half-duplex capability.

To display the new values of these properties, use the dladm show-linkprop command.

```
# dladm show-linkprop -p adv_10gfdx_cap datalink
# dladm show-linkprop -p adv_1000hdx_cap datalink
```

Normally, the values of a given enabled speed property and the corresponding advertised property are identical. However, if a NIC supports some advanced features such as Power Management, those features might set limits on the bits that are actually advertised between the host and its link partner. For example, with Power Management, the settings of the adv_*_cap properties might only be a subset of the settings of the en_*_cap properties.

Setting the STREAMS Module on Datalinks

You can set up to eight STREAMS modules to be pushed on to the stream when the datalink is opened. These modules are typically used by third-party networking software such as virtual private networks (VPNs) and firewalls. Documentation about such networking software is provided by the software vendor.

The list of modules to push on a specific datalink is controlled by the autopush property. In turn, the value of the autopush property is set by using the dladm set-linkprop subcommand.

A separate autopush command can also be used to push modules on to the datalink's stream on a per-driver basis. The command uses a configuration file that is set up for each driver and which informs the command the modules to push. However, the driver is always bound to the NIC. If the datalink's underlying NIC is removed, then the link's autopush property information becomes lost as well.

Therefore, the dladm command is a preferable tool for this purpose than the autopush command. If both per-driver and per-link types of autoputsh configuration exist for a specific datalink, the per-link information that is set with dladm set-linkprop is used, and the per-driver information is ignored.

To push modules to the STREAMS when the datalink is opened, you use the same dladm set-linkprop command to specify modules for the autopush property. For example, to push the vpnmod and bufmod modules on top of the link net0, you would type:

```
# dladm set-linkprop -p autopush=vpnmod.bufmod net0
```

Setting the e1000g Driver to Use Direct Memory Access Binding

This section and the following section show how to configure private properties. Both sections apply to properties specific to the e1000g driver. However, the general information in these sections applies when you configure private properties of other NIC drivers.

Bulk traffic, such as file transfers, normally involves the negotiation of large packets across the network. In such cases, you can obtain better performance from the e1000g driver by configuring it to automatically use direct memory access (DMA) binding, where a threshold is defined for packet fragment sizes. If a fragment size surpasses the threshold, then DMA binding is used for transmitting the packets. If a fragment size is within the threshold, then bcopy mode is used, where the fragment data is copied to the preallocated transmit buffer.

```
# dladm set-linkprop -p _tx_bcopy_threshold=value datalink
```

For this property, the valid values for the threshold range from 60 through 2048.

Note – All datalinks are automatically named with generic names. You must ensure that this private property is configured on the datalink whose underlying NIC is e1000g. Use dladm show-phys to verify before setting the property.

As with configuring public properties, any IP interface must also be deleted before private property values can be modified.

You might perform steps similar to the following:

# dladm	n show-phys				
LINK	MEDIA	STATE	SPEED	DUPLEX	DEVICE
net0	Ethernet	up	100Mb	full	nge0
net1	Ethernet	up	100Mb	full	e1000g0

```
# dladm set-linkprop -p _tx_bcopy_threshold=1024 net1
```

Manually Setting the Interrupt Rate

Properties that regulate the rate at which interrupts are delivered by the e1000g driver also affect network and system performance. Typically network packets are delivered to the upper layer of the stack by generating an interrupt for every packet. In turn the interrupt rate, by

default, is automatically adjusted by the GLD layer in the kernel. However, this mode might not be desirable in all network traffic conditions. For a discussion of this issue, refer to this document (http://www.stanford.edu/class/cs240/readings/mogul.pdf) that was presented at the USENIX technical conference in 1996. Thus, in certain circumstances, setting the interrupt rate manually becomes necessary to obtain better performance.

To define the interrupt rate, you set the following properties:

- _intr_throttling_rate determines the delay between interrupt assertions regardless of network traffic conditions.
- _intr_adaptive determines whether automatic tuning of the interrupt throttling rate is enabled. By default, this property is enabled.

You first turn off the automatic tuning of the interrupt throttling rate. Then, you manually set the interrupt throttling rate property.

Suppose you have an x86 based system with an e1000g NIC whose interrupt throttling rate needs to be modified. Suppose further that the datalink name of e1000g0 is net1. You would type the following commands.

```
# dladm set-linkprop -p _intr_adaptive=0 net1
# dladm set-linkprop -p _intr-throttling_rate=1024 net1
```

Obtaining Status Information About Datalink Properties

To obtain information about datalink properties, you can use either of the following commands:

- dladm show-linkprop [-p property] [datalink]
- dladm show-ether datalink

Displaying Datalink Properties (dladm show-linkprop)

This method is explained in "Customizing Datalink Properties" on page 28. To display a complete list of datalink properties, type the command without specifying a property. For example:

# dladm	show-linkprop net1			
LINK	PROPERTY	VALUE	DEFAULT	POSSIBLE
net1	speed	1000		
net1	autopush			
net1	zone			
net1	duplex	half		half,full
net1	state	unknown	up	up,down
net1	adv_autoneg_cap	1	1	1,0
net1	mtu	1500	1500	

net1	flowctrl	no	bi	no,tx,rx,bi
net1	adv_1000fdx_cap	1	1	1,0
net1	en_1000fdx_cap	1	1	1,0
net1	adv_1000hdx_cap	1	1	1,0
net1	en_1000hdx_cap	1	1	1,0
net1	adv_100fdx_cap	0	0	1,0
net1	en_100fdx_cap	0	0	1,0
net1	adv_100hdx_cap	0	0	1,0
net1	en_100hdx_cap	0	0	1,0
net1	adv_10fdx_cap	0	0	1,0
net1	en_10fdx_cap	0	0	1,0
net1	adv_10hdx_cap	0	0	1,0
net1	en_10hdx_cap	0	0	1,0

Displaying Ethernet Property Values (dladm show-ether)

If no options are used with the dladm show-ether command, then only current Ethernet property values of the datalink are displayed. To obtain more information beyond what is provided by default, use the -x option. The following is an example of how the command is used:

dladm show-ether -x net1

LINK	PTYPE	STATE	AUTO	SPEED-DUPLEX	PAUSE
net1	current	up	yes	1G-f	both
	capable		yes	1G-fh,100M-fh,10M-fh	both
	adv		yes	100M-fh,10M-fh	both
	peeradv		yes	100M-f,10M-f	both

With the -x option, the command also displays the built-in capabilities of the specified link, as well as the capabilities that are currently advertised between the host and the link partner. The following explains the displayed information in the preceding example:

- For the Ethernet device's current state, the link is up and functioning at 1 gigabits per second at full duplex. Its autonegotiation capability is enabled and has bidirectional flow control, in which both the host and link partner can send and receive pause frames. This information is shown in the first row of the output.
- Subsequent rows display information about datalink speed capabilities, actual datalink speeds that are advertised, as well as information from the peer system as follows:
 - The capabilities of the Ethernet device are listed. The negotiation type can be set to automatic. In addition, the device can support speeds of 1 gigabits per second, 100 megabits per second, and 10 megabits per second, at both full and half duplex. Likewise, pause frames can be received or sent in both directions between host and link partner.
 - The capabilities of net1 are advertised as follows: autonegotiation, speed-duplex, and flow control of pause frames.
 - Similarly, net1's link or peer partner advertises the following capabilities: autonegotiation, speed-duplex, and flow control of pause frames.

Other Configuration Tasks With the dladm Command

This section describes additional configuration procedures that have become simplified by using the dladm command, such as switching primary interfaces or performing dynamic reconfiguration (DR).

How to Switch Primary Interfaces on a System

Changing a system's primary interface is a case where you rename datalinks. The following procedure is based on the following system configuration:

- The system has two datalinks: net0 and net1.
- The underlying NICs are e1000g0 and nge0, respectively.
- An IP interface is configured over net0. The IP interface always takes the name of the underlying datalink.

The system's primary interface is net0 based on its instance number of zero (0). The primary interface is configured over e1000g0. The following steps guide you to make the datalink configuration over nge0 to become the configuration of the primary interface.

1 Become an administrator.

For more information, see "How to Use Your Assigned Administrative Rights" in Oracle Solaris 11.1 Administration: Security Services.

2 Display the physical attributes of the system's datalinks.

dladm show-phys

3 Delete the primary IP interface.

ipadm delete-ip interface

Note – For more information about the ipadm command, see Chapter 4, "Working With IP Interfaces," as well as the ipadm(1M) man page.

4 Replace the name of the primary link with a name that is not used by other datalinks on the system.

dladm rename-link primary-link unused-name

- 5 Assign the primary link name to the datalink designated to become the primary device.
 - # dladm rename-link new-link primary-link

Example 3–1 Switching the Primary Interface

The following example combines all the steps in the procedure to change the primary interface on the system. At the end of the example, the primary interface configured over e1000g0 is replaced the interface configured over nge0. After you have switched the primary link to a different NIC, you can configure an interface over the new NIC's datalink.

