
Multithreaded Programming Guide
Beta

Part No: E35303
October 2012

Copyright © 1993, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

121010@25097

Contents

Preface ...13

1 Covering Multithreading Basics ..17
Multithreading Terms ... 17
Oracle Solaris Multithreading Libraries and Standards ... 19
Benefiting From Multithreading ... 20

Improving Application Responsiveness .. 20
Using Multiprocessors Efficiently .. 20
Improving Program Structure .. 20
Using Fewer System Resources .. 21
Combining Threads and RPC .. 21

Multithreading Concepts ... 21
Concurrency and Parallelism ... 21
Multithreading Structure .. 22
Thread Scheduling ... 23
Thread Cancellation .. 23
Thread Synchronization ... 24

Using the 64-bit Architecture .. 24

2 Basic Threads Programming ..27
Lifecycle of a Thread ... 27
The Pthreads Library .. 28

Creating a Default Thread .. 28
Waiting for Thread Termination ... 30
Simple Threads Example ... 31
Detaching a Thread ... 32
Creating a Key for Thread-Specific Data ... 33

3

Deleting the Thread-Specific Data Key ... 34
Setting Thread-Specific Data .. 35
Getting Thread-Specific Data ... 36
Global and Private Thread-Specific Data Example .. 36
Getting the Thread Identifier .. 38
Comparing Thread IDs ... 39
Calling an Initialization Routine for a Thread .. 39
Yielding Thread Execution ... 40
Setting the Thread Policy and Scheduling Parameters .. 40
Getting the Thread Policy and Scheduling Parameters ... 41
Setting the Thread Priority ... 42
Sending a Signal to a Thread ... 43
Accessing the Signal Mask of the Calling Thread ... 43
Forking Safely ... 44
Terminating a Thread ... 45
Finishing Up ... 45
Cancel a Thread .. 46
Cancelling a Thread ... 47
Enabling or Disabling Cancellation ... 48
Setting Cancellation Type ... 48
Creating a Cancellation Point ... 49
Pushing a Handler Onto the Stack ... 49
Pulling a Handler Off the Stack .. 50

3 Thread Attributes ..51
Attribute Object ... 51

Initializing Attributes .. 52
Destroying Attributes .. 54
Setting Detach State ... 54
Getting the Detach State .. 55
Setting the Stack Guard Size ... 56
Getting the Stack Guard Size .. 57
Setting the Scope .. 57
Getting the Scope ... 58
Setting the Thread Concurrency Level .. 59

Contents

Multithreaded Programming Guide • October 2012 (Beta)4

Getting the Thread Concurrency Level ... 59
Setting the Scheduling Policy .. 60
Getting the Scheduling Policy .. 61
Setting the Inherited Scheduling Policy .. 62
Getting the Inherited Scheduling Policy ... 62
Setting the Scheduling Parameters ... 63
Getting the Scheduling Parameters ... 64
About Stacks ... 65
Setting the Stack Size ... 66
Getting the Stack Size .. 67
Setting the Stack Address and Size ... 68
Getting the Stack Address and Size .. 69

4 Programming with Synchronization Objects ...71
Mutual Exclusion Lock Attributes ... 72

Initializing a Mutex Attribute Object ... 73
Destroying a Mutex Attribute Object .. 75
Setting the Scope of a Mutex ... 75
Getting the Scope of a Mutex .. 76
Setting the Mutex Type Attribute ... 76
Getting the Mutex Type Attribute .. 77
Setting the Mutex Attribute's Protocol .. 78
Getting the Mutex Attribute's Protocol ... 80
Setting the Mutex Attribute's Priority Ceiling .. 80
Getting the Mutex Attribute's Priority Ceiling ... 81
Setting the Mutex's Priority Ceiling ... 82
Getting the Mutex's Priority Ceiling .. 82
Setting the Mutex's Robust Attribute ... 83
Getting the Mutex's Robust Attribute .. 84

Using Mutual Exclusion Locks .. 85
Initializing a Mutex .. 86
Making a Mutex Consistent .. 87
Locking a Mutex ... 88
Unlocking a Mutex .. 89
Locking a Mutex Without Blocking ... 90

Contents

5

Locking a Mutex Before a Specified Absolute Time ... 91
Locking a Mutex Within a Specified Time Interval ... 92
Destroying a Mutex .. 93
Code Examples of Mutex Locking ... 93

Using Spin Locks ... 98
Initializing a Spin Lock .. 99
Acquiring a Spin Lock ... 100
Acquiring a Non-Blocking Spin Lock .. 100
Unlocking a Spin Lock .. 101
Destroying a Spin Lock ... 101

Condition Variable Attributes ... 102
Initializing a Condition Variable Attribute .. 103
Removing a Condition Variable Attribute .. 104
Setting the Scope of a Condition Variable .. 104
Getting the Scope of a Condition Variable ... 105
Setting the Clock Selection Condition Variable ... 106
Getting the Clock Selection Condition Variable .. 106

Using Condition Variables ... 107
Initializing a Condition Variable ... 108
Blocking on a Condition Variable ... 109
Unblocking One Thread ... 110
Blocking Until a Specified Time ... 111
Blocking For a Specified Interval .. 113
Unblocking All Threads .. 114
Destroying the Condition Variable State .. 115
Lost Wake-Up Problem .. 115
Producer and Consumer Problem ... 116

Synchronization With Semaphores .. 119
Named and Unnamed Semaphores ... 120
Counting Semaphores Overview ... 120
Initializing a Semaphore ... 121
Incrementing a Semaphore ... 122
Blocking on a Semaphore Count .. 123
Decrementing a Semaphore Count ... 124
Destroying the Semaphore State .. 124
Producer and Consumer Problem Using Semaphores ... 125

Contents

Multithreaded Programming Guide • October 2012 (Beta)6

Read-Write Lock Attributes ... 126
Initializing a Read-Write Lock Attribute .. 127
Destroying a Read-Write Lock Attribute .. 127
Setting a Read-Write Lock Attribute ... 128
Getting a Read-Write Lock Attribute .. 128

Using Read-Write Locks .. 129
Initializing a Read-Write Lock ... 129
Acquiring the Read Lock on Read-Write Lock .. 130
Acquiring a Read Lock on a Read-Write Lock Before a Specified Absolute Time 131
Acquiring a Non-Blocking Read Lock on a Read-Write Lock .. 132
Acquiring the Write Lock on a Read-Write Lock .. 133
Acquiring a Non-blocking Write Lock on a Read-Write Lock .. 134
Acquiring a Write Lock on a Read-Write Lock Before a Specified Absolute Time 134
Unlocking a Read-Write Lock .. 135
Destroying a Read-Write Lock ... 136