# dladn	show-phys						
LINK	MEDIA	STATE	SPEED	DUPLEX	DEVICE		
net0	Ethernet	up	100Mb	full	e1000g0		
net1	Ethernet	up	100Mb	full	nge0		
# ipadn # dladn # dladn	n delete-ip n rename-lin n rename-lin	net0 nk net0 nk net1	oldnet0 net0				
# ipadm create-ip net0 # ipadm create-addr -a 192.168.10.10/24 net0 ipadm: net0/v4							
1							
# dladn	n show-phys						
LINK	MEDIA	STAT	E SPEE	ED DUPL	EX DEVICE		
oldnet() Ethernet	t up	1000	0 full	. e1000g0		
net0	Ethernet	t up	1000	0 full	. nge0		

How to Replace a Network Interface Card With Dynamic Reconfiguration

This procedure applies only to systems that support dynamic reconfiguration (DR). It specifically refers to configuration steps after DR s completed. In Oracle Solaris 11, you no longer need to reconfigure your network links after you complete DR. Instead, you just transfer the link configurations of the removed NIC to the replacement NIC.

The procedure does not detail the steps to perform DR itself. Consult your system documentation for these steps.

For an introduction to DR, see Chapter 4, "Dynamically Configuring Devices (Tasks)," in *Oracle Solaris 11.1 Administration: Devices and File Systems.*

Before You Begin Procedures to perform DR vary with the type of system. Make sure that you complete the following first:

- Ensure that your system supports DR.
- Consult the appropriate manual that describes DR on your system.

To locate current documentation about DR on Sun servers from Oracle, search for dynamic reconfiguration on http://www.oracle.com/technetwork/indexes/documentation/index.html.

For information about performing DR in the Oracle Solaris Cluster environment, see Oracle Solaris Cluster System Administration Guide.

1 Become an administrator.

For more information, see "How to Use Your Assigned Administrative Rights" in Oracle Solaris 11.1 Administration: Security Services.

2 (Optional) Display information about physical attributes of datalinks and their respective locations on the system.

dladm show-phys -L

For more information about the type of information that is displayed by dladm show-phys -L, refer to the dladm(1M) man page.

3 Perform the DR as detailed in your system's documentation.

Consult your system's DR documentation to perform this step.

After you have installed the replacement NIC, proceed to the next step.

4 Perform one of the following steps depending on the circumstance that applies:

If you inserted the replacement NIC into the same slot as the old NIC, then proceed to Step 5.

With the new NIC using the same location that the old NIC previously occupied, the new NIC inherits the link name and configuration of the old NIC.

• If you inserted the replacement NIC into a different slot, and the new NIC needs to inherit the datalink configuration of the removed NIC, type:

# dladm rename-link new-datalink old-datalink					
new-datalink	Refers to the datalink of the replacement NIC that is in a different slot from the location from which the old NIC was removed.				
old-datalink	Refers to the datalink name associated with the old NIC that was removed.				

Note - In this scenario, the slot from which the old NIC was removed must remain empty.

For example, the NIC in slot 1 was removed, and the new NIC is inserted in slot 2. No NIC is inserted in slot 1. Assume that the datalink on slot 1 is net0, and the datalink on slot 2 is net1. For the datalink of the new NIC to inherit the datalink configuration of the old NIC, you would type:

```
# dladm rename-link net1 net0
```
5 Complete the DR process by enabling the new NIC's resources to become available for use by Oracle Solaris.

For example, you can use the cfgadm command to configure the NIC. For more information see the cfgadm(1M) man page.

6 (Optional) Display link information.

You can use either dladm show-phys or dladm show-link to show information about the datalinks.

Example 3-2 Performing Dynamic Reconfiguration by Installing a New Network Card

This example shows how a bge card with link name net0 is replaced by an e1000g card. The link configurations of net0 are transferred from bge to e1000g after e1000g is connected to the system.

# dlad m	show-phys	-L
LINK	DEVICE	LOCATION
net0	bge0	MB
net1	ibp0	MB/RISER0/PCIE0/PORT1
net2	ibp1	MB/RISER0/PCIE0/PORT2
net3	eoib2	<pre>MB/RISER0/PCIE0/PORT1/cloud-nm2gw-2/1A-ETH-2</pre>

The administrator performs the DR-specific steps such as using cfgadm to remove bge and then installing e1000g in its place. After the card is installed, the datalink of e1000g0 automatically assumes the name net0 and inherits the link configurations.

# dladm	show-phys	-L		
LINK	DEVICE	LOCA	TION	
net0	e1000g0	MB		
net1	ibp0	MB/RI	ISER0/PCI	E0/PORT1
net2	ibp1	MB/RI	ISER0/PCI	E0/PORT2
net3	eoib2	MB/RI	ISER0/PCI	E0/PORT1/cloud-nm2gw-2/1A-ETH-2
# dladm	show-link			
LINK	CLASS	MTU	STATE	OVER
				* • = • •
net0	phys	9600	up	
net0 net1	phys phys	9600 1500	up down	
net0 net1 net2	phys phys phys	9600 1500 1500	up down down	
net0 net1 net2 net3	phys phys phys phys	9600 1500 1500 1500	up down down down	

♦ ♦ ♦ CHAPTER 4

Working With IP Interfaces

This chapter discusses the ipadm command and explains how the command is used on IP interfaces. For an overview of the ipadm command and its benefits, see "ipadm Command" on page 13.

The following topics are discussed:

- "Basic ipadm Commands" on page 39
- "Setting IP Interface Properties" on page 41
- "Setting IP Address Properties" on page 42
- "Setting TCP/IP Protocol Properties" on page 43
- "Monitoring IP Interfaces and Addresses" on page 50

Basic ipadm Commands

In "How to Configure an IP Interface" on page 18, the three principal ipadm subcommands were introduced:

- ipadm
- ipadm create-ip
- ipadm create-addr

This section describes other selected uses of the ipadm command on IP interfaces. The list is not exhaustive. For a complete description of the ipadm command and all possible subcommands and options, see the ipadm(1M) man page.

Removing an IP Interface Configuration (ipadm delete-ip)

Use this command to remove a configured IP interface over a datalink. This command is particularly important when you are preforming certain datalink configurations. For example,

renaming a datalink fails if IP interfaces are configured over that datalink. You must issue the ipadm delete-ip first before you rename the datalink.

Typically, this command is used together with other ipadm and dladm subcommands, such as changing the system's primary interface. This task would require you to delete the interface, rename the link, and then reconfigure the interface over the renamed datalink. The sequence is as follows:

```
# ipadm delete-ip interface
# dladm rename-link old-name new-name
```

```
# ipadm create-ip interface
```

```
# ipadm create-address parameters
```

See the example for changing the primary interface on "Renaming a Datalink (dladm rename-link)" on page 27. To reconfigure an IP interface after the datalink has been renamed, see "How to Configure an IP Interface" on page 18.

Disabling an IP Interface Configuration (ipadm disable-ip)

By default, an IP interface is flagged as UP and becomes part of the active configuration when you create the interface with ipadm create-ip. You can remove the interface from active configuration without destroying its configuration by using the ipadm disable-ip subcommand. This command flags the specific interface as DOWN.

```
# ipadm disable-ip interface
```

To make the IP interface operational and its flag to be UP, you would type:

```
# ipadm enable-ip interface
```

Tip – To display the status of interfaces, use ipadm. See "Obtaining Information About IP Interfaces" on page 51

Removing an Interface's Address (ipadm delete-addr)

This command deletes a specific address configuration of an IP interface. This command is useful when you want to change the IP address of a specific interface. You must remove the original address configuration before assigning a new address configuration. You would perform the following general steps:

ipadm delete-addr addrobj
ipadm create-addr parameters

For an example of creating an IP address for an interface, see "How to Configure an IP Interface" on page 18.

Note – An interface can have multiple addresses. Each address is identified by an address object. To ensure that you are removing the correct address, you must know the address object. Use the ipadm show-addr subcommand to display the interface addresses on the system. For an explanation of the address object, see "How to Configure an IP Interface" on page 18. For more information about displaying addresses, see "Obtaining Information About IP Addresses" on page 53

Setting IP Interface Properties

This section explains how to use the ipadm command to set selected IP interface properties.

IP interfaces, like datalinks, have properties that you can customize for your specific network environment. For each interface, two sets of properties exist, one set for the IPv4 and the other set for the IPv6 protocols. Some properties, such as MTU, are common to both datalinks and IP interfaces. Thus, you can have one MTU value for a datalink and a different MTU value for the interface configured over that link. Further, you can have different MTU values that apply to IPv4 and IPv6 packets that traverse that IP interface.

Three ipadm subcommands are used to set IP interface properties:

- The ipadm show-ifprop -p property interface subcommand displays the properties of an IP interface and their current values. If you do not use the -p property option, then all the properties of the IP interface are listed. If you do not specify an IP interface, then all the properties of all IP interfaces are listed.
- The ipadm set-ifprop -p property=value interface subcommand assigns a value to the IP interface's property.
- The ipadm reset-ifprop -p *property interface* subcommand resets the specific property to its default values.

Enabling Packet Forwarding

In a network, a host can receive data packets that are destined for another host system. By enabling packet forwarding in the receiving local system, that system can forward the data packet to the destination host. By default, IP forwarding is disabled.

Packet forwarding is managed by a property that can be set on both IP interfaces and on the TCP/IP protocol. If you want to be selective in how packets are forwarded, then you enable packet forwarding on the IP interface. For example, you might have a system that has multiple

NICs. Some NICs are connected to the external network, while other NICs are connected to the private network. You would therefore enable packet forwarding only on some of the interfaces, rather than on all interfaces.

You can also enable packet forwarding globally on the system by setting the property of the TCP/IP protocol. See "Enabling Packet Forwarding Globally" on page 44.

Note – The forwarding property of either IP interfaces or protocols is not exclusive. You can set the property for the interface and the protocol at the same time. For example, you could enable packet forwarding globally on the protocol, and then customize packet forwarding for each IP interface on the system. Thus, although enabled globally, packet forwarding can still be selective for the system.

To enable packet forwarding on the IP interface, use the following command:

```
# ipadm set-ifprop forwarding=on [-m protocol-version] interface
```

where *protocol-version* is either IPv4 or IPv6. You must issue the command separately for IPv4 and IPv6 packets.

The following is an example of how you might enable only IPv4 packet forwarding on your system:

# ipadm	show-ifprop	-p for	wardin	g net0				
IFNAME	PROPERTY	PROT	O PE	RM C	URRENT	PERSISTENT	DEFAULT	POSSIBLE
net0	forwarding	ipv4	rw	0	ff	off	off	on,off
net0	forwarding	ipv6	rw	0	ff		off	on,off
# ipadm # ipadm	set-ifprop - show-ifprop	p forw net0	arding	=on -m	ipv4 net	±0		
IFNAME	PROPERTY		PROTO	PERM	CURRENT	PERSISTENT	DEFAULI	POSSIBLE
net0	forwarding		ipv4	rw	on	on	off	on,off

Setting IP Address Properties

The ipadm command enables you to set IP address-specific properties after these addresses are assigned to interfaces. By setting these properties, you can determine the following:

- The netmask length
- Whether an IP address can be used as a source address for outbound packets
- Whether the address belongs to a global or non-global zone
- Whether the address is a private address

You use the following ipadm subcommands when working with IP address properties:

 The ipadm show-addrprop [-p property] [addrobj] subcommand displays address properties depending on the options that you use.

To list the properties of all IP addresses, do not specify a property or an address object. To list the values of a single property for all IP addresses, specify only that property. To list all the properties of a specific address object, specify only the address object.

- The ipadm set-addrprop -p property=value addrobj subcommand assigns values to address properties. Note that you can only set one address property at a time.
- The ipadm reset-addrprop -p property addrobj subcommand restores any default values to the address property.

Note – If you want to change the IP address of a specific interface, do not use the set-addressprop subcommand. Instead, delete the address object and create a new one with the new IP address. See "Removing an Interface's Address (ipadm delete-addr)" on page 40.

As an example, suppose you want to change the netmask of an IP address. The IP address is configured on the IP interface net3and is identified by the address object name net3/v4. The following commands show how to revise the netmask:

ipadm show-addr ADDROBJ TYPE STATE ADDR lo0/? static ok 127.0.0.1/8 net3/v4 static ok 192.168.84.3/24 # ipadm show-addrprop -p prefixlen net3/v4 ADDROBJ PROPERTY PERM CURRENT PERSISTENT DEFAULT POSSIBLE net3/v4 prefixlen rw 24 24 24 1-30,32 # ipadm set-addrprop -p prefixlen=8 net3/v4 # ipadm show-addrprop -p prefixlen net3/v4 ADDROBJ PROPERTY PERM CURRENT PERSISTENT DEFAULT POSSIBLE net3/v4 prefixlen rw 8 24 24 1-30,32

Setting TCP/IP Protocol Properties

Use the ipadm command to configure protocol properties, also known as *tunables*. The ipadm replaces the ndd command, which was commonly used in previous releases to set tunables.

TCP/IP properties can be either interface based or global. Properties can be applied to a specific interface or globally to all interfaces in a zone. Global properties can have different values in different non-global zones. For a list of supported protocol properties, refer to the ipadm(1M) man page.

Typically, the default values of the TCP/IP internet protocol suffice for the network to function. However, if the default values are insufficient for your network topology, then you can customize these properties as needed. Three ipadm subcommands are used to set TCP/IP interface properties:

- The ipadm show-prop -p property protocol command displays the properties of a protocol and their current values. If you do not use the -p property option, then all the properties of the protocol are listed. If you do not specify a protocol, then all the properties of all protocols are listed.
- The ipadm set-prop -p property=value protocol subcommand assigns a value to the IP interface's property.
- The ipadm reset-prop -p property protocol subcommand resets the specific protocol property to its default values.

Note – If a property can receive multiple values, then you assign multiple values to the property with the += qualifier as follows:

ipadm set-prop -p property+=value1 [value2 value3 ...].

To remove one value from a set of values for a property, you use the -= qualifier as follows:

ipadm set-prop -p property-=value2

Enabling Packet Forwarding Globally

"Enabling Packet Forwarding" on page 41 shows how to enable packet forwarding on the interface. Setting packet forwarding on the IP interface property enables you to implement this feature selectively. You can enable this property only on specific interfaces on the system.

If you want to enable packet forwarding on the entire system regardless of the number of IP interfaces, then you use the protocol property: In protocols, the property name is the same as in IP interfaces, which is forwarding. You must issue the command separately to enable packet forwarding on IPv4 and IPv6 protocols.

The following example shows how to enable packet forwarding for all IPv4 and IPv6 traffic on the system:

# ipadm	show-prop -p forwarding ip								
PROTO	PROPERTY	PERM	CURRENT	PERSISTENT	DEFAULT	POSSIBLE			
ipv4	forwarding	rw	off		off	on,off			
ipv6	forwarding	rw	off		off	on,off			
#									
# ipadm	<pre>set-prop -p</pre>	set-prop -p forwarding=on ipv4							
# ipadm	set-prop -p	set-prop -p forwarding=on ipv6							
#									
# ipadm	show-prop ip								
PROTO	PROPERTY	PERM	CURRENT	PERSISTENT	DEFAULT	POSSIBLE			
ipv4	forwarding	rw	on	on	off	on,off			
ipv4	ttl	rw	255		255	1-255			

ipv6	forwarding	rw	on	on	off	on,off
ipv6	hoplimit	rw	255		255	1-255#
-	-					

Note – The forwarding property of either IP interfaces or protocols is not exclusive. You can set the property for the interface and the protocol at the same time. For example, you could enable packet forwarding globally on the protocol, and then customize packet forwarding for each IP interface on the system. Thus, although enabled globally, packet forwarding can still be selective for the system.

Setting Up a Privileged Port

On transport protocols such as TCP, UDP, and SCTP, ports 1–1023 are default privileged ports where only processes that run with root permissions can bind to these ports. By using the ipadm command, you can reserve a port beyond this given default range such that it becomes a privileged port. Thus, only root processes can bind to that port. To set up a privileged port, you customize the following transport protocol properties:

- smallest_nonpriv_port The property whose value indicates the range of port numbers to which regular users can bind. If your designated port is within this range, then you can set it as a privileged port. Use the ipadm show-prop command to display the property's values.
- extra_priv_ports The property that specifies which ports are privileged. Use the ipadm set-prop subcommand to specify ports you want to restrict. This property can be assigned multiple values.