Using Barrier Synchronization .. 137
Initializing a Synchronization Barrier ... 137
Waiting for Threads to Synchronize at a Barrier ... 138
Destroying a Synchronization Barrier ... 139
Initializing a Barrier Attributes Object .. 139
Setting a Barrier Process-Shared Attribute ... 140
Getting a Barrier Process-Shared Attribute .. 140
Destroying a Barrier Attributes Object ... 141

Synchronization Across Process Boundaries ... 142
Producer and Consumer Problem Example ... 142

Comparing Primitives .. 143

5 Programming With the Oracle Solaris Software .. 145
Forking Issues in Process Creation .. 145

Fork-One Model .. 146
Fork-All Model ... 148
Choosing the Right Fork ... 149

Process Creation: exec and exit Issues .. 149
Timers, Alarms, and Profiling .. 149

Timers ... 149

Contents

7

Alarms ... 150
Profiling a Multithreaded Program ... 150

Nonlocal Goto: setjmp and longjmp .. 150
Resource Limits ... 151
LWPs and Scheduling Classes .. 151

Timeshare Scheduling ... 152
Realtime Scheduling .. 152
Fair Share Scheduling .. 153
Fixed Priority Scheduling .. 153

Extending Traditional Signals ... 153
Synchronous Signals .. 154
Asynchronous Signals ... 154
Continuation Semantics ... 155
Operations on Signals .. 155
Thread-Directed Signals ... 157
Completion Semantics .. 158
Signal Handlers and Async-Signal Safety .. 159
Interrupted Waits on Condition Variables ... 161

I/O Issues .. 162
I/O as a Remote Procedure Call ... 162
Tamed Asynchrony ... 162
Asynchronous I/O ... 162
Shared I/O and New I/O System Calls ... 164
Alternatives to getc and putc .. 164
New System Calls For Reliable Multithreaded Programming .. 165

6 Programming With Oracle Solaris Threads ... 167
Comparing APIs for Oracle Solaris Threads and POSIX Threads .. 167

Major API Differences ... 168
Function Comparison Table ... 168

Unique Oracle Solaris Threads Functions .. 172
Suspending Thread Execution ... 172
Continuing a Suspended Thread ... 173

Similar Synchronization Functions: Read-Write Locks ... 173
Initialize a Read-Write Lock ... 174

Contents

Multithreaded Programming Guide • October 2012 (Beta)8

Acquiring a Read Lock .. 175
Trying to Acquire a Read Lock ... 176
Acquiring a Write Lock ... 176
Trying to Acquire a Write Lock .. 177
Unlock a Read-Write Lock ... 178
Destroying the Read-Write Lock State .. 178

Similar Oracle Solaris Threads Functions .. 179
Creating a Thread .. 180
Getting the Minimal Stack Size .. 182
Acquiring the Thread Identifier ... 183
Yield Thread Execution ... 183
Send a Signal to a Thread .. 184
Access the Signal Mask of the Calling Thread .. 184
Terminate a Thread ... 185
Wait for Thread Termination ... 185
Creating a Thread-Specific Data Key ... 187
Setting the Thread-Specific Data Value .. 187
Getting the Thread-Specific Data Value ... 188
Set the Thread Priority .. 188
Get the Thread Priority ... 189

Similar Synchronization Functions: Mutual Exclusion Locks ... 190
Initialize a Mutex .. 190
Destroy a Mutex ... 192
Acquiring a Mutex ... 192
Releasing a Mutex .. 193
Trying to Acquire a Mutex .. 193

Similar Synchronization Functions: Condition Variables ... 194
Initialize a Condition Variable ... 194
Destroying a Condition Variable ... 195
Waiting for a Condition .. 196
Wait for an Absolute Time .. 196
Waiting for a Time Interval .. 197
Unblock One Thread ... 198
Unblock All Threads .. 198

Similar Synchronization Functions: Semaphores ... 199
Initialize a Semaphore ... 199

Contents

9

Increment a Semaphore .. 200
Block on a Semaphore Count ... 201
Decrement a Semaphore Count ... 201
Destroy the Semaphore State .. 202

Synchronizing Across Process Boundaries .. 202
Example of Producer and Consumer Problem .. 202

Special Issues for fork() and Oracle Solaris Threads ... 204

7 Safe and Unsafe Interfaces ..205
Thread Safety ... 205
MT Interface Safety Levels ... 206

Reentrant Functions for Unsafe Interfaces ... 207
Async-Signal-Safe Functions in Oracle Solaris Threads ... 208
MT Safety Levels for Libraries ... 209

Unsafe Libraries ... 209

8 Compiling and Debugging ...211
Setting Up the Oracle Solaris Environment for Developing Multithreaded Applications 211
Compiling a Multithreaded Application .. 211

Preparing for Compilation ... 211
Choosing Oracle Solaris or POSIX Threads ... 212
Including <thread.h> or <pthread.h> .. 212
Compiling and Linking a Multithreaded Program .. 213
Linking With -lrt for POSIX Semaphores .. 214

Alternate Threads Library .. 214
Debugging a Multithreaded Program ... 214

Common Oversights in Multithreaded Programs ... 214
Tracing and Debugging with DTrace .. 215
Profiling with Performance Analyzer .. 216
Detecting Data Races and Deadlocks Using Thread Analyzer ... 216
Using dbx .. 216
Tracing and Debugging With the TNF Utilities .. 218
Using truss .. 218
Using mdb .. 218

Contents

Multithreaded Programming Guide • October 2012 (Beta)10

9 Programming Guidelines ...221
Rethinking Global Variables .. 221
Providing for Static Local Variables .. 222
Synchronizing Threads ... 223

Single-Threaded Strategy .. 224
Reentrant Function .. 224

Avoiding Deadlock .. 226
Deadlocks Related to Scheduling ... 227
Locking Guidelines .. 227
Finding Deadlocks ... 227

Some Basic Guidelines for Threaded Code .. 228
Creating and Using Threads .. 229
Working With Multiprocessors ... 229

Underlying Architecture ... 230
Examples of Threads Programs ... 234

Further Reading ... 234

A Extended Example: A Thread Pool Implementation ... 235
What is a Thread Pool? ... 235
About the Thread Pool Example .. 236

Thread Pool Functions .. 236
Thread Pool Code Examples ... 237

What the Thread Pool Example Shows ... 246

Index ... 247

Contents

11

12

Preface

The Multithreaded Programming Guide describes the multithreaded programming interfaces
for POSIX threads and Oracle Solaris threads in the Oracle Solaris Operating System (Oracle
Solaris OS). This guide shows application programmers how to create new multithreaded
programs and how to add multithreading to existing programs.