As an example, suppose you want to set TCP ports 3001 and 3050 as privileged ports with access restricted only to the root user. The smallest_nonpriv_port property indicates that 1024 is the lowest port number for a non privileged port. Therefore, the designated ports 3001 and 3050 can be changed to become privileged ports. You would proceed by issuing commands similar to the following:

# ipadm	show-prop -p small	est_non	priv_port to	с р					
PROTO PR	ROPERTY	PER	M CURRENT	PERSISTENT	DEFAULT	POSSIBLE			
tcp sr	mallest_nonpriv_por	t rw	1024		1024	1024-32768			
# ipadm	show-prop -p extra	_priv_p	orts tcp						
PROTO	PROPERTY	PERM	CURRENT	PERSISTENT	DEFAULT	POSSIBLE			
tcp	extra_priv_ports	rw	2049,4045		2049,4045	1-65535			
# ipadm	# ipadm set-prop -p extra priv ports+=3001 tcp								
# ipadm	<pre>set-prop -p extra_</pre>	priv_po	rts+=3050 to	p .					
# ipadm	show-prop -p extra	_priv_p	orts tcp						
PROTO	PROPERTY	PERM	CURRENT	PERSISTENT	DEFAULT	POSSIBLE			
tcp	extra priv ports	rw	2049,4045	3001,3050	2049,4045	1-65535			
•			3001,3050						

To remove one of the ports, for example, 4045, from being a privileged port, you would type the following commands:

<pre># ipadm # ipadm</pre>	m set-prop -p extra_priv_ports-=4045 tcp						
# Than	i snow-prop -p extra_priv_ports tcp						
PROTO	PROPERTY	PERM	CURRENT	PERSISTENT	DEFAULT	POSSIBLE	
tcp	extra_priv_ports	rw	2049,3001 3050	3001,3050	2049,4045	1-65535	

Implementing Symmetric Routing on Multihomed Hosts

By default, a system with multiple interfaces, also called a *multihomed host*, routes its network traffic based on the longest matching route to the traffic's destination in the routing table. When multiple routes of equal length to the destination exist, Oracle Solaris applies Equal-Cost Multi-Path (ECMP) algorithms to spread the traffic across those routes.

Spreading the traffic in this manner is not ideal in certain cases. An IP packet might be sent through an interface on a multihomed host that is not on the same subnet as the IP source address in the packet. Further, if the outgoing packet is a response to a certain incoming request, such as an ICMP echo request, the request and the response might not traverse the same interface. Such a traffic routing configuration is called *asymmetric routing*. If your Internet service provider is implementing ingress filtering as described in RFC 3704 (http://rfc-editor.org/rfc/bcp/bcp84.txt), an asymmetric routing configuration might cause an outgoing packet to be dropped by the provider.

RFC 3704 intends to limit denial-of-service attacks across the Internet. To comply with this intent, your network must be configured for symmetric routing. In Oracle Solaris, the IP hostmodel property enables you to meet this requirement. This property controls the behavior of IP packets that are received or transmitted through a multihomed host.

The hostmodel property can have one of three possible values:

strong	Corresponds to the strong end system (ES) model as defined in RFC 1122. This value implements symmetric routing.
weak	Corresponds to the weak ES model as defined in RFC 1122. With this value, a multihomed host uses asymmetric routing.
src-priority	Configures packet routing by using preferred routes. If multiple destination routes exist in the routing table, then the preferred routes are those that use interfaces on which the IP source address of an outgoing packet is configured. If no such routes exist, then the outgoing packet will use the longest matching route to the packet's IP destination.

The following example shows how to implement symmetric routing of IP packets on a multihomed host.

```
# ipadm set-prop -p hostmodel=strong ip
# ipadm show-prop -p hostmodel ip
PROTO PROPERTY PERM CURRENT PERSISTENT DEFAULT POSSIBLE
```

ipv6	hostmodel	rw	strong	 weak	strong, src-priority
ipv4	hostmodel	rw	strong	 weak	weak strong, src-priority weak

Implementing Traffic Congestion Control

Network congestion typically occurs in the form of router buffer overflows, when nodes send more packets than the network can accommodate. Various algorithms prevent traffic congestion through establishing controls on the sending systems. These algorithms are supported in Oracle Solaris and can be easily added or directly plugged in to the operating system.

The following table lists and describes the supported algorithms.

Algorithm	Oracle Solaris Name	Description
NewReno	newreno	Default algorithm in Oracle Solaris. Control mechanism includes sender's congestion window, slow start, and congestion avoidance.
HighSpeed	highspeed	One of the best known and simplest modifications of NewReno for high-speed networks.
CUBIC	cubic	Currently the default algorithm in Linux 2.6. Changes the congestion avoidance phase from linear window increase to a cubic function.
Vegas	vegas	A classic delay-based algorithm that attempts to predict congestion without triggering actual packet loss.

Congestion control is enabled by setting the following control-related TCP properties. Although these properties are listed for TCP, the control mechanism that is enabled by these properties also applies to SCTP traffic.

- cong_enabled contains a list of algorithms, separated by commas, that are currently
 operational in the system. You can add or remove algorithms to enable only those
 algorithms you want to use. This property can have multiple values. Therefore you must use
 either the += qualifier or the -= qualifier, depending on the change you want to effect.
- cong_default the algorithm that is used by default when applications do not specify the
 algorithms explicitly in socket options. Currently, the value of the cong_default property
 applies to both global and non-global zones.

To add an algorithm for congestion control to the protocol, issue the following command:

ipadm set-prop -p cong_enabled+=algorithm tcp

To remove an algorithm, issue the following command:

ipadm set-prop -p cong_enabled-=algorithm tcp

To replace the default algorithm, issue the following command:

ipadm set-prop -p cong_default=algorithm tcp

Note – No sequence rules are followed when you add or remove algorithms. You can remove an algorithm before adding other algorithms to a property. However, the cong_default property must always have a defined algorithm.

The following example shows steps that you might take to implement congestion control. In the example, the default algorithm for the TCP protocol is changed from newreno to cubic. Then, the vegas algorithm is removed from the list of enabled algorithms.

# ipadm	<pre># ipadm show-prop -p cong_default,cong_enabled tcp</pre>								
PROTO	PROPERTY	PERM	CURRENT	PERSISTENT	DEFAULT	POSSIBLE			
tcp	cong_default	rw	newreno		newreno	-			
tcp	cong_enabled	rw	newreno,cubic, highspeed, vegas		newreno	newreno,cubic, highspeed,vegas			
# ipadn # ipadn	# ipadm set-prop -p cong_enabled-=vegas tcp # ipadm set-prop -p cong_default=cubic tcp								
# ipadm	n show-prop -p	cong_c	default,confg_enab	led tcp					
PROTO	PROPERTY	PERM	CURRENT	PERSISTENT	DEFAULT	POSSIBLE			
tcp	cong_default	rw	cubic		newreno	-			
tcp	cong_enabled	rw	newreno,cubic, highspeed		newreno	newreno,cubic, highspeed,vegas			

Changing the TCP Receive Buffer Size

The size of the TCP receive buffer is set by using the TCP property recv_buf which, by default, is 128 KB. However, applications do not use available bandwidths uniformly. Thus connection latency might require you to change the default size. For example, using the Secure Shell feature of Oracle Solaris causes overhead on bandwidth use because of the additional checksum and encryption processes that are performed on the data stream. Thus, the buffer size might need to be increased. Likewise, for applications that perform bulk transfer holds to use bandwidth efficiently, the same buffer size adjustment is also required.

You can calculate the correct receive buffer size to use by estimating the *bandwidth delay product* (BDP) as follows:

BDP = *available_bandwidth* * *connection-latency*

Use ping -s *host* to obtain the value of connection latency. Use the uperf and iperf tools to estimate the use of bandwidth.

The appropriate receive buffer size approximates the value of the BDP. Note, however, that the use of bandwidth also depends on a variety of conditions. A shared infrastructure or the number of applications and users that compete for the use of bandwidth can change that estimate.

To change the value of the buffer size, use the following syntax:

ipdadm set-prop -p recv_buf=value tcp

The following example shows how to increase the buffer size to 164 KB

```
# ipadm show-prop -p recv_buf tcp
PROTO PROPERTY PERM CURRENT PERSISTENT
                                         DEFAULT POSSIBLE
     recv buf
              rw 128000
                                         128000 2048-1048576
tcp
                                - -
# ipadm set-prop -p recv_buf=164000 tcp
# ipadm show-prop -p recv buf tcp
PROTO PROPERTY PERM CURRENT PERSISTENT DEFAULT POSSIBLE
tcp
     recv buf rw 164000
                                         164000
                                                  2048-1048576
                                - -
```

No set value of the buffer size is preferred because the preferred size varies in different circumstances. Consider the following cases that show different values for the BDP for each network with its own specific conditions:

Typical 1 Gbps LAN where 128 KB is the default value of the buffer size:

BDP = 128 MBps * 0.001 s = 128 kB

Theoretical 1Gbps WAN with 100 ms latency:

BDP = 128 MBps * 0.1 s = 12.8 MB

Europe-to-U.S. link (bandwidth measured by uperf)

BDP = 2.6 MBps * 0.175 = 470 kB

If you cannot compute the BDP, use the following observations as guidelines:

- For bulk transfers over a LAN, the default value of the buffer size, 128 KB, is sufficient.
- For most WAN deployments, the receive buffer size should be in the 2 MB range.

Caution – Increasing the TCP receive buffer size increases the memory footprint of many network applications.

Monitoring IP Interfaces and Addresses

Use the ipadm command to monitor and obtain information about IP interfaces and their properties. By itself, the command displays general information about IP interfaces on the system. However, you can also use subcommands to restrict the information that you want to display by using the following syntax:

ipadm show-* [other-arguments] [interface]

- To obtain only interface information, use ipadm show-if.
- To obtain only address information, use ipadm show-addr.
- To obtain information about interface properties, use ipadm show-ifprop.
- To obtain information about address properties, use ipadm show-addrprop

This section provides several examples of how to use the ipadm subcommands to obtain interface information. For an explanation of all the fields displayed by the ipadm show-* commands, refer to the ipadm(1M) man page.

Obtaining General Information About IP Interfaces

Using the ipadm command without accompanying subcommands provides default information about all the system's IP interfaces. For example:

# ipadm				
NAME	CLASS/TYPE	STATE	UNDER	ADDR
lo0	loopback	ok		
lo0/v4	static	ok		127.0.0.1/8
lo0/v6	static	ok		::1/128
net0	ip	ok		
net0/v4	static	ok		10.132.146.233/23
net0/v4	dhcp	ok		10.132.146.234/23
ipmp0	ipmp	degraded		
ipmp0/v6	static	ok		2001:db8:1:2::4c08/128
net1	ip	failed	ipmp0	
net1/v6	addrconf	ok		fe80::124:4fff:fe58:1831/10
net2	ip	ok	ipmp0	
net2/v6	addrconf	ok		fe80::214:4fff:fe58:1832/10
iptun0	ip	ok		
iptun0/v4	static	ok		172.16.111.5->172.16.223.75
iptun0/v6	static	ok		fe80::10:5->fe80::223:75
iptun0/v6a	static	ok		2001:db8:1a0:7::10:5->2001:db8:7a82:64::223:75

The sample output provides the following information:

- The IP interfaces.
- The class of each interface.
- The state of each interface.

- The status of the interface as being either a "stand alone" IP interface or being an underlying interface for another type of interface configuration. In the example, net1 and net2 are underlying interfaces of ipmp0, as indicated in the UNDER column.
- The address objects associated with the interface. Address objects identify a specific IP address. These address objects are listed and indented under the NAME heading to distinguish them from interface names.
- The type of IP address, which is indented under the CLASS/TYPE heading and which can be static, dhcp and so on.
- The actual addresses listed under the ADDRESS column.

Thus, the ipadm command provides a comprehensive picture of the system's interfaces.

Obtaining Information About IP Interfaces

For information about IP interfaces, use the ipadm show-if [*interface*] subcommand. If you do not specify an interface, then the information covers all the interfaces on the system.

The fields in the command output refer to the following:

- IFNAME Refers to the interface whose information is being displayed.
- CLASS Refers to the class of interface, which can be one of four:
 - ip refers to an IP interface
 - ipmp refers to an IPMP interface
 - vni refers to a virtual interface
 - Loopback refers to a loopback interface, which is automatically created. Except for the loopback interface, you can manually create the remaining 3 interface classes.
- STATE Refers to the status of the interface, which can be one of the following: ok, offline, failed, down, or disabled.

The status failed applies to IPMP groups and can refer to a datalink or an IP interface that is down and cannot host traffic. If the IP interface belongs to an IPMP group, then the IPMP interface can continue to receive and send traffic by using other active IP interfaces in the group.

The status down refers to an IP interface that is switched offline by the administrator.

The status disable refers to the IP interface that is unplumbed by using the ipadm disable-if command.

ACTIVE Indicates whether the interface is being used to host traffic, and is set to eitheryesor no.

OVER Applies only to the IPMP class of interfaces and refers to the underlying interfaces that constitute the IPMP interface or group.

The following is an example of the information that the command provides:

# ipadm	show-if			
IFNAME	CLASS	STATE	ACTIVE	OVER
lo0	loopback	ok	yes	
net0	ip	ok	yes	
net1	ip	ok	yes	
tun0	ip	ok	yes	

Obtaining Information About IP Interface Properties

Use the ipadm show-ifprop [*interface*] command for information about properties of IP interfaces. If you do not specify a property or an interface, then information about all the properties of all the IP interfaces on the system is provided.

The fields in the command output refer to the following:

IFNAME	Refers to the IP interface whose information is being displayed.
PROPERTY	Refers to a property of the interface. An interface can have several properties.
PROTO	Refers to the protocol to which the property applies, which can be either IPv4 or IPv6.
PERM	Refers to the allowed permissions of a given property, which can be read only, write only, or both.
CURRENT	Indicates the current value of the property in the active configuration.
PERSISTENT	Refers to the value of the property that is reapplied when the system is rebooted.
DEFAULT	Indicates the default value of the specified property.
POSSIBLE	Refers to a list of values that can be assigned to the specified property. For numeric values, a range of acceptable values is displayed.

Note – If any field value is unknown, such as when an interface does not support the property whose information is being requested, the value is displayed as a question mark (?).

The following is an example of the information that the ipadm show-ifprop subcommand provides:

# ipadm	show-ifpr	op-pm [.]	tu net:	1			
IFNAME	PROPERTY	PROTO	PERM	CURRENT	PERSISTENT	DEFAULT	POSSIBLE
net1	mtu	ipv4	rw	1500		1500	68-1500
net1	mtu	ipv6	rw	1500		1500	1280-1500

Obtaining Information About IP Addresses

For information about IP addresses, use the ipadm show-addr [*interface*] subcommand. If you do not specify an interface, then the information about all the IP addresses on the system is provided.

The fields in the command output refer to the following:

ADDROBJ	Specifies the address object whose IP address is being listed.
ТҮРЕ	Indicates whether the IP address is static, dhcp, or addrconf. The addrconf value indicates that the address was obtained by using stateless or stateful address configuration.
STATE	Describes the status of the address object in the active configuration. For a full list of these values, see the $ipadm(1M)$ man page.
ADDR	Specifies the IP address that is configured over the interface. The address can be IPv4 or IPv6. A tunnel interface displays both local and remote addresses.
	For more information about tunnels, see Chapter 6, "Configuring IP Tunnels," in <i>Configuring and Administering Oracle Solaris 11.1 Networks</i> .

The following is an example of the information that the ipadm show-addr subcommand provides:

# ipadm	show-addr		
ADDROBJ	TYPE	STATE	ADDR
lo0/v4	static	ok	127.0.0.1/8
net0/v4	static	ok	192.168.84.3/24
tun0/v4	static	ok	172.16.134.1>172.16.134.2

If you specify an interface with the command and the interface has multiple addresses, information similar to the following is displayed:

# ipadm show-a	ddr net0		
ADDROBJ	TYPE	STATE	ADDR
net0/v4	static	ok	192.168.84.3/24
net0/v4a	static	ok	10.0.1.1/24
net0/v4bc	static	ok	172.16.10.1

An address object that is listed as *interface*/? indicates that the address was configured on the interface by an application that did not use libipadm APIs. Such applications are not under the

control of the ipadm command, which requires that the address object name use the format *interface/user-defined-string*. For examples of assigning IP addresses, see "How to Configure an IP Interface" on page 18.

Obtaining Information About IP Address Properties

For information about IP address properties, use the ipadm show-addrprop [*addrobj*] subcommand. To list all the properties, omit the *addrobj* option. To list a single property for all the IP addresses, specify only the property. To list all the properties of a specific address, specify only the *addrobj* option.

The fields in the command output refer to the following:

ADDROBJ	Refers to the address object whose properties are being listed.
PROPERTY	Refers to a property of the address object. An address object can have several properties.
PERM	Refers to the allowed permissions of a given property, which can be read only, write only, or both.
CURRENT	Refers to the actual value of the property in the present configuration.
PERSISTENT	Refers to the value of the property that is reapplied when the system is rebooted.
DEFAULT	Indicates the default value of the specified property.
POSSIBLE	Refers to a list of values that can be assigned to the specified property. For numeric values, a range of acceptable values is displayed.

The following is an example of the information the ipadm show-addrprop subcommand provides:

# ipadm	show-addrprop	net1/v4				
ADDROBJ	PROPERTY	PERM	CURRENT	PERSISTENT	DEFAULT	POSSIBLE
net1/v4	broadcast	r-	192.168.84.255		192.168.84.255	
net1/v4	deprecated	rw	off		off	on,off
net1/v4	prefixlen	rw	24	24	24	1-30,32
net1/v4	private	rw	off		off	on,off
net1/v4	transmit	rw	on		on	on,off
net1/v4	zone	rw	global		global	

◆ ◆ ◆ CHAPTER 5

Configuring Wireless Networking on Laptops Running Oracle Solaris

The IEEE 802.11 specifications define wireless communications for local area networks. These specifications and the networks they describe are referred to collectively as *WiFi*, a term that is trademarked by the Wi-Fi Alliance trade group. WiFi networks are reasonably easy to configure by both providers and prospective clients. Therefore, they are increasingly popular and in common use throughout the world. WiFi networks use the same radio wave technology as cellular phones, televisions, and radios.

Note - Oracle Solaris does not contain features for configuring WiFi servers or access points.