Although this guide covers both the POSIX and Oracle Solaris threads interfaces, most topics
assume a POSIX threads interest. Information applying to only Oracle Solaris threads is
covered in Chapter 6, “Programming With Oracle Solaris Threads.” The two sets of interfaces
share a common implementation and are fully compatible with one another. Calls to POSIX
threads interfaces can be freely intermixed with calls to Oracle Solaris threads interfaces.

POSIX threads information can be found in the Single UNIX Specification Version 3 at
http://www.opengroup.org/.

Note – This Oracle Solaris release supports systems that use the SPARC and x86 families of
processor architectures: UltraSPARC, SPARC64, AMD64, Pentium, and Xeon EM64T. For a list
of supported systems see the Oracle Solaris OS: Hardware Compatibility Lists. This document
cites any implementation differences between the platform types.

In this document the term “x86” refers to 64-bit and 32-bit systems manufactured using
processors compatible with the AMD64 or Intel Xeon/Pentium product families. For supported
systems, see the Oracle Solaris 10 Hardware Compatibility List.

Who Should Use This Book
This guide is for application developers who want to create new multithreaded programs or add
multithreading to existing programs.

Developers that use this book should be familiar with and be able to use the following
technologies:

■ A UNIX SVR4 system - preferably the current Oracle Solaris release.
■ The C programming language - multithreading interfaces are provided by the standard C

library.

13

http://www.opengroup.org/
http://www.oracle.com/webfolder/technetwork/hcl/index.html

■ The principles of concurrent or parallel programming (as opposed to sequential
programming).

How This Guide Is Organized
Chapter 1, “Covering Multithreading Basics,” gives a structural overview of threads
implementation in this release.

Chapter 2, “Basic Threads Programming,” discusses the general POSIX threads routines,
emphasizing creating a thread with default attributes.

Chapter 3, “Thread Attributes,” covers creating a thread with nondefault attributes.

Chapter 4, “Programming with Synchronization Objects,” covers the threads synchronization
routines.

Chapter 5, “Programming With the Oracle Solaris Software,” discusses changes to the operating
environment to support multithreading.

Chapter 6, “Programming With Oracle Solaris Threads,” covers Oracle Solaris threads (as
opposed to POSIX threads) interfaces.

Chapter 7, “Safe and Unsafe Interfaces,” covers multithreading safety issues.

Chapter 8, “Compiling and Debugging,” covers the basics of compiling and debugging
multithreaded applications.

Chapter 9, “Programming Guidelines,” discusses issues that affect programmers writing
multithreaded applications.

Appendix A, “Extended Example: A Thread Pool Implementation,” shows how to implement a
pool of worker threads.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Preface

Multithreaded Programming Guide • October 2012 (Beta)14

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Books
Multithreading requires a different way of thinking about function interactions. The following
books are recommended reading.

■ Multicore Application Programming: for Windows, Linux, and Oracle Solaris by Darryl Gove
(Addison-Wesley, 2010)

■ The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit (Morgan
Kaufmann, 2012)

■ The Art of Concurrency: A Thread Monkey's Guide to Writing Parallel Applications by Clay
Breshears (O'Reilly, 2009)

■ Concurrent Programming by Alan Burns & Geoff Davies (Addison-Wesley, 1993)
■ Distributed Algorithms and Protocols by Michel Raynal (Wiley, 1988)
■ Operating System Concepts by Silberschatz, Peterson, & Galvin (Addison-Wesley, 1991)
■ Principles of Concurrent Programming by M. Ben-Ari (Prentice-Hall, 1982)
■ Programming with Threads by Steve Kleiman, Devang Shah, & Bart Smaalders (Prentice

Hall, 1996)
Programming with POSIX Threads by David R. Butenhof (Addison-Wesley Professional,
1997)

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and directories;
on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with on-screen
computer output

machine_name% su Password:

AaBbCc123 Command-line placeholder: replace with a real
name or value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words, or terms, or words to be
emphasized.

Read Chapter 6 in User's Guide.

These are called class options.

You must be root to do this.

Preface

15

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Preface

Multithreaded Programming Guide • October 2012 (Beta)16

Covering Multithreading Basics

The word multithreading can be translated as multiple threads of control or multiple flows of
control. While a traditional UNIX process contains a single thread of control, multithreading
(MT) separates a process into many execution threads. Each of these threads runs
independently.

This chapter explains some multithreading terms, benefits, and concepts. If you are ready to
start using multithreading, skip to Chapter 2, “Basic Threads Programming.”

If you need in-depth information about multithreaded programming, see the “Related Books”
on page 15 section of the preface.

■ “Multithreading Terms” on page 17
■ “Oracle Solaris Multithreading Libraries and Standards” on page 19
■ “Benefiting From Multithreading” on page 20
■ “Multithreading Concepts” on page 21

Multithreading Terms
Table 1–1 introduces some of the terms that are used in this book.

TABLE 1–1 Multithreading Terms

Term Definition

Process The UNIX environment, such as file descriptors, user ID, and so on,
created with the fork(2) system call, which is set up to run a program.

Thread A sequence of instructions executed within the context of a process.

POSIX pthreads A threads interface that is POSIX threads compliant. See “Oracle Solaris
Multithreading Libraries and Standards” on page 19 for more
information.

1C H A P T E R 1

17

TABLE 1–1 Multithreading Terms (Continued)
Term Definition

Oracle Solaris threads An Oracle Solaris threads interface that is not POSIX threads compliant.
A predecessor of pthreads.

Single-threaded Restricts access to a single thread. Execution is through sequential
processing, limited to one thread of control.

Multithreading Allows access to two or more threads. Execution occurs in more than
one thread of control, using parallel or concurrent processing.

User-level or Application-level
threads

Threads managed by threads routines in user space, as opposed to kernel
space. The POSIX pthreads and Oracle Solaris threads APIs are used to
create and handle user threads. In this manual, and in general, a thread is
a user-level thread.

Note – Because this manual is for application programmers, kernel
thread programming is not discussed.

Lightweight processes Kernel threads, also called LWPs, that execute kernel code and system
calls. LWPs are managed by the system thread scheduler, and cannot be
directly controlled by the application programmer. Beginning with
Solaris 9, every user-level thread has a dedicated LWP. This is known as a
1:1 thread model.

Bound thread (obsolete term) Prior to Solaris 9, a user-level thread that is permanently bound to one
LWP. Beginning with Solaris 9, every thread has a dedicated LWP, so all
threads are bound threads. The concept of an unbound thread no longer
exists.

Unbound thread (obsolete term) Prior to Solaris 9, a user-level thread that is not necessarily bound to one
LWP. Beginning with Solaris 9, every thread has a dedicated LWP, so the
concept of unbound threads no longer exists.