The following topics are covered:

- "WiFi Communications Task Map" on page 55
- "Secure WiFi Communications" on page 61

WiFi Communications Task Map

Task	Description	For Instructions
Connect to a WiFi network	Set up and establish communications with a local WiFi network.	"How to Connect to a WiFi Network" on page 56
Monitor communications on the WiFi link.	Use standard Oracle Solaris networking tools to check the state of the WiFi link.	"How to Monitor the WiFi Link" on page 59
Establish secure WiFi communications.	Create a Wired Equivalent Privacy (WEP) key and use it establish connections with a secure WiFi network	"How to Set Up an Encrypted WiFi Network Connection" on page 61

How to Connect to a WiFi Network

Before You Begin Perform the following steps to connect your laptop to a WiFi network.

1 Become an administrator.

For more information, see "How to Use Your Assigned Administrative Rights" in Oracle Solaris 11.1 Administration: Security Services.

2 Display the physical attributes of datalinks.

# dladm show-phys						
LINK	MEDIA	STATE	SPEED	DUPLEX	DEVICE	
net0	Ethernet	up	1500	full	ath0	
net1	Ethernet	up	1500	full	e1000g0	

In this example, the output indicates that two links are available. Net0 over the device ath0 link supports WiFi communications. The e1000g0 link serves to connect the system to a wired network.

3 Configure the WiFi interface.

Use the following steps to configure the interface:

a. Create the interface that supports WiFi:

ipadm create-ip net0

b. Verify that the link has been plumbed:

# ipadm	show-if			
IFNAME	CLASS	STATE	ACTIVE	OVER
lo0	loopback	ok	yes	
net0	ip	ok	yes	

4 Check for available networks.

dladm scan-wifi

LINK	ESSID	BSSID/IBSSID	SEC	STRENGTH	MODE	SPEED
net0	ofc	00:0e:38:49:01:d0	none	good	g	54Mb
net0	home	00:0e:38:49:02:f0	none	very weak	g	54Mb
net0	linksys	00:0d:ed:a5:47:e0	none	very good	g	54Mb

The example output of the scan-wifi command displays information about the available WiFi networks at the current location. The information in the output includes:

- LINK Refers to the link name to be used in the WiFi connection.
- ESSID Refers to the Extended Service Set ID. The ESSID is the name of the WiFi network, which can be randomly named by the administrator of the specific wireless network.

BSSID/IBSSID	Refers to the Basic Service Set ID, the unique identifier for a particular ESSID. The BSSID is the 48-bit MAC address of the nearby access point that serves the network with a particular ESSID.
SEC	Refers to the type of security that is needed to access the network. The values are none or WEP. For information about WEP, refer to "Secure WiFi Communications" on page 61.
STRENGTH	Refers to the strength of the radio signals from the WiFi networks that are available at your location.
MODE	Refers to the version of the 802 .11 protocol that is run by the network. The modes are a, b, or g, or these modes in combination.
SPEED	Refers to the speed in megabits per second of the particular network.

5 Connect to a WiFi network.

Do either of the following:

• Connect to the unsecured WiFi network with the strongest signal.

```
# dladm connect-wifi
```

Connect to an unsecured network by specifying its ESSID.

```
# dladm connect-wifi -e ESSID
```

The connect-wifi subcommand of dladm has several more options for connecting to a WiFi network. For complete details, refer to the dladm(1M) man page.

6 Configure an IP address for the interface.

Do either of the following:

• Obtain an IP address from a DHCP server.

```
# ipadm create-addr -T dhcp interface
```

If the WiFi network does not support DHCP, you receive the following message:

ipadm: *interface*: interface does not exist or cannot be managed using DHCP

Configure a static IP address:

Use this option if you have a dedicated IP address for the system.

ipadm create-addr -a address interface

7 Check the status of the WiFi network to which the system is connected.

# dladm	show-wifi					
LINK	STATUS	ESSID	SEC	STRENGTH	MODE	SPEED
net0	connected	ofc	none	very good	g	36Mb

In this example, the output indicates that the system is now connected to the ofc network. The earlier scan-wifi output from Step 4 indicated that ofc has the strongest signal among the available networks. The dladm connect-wifi command automatically chooses the WiFi network with strongest signal, unless you directly specify a different network.

8 Access the Internet through the WiFi network.

Do either of the following, depending on the network to which the system is connected:

- If the access point offers free service, you can now run a browser or an application of your choice.
- If the access point is in a commercial WiFi network that requires a fee, follow the instructions provided at the current location. Typically, you run a browser, supply a key, and give credit card information to the network provider.

9 Conclude the session.

Do one of the following:

- Terminate the WiFi session but leave the system running.
 - # dladm disconnect-wifi
- Terminate a particular WiFi session when more than one session is currently running.

```
# dladm disconnect-wifi link
```

where *link* represents the interface that is being used for the session.

Cleanly shut down the system while the WiFi session is running.

```
# shutdown -g0 -i5
```

You do not need to explicitly disconnect the WiFi session prior to turning off the system through the shutdown command.

Example 5–1 Connecting to a Specific WiFi Network

The following example combines the different steps you would take to connect your Oracle Solaris laptop to a wireless network. The example also shows how you can force the system to connect to a specific and preferred wireless network instead of allowing the OS to randomly select the wireless network. In the example assume that you have the static IP address 10.192.16.3/24 configured on your laptop. The example begins with determining the availability of a WiFi link.

# dladm show-phy	ys				
LINK	MEDIA	STATE	SPEED	DUPLEX	DEVICE
net0	Ethernet	up	1500	full	ath0
net1	Ethernet	up	1500	full	e1000g0

ipadm create-ip net0

IFNAME	CLASS	STATE	ACTIVE	OVER				
lo0	loopback	ok	yes					
net0	ip	ok	yes					
# dladm sca	n-wifi							
LINK	ESSID	BSSID/IBSS	SID	SEC	STREN	GTH	MODE	SPEED
net0	wifi-a	00:0e:38:4	49:01:d0	none	weak		g	54Mb
net0	wifi-b	00:0e:38:4	49:02:f0	none	very	weak	g	54Mb
net0	ofc-net	00:0d:ed:a	a5:47:e0	wep	very	good	g	54Mb
net0	citinet	00:40:96:2	2a:56:b5	none	good		b	11Mb
# dladm cor	nect-wifi -e	citinet						
# ipadm cre	ate-addr -a 10	0.192.16.3	/24 net0					
ipadm: net@)/v4							
# ipadm sho	w-addr net0							
ADDROBJ	TYPE	STATE	ADDI	۲				
net0/v4	static	ok	10.3	192.16.3,	/24			
# dladmabs								
# alaam sho	W-W1T1	FCCTD	CEC	CTDE	ICTU	MODE	CDEED	
	STATUS	E22TD	SEC	SIRE	NGIH	MODE	SPEED	
neto	connected	CILINET	none	good		g	TTIND	

Run a browser or other application to commence your work over the WiFi network.

firefox

The home page for the Firefox browser appears.

Terminate the session but leave the laptop running.

```
# dladm disconnect-wifi
# dladm show-wifi
LINK STATUS ESSID SEC STRENGTH MODE SPEED
net0 disconnected -- -- -- --
```

The output of show-wifi verifies that you have disconnected the net0 link from the WiFi network.

How to Monitor the WiFi Link

This procedure explains how to monitor the status of a WiFi link through standard networking tools and change a selected link property through the linkprop subcommand.

1 Become an administrator.

For more information, see "How to Use Your Assigned Administrative Rights" in Oracle Solaris 11.1 Administration: Security Services.

2 Connect to the WiFi network, as described in "How to Connect to a WiFi Network" on page 56.

3 View the properties of the link.

Use the following syntax:

dladm show-linkprop link

For example, you would use the following syntax to show the status of the connection established over the net0 wireless link:

dladm show-linkprop net0

PROPERTY	VALUE	DEFAULT	POSSIBLE
channel	5		
powermode	off	off	off,fast,max
radio	?	on	on,off
speed	36		1,2,5.5,6,9,11,12,18,24,36,48,54

4 Set a fixed speed for the link.

Caution – Oracle Solaris automatically chooses the optimal speed for the WiFi connection. Modifying the initial speed of the link might cause reduced performance or prevent the establishment of certain WiFi connections.

You can modify the link speed to one of the possible values for speed that is listed in the show-linkprop output.

dladm set-linkprop -p speed=value link

5 Check the packet flow over the link.

# netsta	at - Ir	net0 -i 5	5						
input	t net	.0 c	output		input (1	otal)	outpu	ıt	
packets	errs	packets	errs	colls	packets	errs	packets	errs	colls
317	0	106	0	0	2905	0	571	0	0
14	0	0	0	0	20	0	0	0	0
7	0	0	0	0	16	0	1	0	0
5	0	0	0	0	9	0	0	0	0
304	0	10	0	0	631	0	316	0	0
338	0	9	0	0	722	0	381	0	0
294	0	7	0	0	670	0	371	0	0
306	0	5	0	0	649	0	338	0	0
289	0	5	0	0	597	0	301	0	0

Example 5–2 Setting the Speed of a Link

This example shows how to set the speed of a link after you have connected to a WiFi network

# dladm	<pre>show-linkprop -p</pre>	speed net0	
PROPERTY	VALUE	DEFAULT	POSSIBLE
speed	24		1,2,5,6,9,11,12,18,24,36,48,54
# dladm	<pre>set-linkprop -p s</pre>	speed=36 net0	

# dladm	show-linkprop	-p speed net0		
PROPERTY	VALUE	DEFAULT	POSSIBLE	
speed	36		1,2,5,6,	9,11,12,18,24,36,48,54

Secure WiFi Communications

Radio wave technology makes WiFi networks readily available and often freely accessible to users in many locations. As a result, connecting to a WiFi network can be an insecure undertaking. However, certain types of WiFi connections are more secure:

Connecting to a private, restricted-access WiFi network

Private networks, such as internal networks established by corporations or universities, restrict access to their networks to users who can provide the correct security challenge. Potential users must supply a key during the connection sequence or log in to the network through a secure VPN.

Encrypting your connection to the WiFi network

You can encrypt communications between your system and a WiFi network by using a secure key. Your access point to the WiFi network must be a router in your home or office with a secure key-generating feature. Your system and the router establish and then share the key before creating the secure connection.

The dladm command can use a Wired Equivalent Privacy (WEP) key for encrypting connections through the access point. The WEP protocol is defined in IEEE 802.11 specifications for wireless connections. For complete details on the WEP-related options of the dladm command, refer to the dladm(1M) man page.

How to Set Up an Encrypted WiFi Network Connection

The next procedure explains how to set up secure communications between a system and a router in the home. Many wireless and wired routers for the home have an encryption feature that can generate a secure key.

Before You Begin If you are connecting to your own home's wireless network, make sure that you have configured your router and have generated the WEP key. Follow the router manufacturer's documentation for generating and saving the key configuration.

1 Become an administrator.

For more information, see "How to Use Your Assigned Administrative Rights" in Oracle Solaris 11.1 Administration: Security Services.

2 Create a secure object that contains the WEP key.

Open a terminal window on the system and type the following:

dladm create-secobj -c wep keyname

where keyname represents the name you want to give to the key.

3 Supply the value for the WEP key to the secure object.

The create-secobj subcommand then runs a script that requests the value for the key.

provide value for *keyname*: 5-or-13-byte key confirm value for *keyname*: Retype key

This value is the key that was generated by the router. The script accepts either a 5–byte or 13–byte string, in ASCII or in hexadecimal for the key value.

4 View the contents of the key that you just created.

dladm show-secobj OBJECT CLASS keyname wep

where *keyname* is the name for the secure object.

5 Make an encrypted connection to the WiFi network.

dladm connect-wifi -e network -k keyname interface

6 Verify that the connection is secure.

# dladm	show-wifi					
LINK	STATUS	ESSID	SEC	STRENGTH	MODE	SPEED
net0	connected	wifi-1	wep	good	g	11Mb

The wep value under the SEC heading indicates that WEP encryption is in place for the connection.

Example 5–3 Setting Up Encrypted WiFi Communications

This example assumes that you have already done the following:

- Connected your system to a home router that can create a WEP key
- Followed the router manufacturer's documentation and created the WEP key
- Saved the key so that you can use it to create the secure object on your system

Create a secure object.

```
# dladm create-secobj -c wep mykey
provide value for mykey: *****
confirm value for mkey: *****
```

When you supply the WEP key that is generated by the router, asterisks mask the value that you type.

dladm show-secobj
OBJECT CLASS
mykey wep
dladm connect-wifi -e citinet -k mykey net0

The preceding command establishes an encrypted connection to the WiFi network citinet by using the secure object mykey.

# dladm	show-wifi					
LINK	STATUS	ESSID	SEC	STRENGTH	MODE	SPEED
net0	connected	citinet	wep	good	g	36Mb

This output verifies that you are connected to citinet through WEP encryption.

🔶 🔶 🔺 APPENDIXA

Comparison Map: ifconfig and ipadm Commands

The ipadm command has replaced the ifconfig command for the purpose of configuring network interfaces. Although the ifconfig command is still functional in Oracle Solaris 11, the ipadm command is the preferred tool for networking configuration. However, some ifconfig options do not have equivalent in ipadm subcommands. The following table lists selected command options of the ifconfig command and their equivalents in the ipadm command.

Note – The table does not provide a comprehensive list of ipadm options. For a full list, see the ipadm(1M) man page.

ifconfig Command	ipadm Command
plumb/unplumb	ipadm create-ip
	ipadm create-vni
	ipadm create-ipmp
	ipadm enable-addr
	ipadm delete-ip
	ipadm delete-vni
	ipadm delete-ipmp
	ipadm disable-addr

TABLE A-1 Syntax Mapping Between the if config and ipadm Commands

ifconfig Command	ipadm Command
[address[/prefix-length] [dest-address]] [addif address[prefix-length]] [removeif address[prefix-length]][netmask	ipadm create-addr ipadm create-addr -T dhcp
mask][destination	ipadm create-addr -T addrconf
<pre>seconds]extend release start</pre>	ipadm delete-addr
	ipadm refresh-addr
[deprecated -deprecated] [preferred	ipadm set-addprop
-preferred] [private -private] [zone <i>zonename</i> -zones -all-zones][xmit -xmit]	ipadm reset-addprop
	ipadm show-addprop
up	ipadm up-addr
down	ipadm down-addr
[metric n] [mtu n] [nud -nud] [arp -arp]	ipadm set-ifprop
[usesrc [<i>name</i> none] [router -router]	ipadm show-ifprop
	ipadm reset-ifprop
[ipmp] [group [<i>name</i> ""]] standby	ipadm create-ipmp
-standbyj [failover -failover]	ipadm delete-ipmp
	ipadm add-ipmp
	ipadm remove-ipmp
	ipadm set-ifprop -p [standby] [group]
[interface] [-a]	ipadm
	ipadm show-if
	ipadm show-addr
<pre>[tdst tunnel-dest-addr] [tsrc tunnel-srcs-addr] [encaplimit n -encaplimit] [thoplimit n]</pre>	dladm *- iptun set of commands. For more details, see the dladm(1M) man page and "Tunnel Configuration and Administration With the dladm Command" in <i>Configuring and Administering Oracle</i> <i>Solaris 11.1 Networks</i> .
[auth_algs authentication algorithm] [encr_algs encryption algorithm] [encr_auth_algs encryption authentication algorithm]	ipsecconf For details, see the ipsecconf(1M) man page and Chapter 7, "Configuring IPsec (Tasks)," in <i>Securing</i> <i>the Network in Oracle Solaris 11.1.</i>
4	1

 TABLE A-1
 Syntax Mapping Between the ifconfig and ipadm Commands
 (Continued)

ifconfig Command	ipadm Command
[auth_revarp] [ether [<i>address</i>]] [index <i>if-index</i>] [subnet <i>subnet-address</i>] [broadcast <i>broadcast-address</i>] [token <i>address/prefix-length</i>]	Equivalent subcommands currently unavailable.
DHCP options – inform, ping, release, status, drop	
<pre>modlist] [modinsert mod_name@pos] [modremove mod_name@pos]</pre>	Equivalent subcommands currently unavailable.

 TABLE A-1
 Syntax Mapping Between the if config and ipadm Commands
 (Continued)

Comparison Map: ndd and ipadm Commands

The ipadm command has replaced the ndd command for the purpose of customizing network parameters or tunables. Although the ndd command is still functional in Oracle Solaris 11, the ipadm command is the preferred tool for customizing network parameters. However, some ndd options do not have equivalent ipadm subcommands. The following table lists selected command options of the ndd command and their equivalents in the ipadm command.

Note – The table does not provide a comprehensive list of ipadm options. For a full list, see the ipadm(1M) man page.