Attribute object Contains opaque data types and related manipulation functions. These
data types and functions standardize some of the configurable aspects of
POSIX threads, mutual exclusion locks (mutexes), and condition
variables.

Mutual exclusion locks Objects used to lock and unlock access to shared data. Such objects are
also known as mutexes.

Condition variables Objects used to block threads until a change of state.

Read-write locks Objects used to allow multiple read-only access to shared data, but
exclusive access for modification of that data.

Counting semaphore A memory-based synchronization mechanism in which a non-negative
integer count is used to coordinate access by multiple threads to shared
resources.

Multithreading Terms

Multithreaded Programming Guide • October 2012 (Beta)18

TABLE 1–1 Multithreading Terms (Continued)
Term Definition

Parallelism A condition that arises when at least two threads are executing
simultaneously.

Concurrency A condition that exists when at least two threads are making progress. A
more generalized form of parallelism that can include time-slicing as a
form of virtual parallelism.

Oracle Solaris Multithreading Libraries and Standards
The concept of multithreaded programming goes back to at least the 1960s. Multithreaded
programming development on UNIX systems began in the middle 1980s. While agreement
existed about what multithreading is and the features necessary to support multithreading, the
interfaces used to implement multithreading have varied greatly in the past.

For several years, POSIX (Portable Operating System Interface) 1003.4a worked on standards
for multithreaded programming. The standard was eventually ratified and is now part of The
Single UNIX Specification (SUS). The latest specification is available at The Open Group
website. Beginning with the Oracle Solaris 10 release, the Oracle Solaris OS conforms to The
Open Group's UNIX 03 Product Standard, or SUSv3.

Before the POSIX standard was ratified, the Oracle Solaris multithreading API was
implemented in the Oracle Solaris libthread library, which was developed by Oracle and later
became the basis for the UNIX International (UI) threads standard. The libthread library was
introduced in the Solaris 2.2 release in 1993. Support for the POSIX standard was added with
the libpthread API in the Solaris 2.5 release in 1995, and both APIs have been available since.
The libthread and libpthread libraries were merged into the standard libc C library
beginning in the Oracle Solaris 10 release.

The libthread and libpthread libraries are maintained to provide backward compatibility for
both runtime and compilation environments. The libthread.so.1 and libpthread.so.1

shared objects are implemented as filters on libc.so.1. See the libthread(3LIB) and
libpthread(3LIB) man pages for more information.

While both thread libraries are supported, the POSIX library should be used in most cases. The
threads(5) man page documents the differences and similarities between POSIX threads and
Oracle Solaris threads.

This Multithreaded Programming Guide is based on the latest revision of the POSIX standard
IEEE Std 1003.1:2001 (also known as ISO/IEC 9945:2003 and as The Single UNIX Specification,
Version 3).

Subjects specific to Oracle Solaris threads are covered in the Chapter 6, “Programming With
Oracle Solaris Threads.”

Oracle Solaris Multithreading Libraries and Standards

Chapter 1 • Covering Multithreading Basics 19

http://www.unix.org/version3/online.html
http://www.unix.org/version3/online.html
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibthread-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibpthread-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5threads-5

Benefiting From Multithreading
This section briefly describes the benefits of multithreading.

Multithreading your code can help in the following areas:
■ “Improving Application Responsiveness” on page 20
■ “Using Multiprocessors Efficiently” on page 20
■ “Improving Program Structure” on page 20
■ “Using Fewer System Resources” on page 21

Improving Application Responsiveness
Any program in which many activities are not dependent upon each other can be redesigned so
that each independent activity is defined as a thread. For example, the user of a multithreaded
GUI does not have to wait for one activity to complete before starting another activity.

Using Multiprocessors Efficiently
Typically, applications that express concurrency requirements with threads need not take into
account the number of available processors. The performance of the application improves
transparently with additional processors because the operating system takes care of scheduling
threads for the number of processors that are available. When multicore processors and
multithreaded processors are available, a multithreaded application's performance scales
appropriately because the cores and threads are viewed by the OS as processors.

Numerical algorithms and numerical applications with a high degree of parallelism, such as
matrix multiplications, can run much faster when implemented with threads on a
multiprocessor.

Note – In this manual, whenever multiprocessors are discussed, the context applies also to
multicore and multithreaded processors unless noted otherwise.

Improving Program Structure
Many programs are more efficiently structured as multiple independent or semi-independent
units of execution instead of as a single, monolithic thread. For example, a non-threaded
program that performs many different tasks might need to devote much of its code just to
coordinating the tasks. When the tasks are programmed as threads, the code can be simplified.
Multithreaded programs, especially programs that provide service to multiple concurrent users,
can be more adaptive to variations in user demands than single-threaded programs.

Benefiting From Multithreading

Multithreaded Programming Guide • October 2012 (Beta)20

Using Fewer System Resources
Programs that use two or more processes that access common data through shared memory are
applying more than one thread of control.

However, each process has a full address space and operating environment state. Cost of
creating and maintaining this large amount of state information makes each process much
more expensive than a thread in both time and space.

In addition, the inherent separation between processes can require a major effort by the
programmer. This effort includes handling communication between the threads in different
processes, or synchronizing their actions. When the threads are in the same process,
communication and synchronization becomes much easier.

Combining Threads and RPC
By combining threads and a remote procedure call (RPC) package, you can exploit
nonshared-memory multiprocessors, such as a collection of workstations. This combination
distributes your application relatively easily and treats the collection of workstations as a
multiprocessor.

For example, one thread might create additional threads. Each of these children could then
place a remote procedure call, invoking a procedure on another workstation. Although the
original thread has merely created threads that are now running in parallel, this parallelism
involves other computers.

Note – The Message Processing Interface (MPI) might be a more effective approach to achieve
multithreading in applications that run across distributed systems. See http://
www-unix.mcs.anl.gov/mpi/ for more information about MPI.

Multithreading Concepts
This section introduces basic concepts of multithreading.

Concurrency and Parallelism
In a multithreaded process on a single processor, the processor can switch execution resources
between threads, resulting in concurrent execution. Concurrency indicates that more than one
thread is making progress, but the threads are not actually running simultaneously. The
switching between threads happens quickly enough that the threads might appear to run
simultaneously.

Multithreading Concepts

Chapter 1 • Covering Multithreading Basics 21

http://www-unix.mcs.anl.gov/mpi/
http://www-unix.mcs.anl.gov/mpi/

In the same multithreaded process in a shared-memory multiprocessor environment, each
thread in the process can run concurrently on a separate processor, resulting in parallel
execution, which is true simultaneous execution. When the number of threads in a process is
less than or equal to the number of processors available, the operating system's thread support
system ensures that each thread runs on a different processor. For example, in a matrix
multiplication that is programmed with four threads, and runs on a system that has two
dual-core processors, each software thread can run simultaneously on the four processor cores
to compute a row of the result at the same time.

Multithreading Structure
Traditional UNIX already supports the concept of threads. Each process contains a single
thread, so programming with multiple processes is programming with multiple threads. But, a
process is also an address space, and creating a process involves creating a new address space.

Creating a thread is less expensive than creating a new process because the newly created thread
uses the current process address space. The time that is required to switch between threads is
less than the time required to switch between processes. A switch between threads is faster
because no switching between address spaces occurs.

Communication between the threads of one process is simple because the threads share
everything, most importantly address space. So, data produced by one thread is immediately
available to all the other threads in the process.

However, this sharing of data leads to a different set of challenges for the programmer. Care
must be taken to synchronize threads to protect data from being modified by more than one
thread at once, or from being read by some threads while being modified by another thread at
the same time. See “Thread Synchronization” on page 24 for more information.

User-Level Threads
Threads are the primary programming interface in multithreaded programming. Threads are
visible only from within the process, where the threads share all process resources like address
space, open files, and so on.

User-Level Threads State
The following state is unique to each thread.
■ Thread ID
■ Register state, including program counter (PC) and stack pointer
■ Stack
■ Signal mask
■ Priority
■ Thread-private storage

Multithreading Concepts

Multithreaded Programming Guide • October 2012 (Beta)22

Threads share the process instructions and most of the process data. For that reason, a change
in shared data by one thread can be seen by the other threads in the process. When a thread
needs to interact with other threads in the same process, the thread can do so without involving
the operating environment.

Note – User-level threads are so named to distinguish them from kernel-level threads, which are
the concern of systems programmers only. Because this book is for application programmers,
kernel-level threads are not discussed.

Thread Scheduling
The POSIX standard specifies three scheduling policies: first-in-first-out (SCHED_FIFO),
round-robin (SCHED_RR), and custom (SCHED_OTHER). SCHED_FIFO is a queue-based scheduler
with different queues for each priority level. SCHED_RR is like FIFO except that each thread has
an execution time quota.

Both SCHED_FIFO and SCHED_RR are POSIX Realtime extensions. Threads executing with these
policies are in the Oracle Solaris Real-Time (RT) scheduling class, normally requiring special
privilege. SCHED_OTHER is the default scheduling policy. Threads executing with the
SCHED_OTHER policy are in the traditional Oracle Solaris Time-Sharing (TS) scheduling class.

Oracle Solaris provides other scheduling classes, namely the Interactive timesharing (IA) class,
the Fair-Share (FSS) class, and the Fixed-Priority (FX) class. Such specialized classes are not
discussed here. See the Oracle Solaris priocntl(2) manual page for more information.

See “LWPs and Scheduling Classes” on page 151 for information about the SCHED_OTHER policy.

Two scheduling scopes are available: process scope (PTHREAD_SCOPE_PROCESS) and system
scope (PTHREAD_SCOPE_SYSTEM). Threads with differing scope states can coexist on the same
system and even in the same process. Process scope causes such threads to contend for
resources only with other such threads in the same process. System scope causes such threads to
contend with all other threads in the system. In practice, beginning with the Solaris 9 release,
the system makes no distinction between these two scopes.

Thread Cancellation
A thread can request the termination of any other thread in the process. The target thread, the
one being cancelled, can keep cancellation requests pending as well as perform
application-specific cleanup when the thread acts upon the cancellation request.

The pthreads cancellation feature permits either asynchronous or deferred termination of a
thread. Asynchronous cancellation can occur at any time. Deferred cancellation can occur only
at defined points. Deferred cancellation is the default type.

Multithreading Concepts

Chapter 1 • Covering Multithreading Basics 23

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2priocntl-2

Thread Synchronization
Synchronization enables you to control program flow and access to shared data for
concurrently executing threads.

The four synchronization models are mutex locks, read/write locks, condition variables, and
semaphores.
■ Mutex locks allow only one thread at a time to execute a specific section of code, or to access

specific data.
■ Read/write locks permit concurrent reads and exclusive writes to a protected shared

resource. To modify a resource, a thread must first acquire the exclusive write lock. An
exclusive write lock is not permitted until all read locks have been released.

■ Condition variables block threads until a particular condition is true.
■ Counting semaphores typically coordinate access to resources. The count is the limit on how

many threads can have concurrent access to the data protected by the semaphore. When the
count is reached, the semaphore causes the calling thread to block until the count changes. A
binary semaphore (with a count of one) is similar in operation to a mutex lock.

Using the 64-bit Architecture
For application developers, the major difference between the Oracle Solaris 64-bit and 32–bit
environments is the C–language data type model used. The 64-bit data type uses the LP64
model where longs and pointers are 64 bits wide. All other fundamental data types remain the
same as the data types of the 32–bit implementation. The 32–bit data type uses the ILP32 model
where ints, longs, and pointers are 32 bits.

The following summary briefly describes the major features and considerations for using the
64-bit environment:

■ Large Virtual Address Space
In the 64-bit environment, a process can have up to 64 bits of virtual address space, or 18
exabytes. The larger virtual address space is 4 billion times the current 4 Gbyte maximum of
a 32-bit process. Because of hardware restrictions, however, some platforms might not
support the full 64 bits of address space.
A large address space increases the number of threads that can be created with the default
stack size. The default stack size is 1 megabyte on 32 bits, 2 megabytes on 64 bits. The
number of threads with the default stack size is approximately 2000 threads on a 32–bit
system and 8000 billion on a 64-bit system.

■ Kernel Memory Readers
The kernel is an LP64 object that uses 64-bit data structures internally. This means that
existing 32-bit applications that use libkvm, /dev/mem, or /dev/kmem do not work properly
and must be converted to 64-bit programs.

Using the 64-bit Architecture

Multithreaded Programming Guide • October 2012 (Beta)24

■ /proc Restrictions
A 32-bit program that uses /proc is able to look at 32-bit processes but is unable to
understand a 64-bit process. The existing interfaces and data structures that describe the
process are not large enough to contain the 64-bit quantities. Such programs must be
recompiled as 64-bit programs to work for both 32-bit processes and 64-bit processes.

■ 64-bit Libraries
32–bit applications are required to link with 32–bit libraries and 64-bit applications are
required to link with 64-bit libraries. With the exception of those libraries that have become
obsolete, all of the system libraries are provided in both 32–bit versions and 64-bit versions.

■ 64-bit Arithmetic
64-bit arithmetic has long been available in previous 32–bit Oracle Solaris releases. The
64-bit implementation now provides full 64-bit machine registers for integer operations and
parameter passing.

■ Large Files
If an application requires only large file support, the application can remain 32-bit and use
the Large Files interface. To take full advantage of 64-bit capabilities, the application must
be converted to 64-bit.