TABLE B-1	Syntax Mapping Between th	endd and ipadm Commands:	Retrieving Properties
-----------	---------------------------	--------------------------	------------------------------

ndd Command			ipadm Command							
bash-3.2# ndd -get /dev/ip ?		bash-3.2# ipadm show-prop ip								
<pre>ip_def_ttl</pre>	(read and write)	PROTO	PROPERTY		PERM	CURRENT	PERSISTENT	DEFAULT	POSSIBLE	
ip6_def_hops	(read and write)	ipv4	forwardin	g	rw	off		off	on,off	
ip_forward_directed	d_broadcasts	ipv4	ttl		rw	255		255	1-255	
	(read and write)	ipv6	forwardin	g	rw	off		off	on,off	
ip_forwarding	(read and write)	ipv6	hoplimit		rw	255		255	1-255	
bash-3.2# ndd -get	/dev/ip \	bash-	bash-3.2# ipadm show-prop -p ttl,hoplimit ip							
<pre>ip_def_ttl</pre>		PROTO	PROPERTY	PE	RM (CURRENT	PERSISTENT	DEFAULT	POSSIBLE	
100		ipv4	ttl	rw	2	255		255	1-255	
bash-3.2# ndd -get	/dev/ip \	ipv6	hoplimit	rw	2	255		255	1-255	
ip6_def_hops										
255		bash-	3.2# ipad m	sho	w-prop	o tcp				
bash-3.2# ndd -get	/dev/tcp ?	PROTO	PROPERTY		PEF	RM CURRENT	PERSISTENT	DEFAULT	POSSIBLE	
<pre>tcp_cwnd_max</pre>	(read and write)	tcp	ecn		rw	passive		passive	never,passive,	
<pre>tcp_strong_iss</pre>	(read and write)								active	
<pre>tcp_time_wait_inte</pre>	rval	tcp	extra_		rw	2049	2049,4045	2049,4045	1-65535	
	(read and write)		priv_port	S						
<pre>tcp_tstamp_always</pre>	(read and write)	tcp	largest_		rw	65535		65535	1024-65535	
<pre>tcp_tstamp_if_wsca</pre>	le		anon_port							
	(read and write)	tcp	recv_		rw	128000		128000	2048-1073741824	
			maxbuf							
		tcp	sack		rw	active		active	never,passive,	
									active	
bash-3.2# ndd -get	/dev/tcp ecn	tcp	send_		rw	49152		49152	4096-1073741824	
1			maxbuf							
		tcp	smallest_		rw	32768		32768	1024-65535	
bash-3.2# ndd -get	/dev/tcp sack		anon_port							
2		tcp	smallest_		rw	1024		1024	1024-32768	
			nonpriv_p	ort						
		bash-	3.2# ipad m	sho	w-prop	o-pecn,s	ack tcp			
		PROTO	PROPERTY	PERM	CURRE	ENT PERSIS	TENT DEFAUL	T POSSIBLE		
		tcp ecn rw passive passive never,pass			ssive,active					
		tcp	sack	rw	activ	/e	active	never,pa	ssive,active	

TABLE B-2	Syntax Mapping Bet	ween the ndd and ipadm Commar	ds: Setting Properties
	/ / / //		

ndd Command	ipadm Command							
<pre>bash-3.2# ndd -set /dev/ip \ ip def ttl</pre>	bash-3.2# ipadm set-prop -p ttl=64 ipv4 bash-3.2# ipadm show-prop -p ttl ip							
64	PROTO PROPERTY FAMILY PERM VALUE DEFAULT POSSIBLE							
bash-3.2# ndd -get /dev/ip \	ip ttl inet rw 64 255 1-255							
<pre>ip_def_ttl</pre>	PROTO P	PROPERTY	PERM	CURRENT	PERSISTENT	DEFAULT	POSSIBLE	
64	ipv4 t	tl	rw	64	64	255	1-255	
	bash-3.2# ipadm reset-prop -p ttl ip							
	bash-3.2# ipadm show-prop -p ttl ip							
	PROTO P	PROPERTY	PERM	CURRENT	PERSISTENT	DEFAULT	POSSIBLE	
	ipv4 t	tl	rw	255	255	255	1-255	
Index

A

address object, 20 address resolution protocol (ARP), 14 autonegotiation, 28 autopush property, 30

B

bandwidth delay product (BDP), 48–50 BSSID, 57 buffers, 31

C

cfgadm command, 37 CIDR notation, 19 congestion control, 47–48

D

datalinks advertised and enabled speed, 29–30 autonegotiation, 28 autopush property, 30 changing MTU size, 29 configuring an IP interface over a link, 18–22 displaying general information, 25–26 link properties, 32–33 links, 26 datalinks, displaying (Continued) network driver properties, 32–33, 33 physical attributes, 26-27 physical locations on system, 27 DMA binding, 31 Ethernet parameter values, 32–33 generic names, 27-28 interrupt rate, 31-32 link aggregations, 25-26 link speed, 29–30 physical links, 26 public and private properties, 28 removing, 27 renaming, 27-28 setting properties, 28-33 STREAMS modules, 30-31 VLANs, 25-26 VNICs, 25-26 DefaultFixed NCP, 11 DHCP, 20 direct memory access (DMA), 31 dladm command, 11-14, 25-28 connect-wifi, 57 delete-phys, 27 help, 12-13 rename-link, 27-28 reset-linkprop, 28-33 scan-wifi, 56 set-linkprop, 28-33 show-ether, 32-33,33 show-link, 26 show-linkprop, 32-33,59

dladm command (*Continued*) show-phys, 26–27 show-wifi, 57 dynamic reconfiguration (DR), replacing NICs, 35

E

ECMP, 46–47 ESSID, 56 /etc/hosts file, 19 Ethernet parameters, 32–33 external network modifiers (ENMs), 10

F

fixed network configuration, 9–14 static IP addresses, 10 full duplex, 29

G

Generic LAN Driver (GLD), 31–32 GLDv3, 12–13

Н

half duplex, 29

I

ICMP, 14 ifconfig command, 14 and ipadm command, 65–67 interrupt rate, 31–32 IP address DHCP, 20 IPv4 and IPv6, 19 local and remote, 19 monitoring, 50–54 packet forwarding, 41–42, 44–45 IP address (Continued) properties, 42, 54 removing, 40-41 static, 19 **IP** interface address properties, 42 assigning IP addresses, 19 changing an IP address, 40-41 changing the primary interface, 39-40 configuring, 21 creating and plumbing, 18-22 deleting interface configuration, 39-40 disabling and enabling, 40 displaying address properties, 54 general information, 20, 50-51 interface properties, 52-53 interfaces, 51-52 IP addresses, 53-54 protocol properties, 44 enabling packet forwarding, 41–42, 44–45 interface properties, 52-53 IP address, 53-54, 54 IPMP interface, 18-22 monitoring, 50-54 privileged ports, 45 removing an IP address, 40-41 setting interface properties, 41 showing interface properties, 41 TCP/IP protocol properties, 43-50 verifying MAC address uniqueness, 16-17 VNI interface, 18-22 WiFi, 56 IP multipathing interface (IPMP), 18–22 IP tunnels, 19 local and remote addresses, 19 ipadm command, 11–14, 39–54 create-addr, 19 create-ip, 18-22 delete-addr, 40-41delete-ip, 39-40 disable-ip, 40 help, 13,14 ifconfig command comparison, 65–67

ipadm command (Continued)
 ndd command comparison, 69-71
 set-addrprop, 42
 set-ifprop, 41
 set-prop, 43-50
 show-addr, 53-54
 show-addrprop, 42,54
 show-if, 51-52
 show-ifprop, 41,52-53
 show-prop, 43-50

J

jumbo frames, enabling support for, 29

L

link aggregations, 25–26 link names, 27–28 link speed, 29–30 local address, 19 location profiles, 10

Μ

MAC address, verifying uniqueness, 16–17 MTU, 29 multihomed host, 46–47

Ν

name-service/switch service, 19
NCP, See network configuration profile
ndd command, 14
 and ipadm command, 69-71
netadm command, 11-14, 17-18
netcfg command, 11-14
netstat command, checking packet flow over a WiFi
 link, 60
network configuration profile (NCP), 9-14
 active NCP, 9-14

network configuration profile (NCP) (Continued) DefaultFixed, 10, 11 fixed, 10–11 listing NCPs, 17–18 reactive, 10–11 switching active NCPs, 11, 17–18 network configuration tools, 11–14 dladm command, 12–13 ipadm command, 13 netadm command, 11 netcfg command, 11 network interface card (NIC), replacing, with DR, 35 NIC drivers, 28

Ρ

packet forwarding on interfaces, 41–42 on protocols, 44–45 Power Management, 30 primary interface, switching, 27–28, 34–37, 39–40 privileged ports, 45 profile managed network configuration, 9–10 protocols, properties of, 43–50

R

reactive network configuration, 9–14 ENMs, 10 location profiles, 10 WLANs, 10 remote address, 19 route command, 21

S

SCTP, 14 security considerations, WiFi, 61 service management facility (SMF), 13 STREAMS modules, and datalinks, 30–31 symmetric routing, 46–47

Т

TCP receive buffer size, 48-50

U

UDP, 14 USENIX, 31–32

V

virtual local area networks (VLANs), 25–26 virtual network cards (VNICs), 25–26 virtual network interface (VNI), 18–22 virtual private networks (VPN), 30–31

W

WiFi
Basic Service Set ID (BSSID), 57
checking packet flow, 60
connecting to a WiFi network, 56, 57, 58
definition, 55
encrypted communication example, 62
encrypting a connection, 61
example, setting link speed, 60
Extended Service Set ID (ESSID), 56
IEEE 802.11 specification, 55
monitoring a link, 59
secure WiFi links, 61
WiFi configuration example, 58
wireless interfaces, 55
WLANs, 10