Using the 64-bit Architecture

Chapter 1 • Covering Multithreading Basics 25

26

Basic Threads Programming

This chapter introduces the basic threads programming routines for POSIX threads. This
chapter describes default threads, or threads with default attribute values, which are the kind of
threads that are most often used in multithreaded programming. This chapter explains how to
create and use threads with nondefault attributes.

■ “Lifecycle of a Thread” on page 27
■ “The Pthreads Library” on page 28

Lifecycle of a Thread
When a thread is created, a new thread of control is added to the current process. Every process
has at least one thread of control, in the program's main() routine. Each thread in the process
runs simultaneously, and has access to the calling process's global data. In addition each thread
has its own private attributes and call stack.

To create a new thread, a running thread calls the pthread_create() function, and passes a
pointer to a function for the new thread to run. One argument for the new thread's function can
also be passed, along with thread attributes. The execution of a thread begins with the successful
return from the pthread_create() function. The thread ends when the function that was
called with the thread completes normally.

A thread can also be terminated if the thread calls a pthread_exit() routine, or if any other
thread calls pthread_cancel() to explicitly terminate that thread. A thread can also be
terminated by the exit of the process that called the thread.

2C H A P T E R 2

27

The Pthreads Library
The Pthreads API library consists of more than 100 functions. See the pthreads(5) man page
for a full list of the functions, grouped by their usage categories.

This section contains brief descriptions of the functions used for basic threads programming,
organized according to the task they perform, and includes links to the man pages of the
associated API functions. The following list directs you to the discussion of a particular task.

■ “Creating a Default Thread” on page 28
■ “Waiting for Thread Termination” on page 30
■ “Simple Threads Example” on page 31
■ “Detaching a Thread” on page 32
■ “Creating a Key for Thread-Specific Data” on page 33
■ “Deleting the Thread-Specific Data Key” on page 34
■ “Setting Thread-Specific Data” on page 35
■ “Getting Thread-Specific Data” on page 36
■ “Global and Private Thread-Specific Data Example” on page 36
■ “Getting the Thread Identifier” on page 38
■ “Comparing Thread IDs” on page 39
■ “Calling an Initialization Routine for a Thread” on page 39
■ “Yielding Thread Execution” on page 40
■ “Setting the Thread Policy and Scheduling Parameters” on page 40
■ “Getting the Thread Policy and Scheduling Parameters” on page 41
■ “Setting the Thread Priority” on page 42
■ “Sending a Signal to a Thread” on page 43
■ “Accessing the Signal Mask of the Calling Thread” on page 43
■ “Forking Safely” on page 44
■ “Terminating a Thread” on page 45
■ “Finishing Up” on page 45
■ “Cancel a Thread” on page 46
■ “Cancelling a Thread” on page 47
■ “Enabling or Disabling Cancellation” on page 48
■ “Setting Cancellation Type” on page 48
■ “Creating a Cancellation Point” on page 49
■ “Pushing a Handler Onto the Stack” on page 49
■ “Pulling a Handler Off the Stack” on page 50

Creating a Default Thread
When an attribute object is not specified, the object is NULL, and the default thread is created
with the following attributes:

■ Process scope

The Pthreads Library

Multithreaded Programming Guide • October 2012 (Beta)28

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5pthreads-5

■ Nondetached
■ A default stack and stack size
■ A priority of zero

You can also create a default attribute object with pthread_attr_init() , and then use this
attribute object to create a default thread. See the section “Initializing Attributes” on page 52
for details.

pthread_create Syntax
Use pthread_create(3C) to add a new thread of control to the current process.

int pthread_create(pthread_t *restrict tid, const pthread_attr_t

restrict tattr, void(*start_routine)(void *), void *restrict arg);

#include <pthread.h>

pthread_attr_t() tattr;
pthread_t tid;
extern void *start_routine(void *arg);
void *arg;
int ret;

/* default behavior*/

ret = pthread_create(&tid, NULL, start_routine, arg);

/* initialized with default attributes */

ret = pthread_attr_init(&tattr);
/* default behavior specified*/

ret = pthread_create(&tid, &tattr, start_routine, arg);

The pthread_create() function is called with attr that has the necessary state behavior.
start_routine is the function with which the new thread begins execution. When start_routine
returns, the thread exits with the exit status set to the value returned by start_routine. See
“pthread_create Syntax” on page 29.

When pthread_create() is successful, the ID of the created thread is stored in the location
referred to as tid.

When you call pthread_create() with either a NULL attribute argument or a default attribute,
pthread_create() creates a default thread. When tattr is initialized, the thread acquires the
default behavior.

pthread_create Return Values
pthread_create() returns zero when the call completes successfully. Any other return value
indicates that an error occurred. When any of the following conditions are detected,
pthread_create() fails and returns the corresponding value.

The Pthreads Library

Chapter 2 • Basic Threads Programming 29

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-create-3c

EAGAIN

Description: A system limit is exceeded, such as when too many threads have been created.

EINVAL

Description: The value of tattr is invalid.

EPERM

Description: The caller does not have appropriate permission to set the required scheduling
parameters or scheduling policy.

Waiting for Thread Termination
The pthread_join() function blocks the calling thread until the specified thread terminates.

pthread_join Syntax
Use pthread_join(3C) to wait for a thread to terminate.

int pthread_join(pthread_t tid, void **status);

#include <pthread.h>

pthread_t tid;
int ret;
void *status;

/* waiting to join thread "tid" with status */

ret = pthread_join(tid, &status);

/* waiting to join thread "tid" without status */

ret = pthread_join(tid, NULL);

The specified thread must be in the current process and must not be detached. For information
on thread detachment, see “Setting Detach State” on page 54.

When status is not NULL, status points to a location that is set to the exit status of the terminated
thread when pthread_join() returns successfully.

If multiple threads wait for the same thread to terminate, all the threads wait until the target
thread terminates. Then one waiting thread returns successfully. The other waiting threads fail
with an error of ESRCH.

After pthread_join() returns, any data storage associated with the terminated thread can be
reclaimed by the application.

The Pthreads Library

Multithreaded Programming Guide • October 2012 (Beta)30

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-join-3c

pthread_join Return Values
pthread_join() returns zero when the call completes successfully. Any other return value
indicates that an error occurred. When any of the following conditions are detected,
pthread_join() fails and returns the corresponding value.

ESRCH

Description: No thread could be found corresponding to the given thread ID.

EDEADLK

Description: A deadlock would exist, such as a thread waits for itself or thread A waits for
thread B and thread B waits for thread A.

EINVAL

Description: The thread corresponding to the given thread ID is a detached thread.

pthread_join() works only for target threads that are nondetached. When no reason exists to
synchronize with the termination of a particular thread, then that thread should be detached.

Simple Threads Example
In Example 2–1, one thread executes the procedure at the top, creating a helper thread that
executes the procedure fetch(). The fetch() procedure executes a complicated database
lookup and might take some time.

The main thread awaits the results of the lookup but has other work to do in the meantime. So,
the main thread perform those other activities and then waits for its helper to complete its job
by executing pthread_join().

An argument, pbe, to the new thread is passed as a stack parameter. The thread argument can be
passed as a stack parameter because the main thread waits for the spun-off thread to terminate.
However, the preferred method is to use malloc to allocate storage from the heap instead of
passing an address to thread stack storage. If the argument is passed as an address to thread
stack storage, this address might be invalid or be reassigned if the thread terminates.

EXAMPLE 2–1 Simple Threads Program

void mainline (...)

{

struct phonebookentry *pbe;

pthread_attr_t tattr;

pthread_t helper;

void *status;

pthread_create(&helper, NULL, fetch, &pbe);

/* do something else for a while */

The Pthreads Library

Chapter 2 • Basic Threads Programming 31

EXAMPLE 2–1 Simple Threads Program (Continued)

pthread_join(helper, &status);

/* it’s now safe to use result */

}

void *fetch(struct phonebookentry *arg)

{

struct phonebookentry *npbe;

/* fetch value from a database */

npbe = search (prog_name)

if (npbe != NULL)

*arg = *npbe;

pthread_exit(0);

}

struct phonebookentry {

char name[64];

char phonenumber[32];

char flags[16];

}

Detaching a Thread
pthread_detach(3C) is an alternative to pthread_join(3C) to reclaim storage for a thread that
is created with a detachstate attribute set to PTHREAD_CREATE_JOINABLE.

pthread_detach Syntax
int pthread_detach(pthread_t tid);

#include <pthread.h>

pthread_t tid;
int ret;

/* detach thread tid */

ret = pthread_detach(tid);

The pthread_detach() function is used to indicate to your application that storage for the
thread tid can be reclaimed when the thread terminates. Threads should be detached when they
are no longer needed. If tid has not terminated, pthread_detach() does not cause the thread to
terminate.

pthread_detach Return Values
pthread_detach() returns zero when the call completes successfully. Any other return value
indicates that an error occurred. When any of the following conditions is detected,
pthread_detach() fails and returns the corresponding value.

The Pthreads Library

Multithreaded Programming Guide • October 2012 (Beta)32

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-detach-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-join-3c

EINVAL

Description: tid is a detached thread.

ESRCH

Description: tid is not a valid, undetached thread in the current process.

Creating a Key for Thread-Specific Data
Single-threaded C programs have two basic classes of data: local data and global data. For
multithreaded C programs a third class, thread-specific data, is added. Thread-specific data is
very much like global data, except that the data is private to a thread.

Note – The Oracle Solaris OS supports an alternative facility that allows a thread to have a private
copy of a global variable. This mechanism is referred to as thread local storage (TLS). The
keyword __thread is used to declare variables to be thread-local, and the compiler
automatically arranges for these variables to be allocated on a per-thread basis. See Chapter 14,
“Thread-Local Storage,” in Linker and Libraries Guide for more information.

Thread-specific data (TSD) is maintained on a per-thread basis. TSD is the only way to define
and refer to data that is private to a thread. Each thread-specific data item is associated with a
key that is global to all threads in the process. By using the key, a thread can access a pointer (
void *) maintained per-thread.

pthread_key_create Syntax
int pthread_key_create(pthread_key_t *key,

void (*destructor) (void *));

#include <pthread.h>

pthread_key_t key;
int ret;

/* key create without destructor */

ret = pthread_key_create(&key, NULL);

/* key create with destructor */

ret = pthread_key_create(&key, destructor);

Use pthread_key_create(3C) to allocate a key that is used to identify thread-specific data in a
process. The key is global to all threads in the process. When the thread-specific data is created,
all threads initially have the value NULL associated with the key.

Call pthread_key_create() once for each key before using the key. No implicit
synchronization exists for the keys shared by all threads in a process.

The Pthreads Library

Chapter 2 • Basic Threads Programming 33

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=LLMchapter8-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=LLMchapter8-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-key-create-3c

Once a key has been created, each thread can bind a value to the key. The values are specific to
the threads and are maintained for each thread independently. The per-thread binding is
deallocated when a thread terminates if the key was created with a destructor function.

When pthread_key_create() returns successfully, the allocated key is stored in the location
pointed to by key. The caller must ensure that the storage and access to this key are properly
synchronized.

An optional destructor function, destructor, can be used to free stale storage. If a key has a
non-NULL destructor function and the thread has a non-NULL value associated with that key,
the destructor function is called with the current associated value when the thread exits. The
order in which the destructor functions are called is unspecified.

pthread_key_create Return Values
pthread_key_create() returns zero after completing successfully. Any other return value
indicates that an error occurred. When any of the following conditions occur,
pthread_key_create() fails and returns the corresponding value.

EAGAIN

Description: The key name space is exhausted.

ENOMEM

Description: Insufficient virtual memory is available in this process to create a new key.

Deleting the Thread-Specific Data Key
Use pthread_key_delete(3C) to destroy an existing thread-specific data key. Any memory
associated with the key can be freed because the key has been invalidated. Reference to an
invalid key returns an error.

pthread_key_delete Syntax
int pthread_key_delete(pthread_key_t key);

#include <pthread.h>

pthread_key_t key;
int ret;

/* key previously created */

ret = pthread_key_delete(key);

If a key has been deleted, any reference to the key with the pthread_setspecific() or
pthread_getspecific() call yields undefined results.

The Pthreads Library

Multithreaded Programming Guide • October 2012 (Beta)34

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-key-delete-3c

The programmer must free any thread-specific resources before calling the
pthread_key_delete() function. This function does not invoke any of the destructors.
Repeated calls to pthread_key_create() and pthread_key_delete() can cause a problem.

The problem occurs because, in the Oracle Solaris implementation, a key value is never reused
after pthread_key_delete() marks it as invalid. Every pthread_key_create() allocates a new
key value and allocates more internal memory to hold the key information. An infinite loop of
pthread_key_create() ... pthread_key_delete() will eventually exhaust all memory. If
possible, call pthread_key_create() only once for each desired key and never call
pthread_key_delete().

pthread_key_delete Return Values
pthread_key_delete() returns zero after completing successfully. Any other return value
indicates that an error occurred. When the following condition occurs, pthread_key_delete()
fails and returns the corresponding value.

EINVAL

Description: The key value is invalid.

Setting Thread-Specific Data
Use pthread_setspecific(3C) to set the thread-specific binding to the specified
thread-specific data key.

pthread_setspecific Syntax
int pthread_setspecific(pthread_key_t key, const void *value);

#include <pthread.h>

pthread_key_t key;
void *value;
int ret;

/* key previously created */

ret = pthread_setspecific(key, value);

pthread_setspecific Return Values
pthread_setspecific() returns zero after completing successfully. Any other return value
indicates that an error occurred. When any of the following conditions occur,
pthread_setspecific() fails and returns the corresponding value.

ENOMEM

Description: Insufficient virtual memory is available.

The Pthreads Library

Chapter 2 • Basic Threads Programming 35

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-setspecific-3c

EINVAL

Description: key is invalid.

Note – pthread_setspecific() does not free its storage when a new binding is set. The existing
binding must be freed, otherwise a memory leak can occur.

Getting Thread-Specific Data
Use pthread_getspecific(3C) to get the calling thread's binding for key, and store the binding
in the location pointed to by value.

pthread_getspecific Syntax
void *pthread_getspecific(pthread_key_t key);

#include <pthread.h>

pthread_key_t key;
void *value;

/* key previously created */

value = pthread_getspecific(key);

pthread_getspecific Return Values
pthread_getspecific returns no errors.

Global and Private Thread-Specific Data Example
Example 2–2 shows an excerpt from a multithreaded program. This code is executed by any
number of threads, but the code has references to two global variables, errno and mywindow.
These global values really should be references to items private to each thread.

EXAMPLE 2–2 Thread-Specific Data–Global but Private

body() {

...

while (write(fd, buffer, size) == -1) {

if (errno != EINTR) {

fprintf(mywindow, "%s\n", strerror(errno));

exit(1);

}

}

...

The Pthreads Library

Multithreaded Programming Guide • October 2012 (Beta)36

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-getspecific-3c

EXAMPLE 2–2 Thread-Specific Data–Global but Private (Continued)

}

References to errno should get the system error code from the routine called by this thread, not
by some other thread. Including the header file errno.h causes a reference to errno to be a
reference to a thread-private instance of errno, so that references to errno by one thread refer
to a different storage location than references to errno by other threads.

The mywindow variable refers to a stdio stream that is connected to a window that is private to
the referring thread. So, as with errno, references to mywindow by one thread should refer to a
different storage location than references to mywindow by other threads. Ultimately, the
reference is to a different window. The only difference here is that the system takes care of errno
, but the programmer must handle references for mywindow .

The next example shows how the references to mywindow work. The preprocessor converts
references to mywindow into invocations of the _mywindow() procedure.

This routine in turn invokes pthread_getspecific(). pthread_getspecific() receives the
mywindow_key global variable and win an output parameter that receives the identity of this
thread's window.

EXAMPLE 2–3 Turning Global References Into Private References

thread_key_t mywin_key;

FILE *_mywindow(void) {

FILE *win;

win = pthread_getspecific(mywin_key);

return(win);

}

#define mywindow _mywindow()

void routine_uses_win(FILE *win) {

...

}

void thread_start(...) {

...

make_mywin();

...

routine_uses_win(mywindow)

...

}

The mywin_key variable identifies a class of variables for which each thread has its own private
copy. These variables are thread-specific data. Each thread calls make_mywin() to initialize its
window and to arrange for its instance of mywindow to refer to the thread-specific data.

Once this routine is called, the thread can safely refer to mywindow and, after _mywindow(), the
thread gets the reference to its private window. References to mywindow behave as if direct
references were made to data private to the thread.

The Pthreads Library

Chapter 2 • Basic Threads Programming 37

Example 2–4 shows how to set up the reference.

EXAMPLE 2–4 Initializing the Thread-Specific Data

void make_mywindow(void) {

FILE **win;

static pthread_once_t mykeycreated = PTHREAD_ONCE_INIT;

pthread_once(&mykeycreated, mykeycreate);

win = malloc(sizeof(*win));

create_window(win, ...);

pthread_setspecific(mywindow_key, win);

}

void mykeycreate(void) {

pthread_key_create(&mywindow_key, free_key);

}

void free_key(void *win) {

free(win);

}

First, get a unique value for the key, mywin_key. This key is used to identify the thread-specific
class of data. The first thread to call make_mywin() eventually calls pthread_key_create() ,
which assigns to its first argument a unique key. The second argument is a destructor function
that is used to deallocate a thread's instance of this thread-specific data item once the thread
terminates.

The next step is to allocate the storage for the caller's instance of this thread-specific data item.
Having allocated the storage, calling create_window() sets up a window for the thread. win
points to the storage allocated for the window. Finally, a call is made to
pthread_setspecific(), which associates win with the key.

Subsequently, whenever the thread calls pthread_getspecific() to pass the global key, the
thread gets the value that is associated with this key by this thread in an earlier call to
pthread_setspecific() .

When a thread terminates, calls are made to the destructor functions that were set up in
pthread_key_create(). Each destructor function is called only if the terminating thread
established a value for the key by calling pthread_setspecific().

Getting the Thread Identifier
Use pthread_self(3C) to get the thread identifier of the calling thread.

pthread_self Syntax
pthread_t pthread_self(void);

The Pthreads Library

Multithreaded Programming Guide • October 2012 (Beta)38

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-self-3c

#include <pthread.h>

pthread_t tid;

tid = pthread_self();

pthread_self Return Values
pthread_self() returns the thread identifier of the calling thread.

Comparing Thread IDs
Use pthread_equal(3C) to compare the thread identification numbers of two threads.

pthread_equal Syntax
int pthread_equal(pthread_t tid1, pthread_t tid2);

#include <pthread.h>

pthread_t tid1, tid2;
int ret;

ret = pthread_equal(tid1, tid2);

pthread_equal Return Values
pthread_equal() returns a nonzero value when tid1 and tid2 are equal, otherwise, 0 is
returned. When either tid1 or tid2 is an invalid thread identification number, the result is
unpredictable.

Calling an Initialization Routine for a Thread
Use pthread_once(3C) in a threaded process to call an initialization routine the first time
pthread_once is called. Subsequent calls to pthread_once() from any thread in the process
have no effect.

pthread_once Syntax
int pthread_once(pthread_once_t *once_control, void (*init_routine)(void));

#include <pthread.h>

pthread_once_t once_control = PTHREAD_ONCE_INIT;

int ret;

ret = pthread_once(&once_control,
init_routine);

The Pthreads Library

Chapter 2 • Basic Threads Programming 39

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-equal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-once-3c

The once_control parameter determines whether the associated initialization routine has been
called.

pthread_once Return Values
pthread_once() returns zero after completing successfully. Any other return value indicates
that an error occurred. When the following condition occurs, pthread_once() fails and returns
the corresponding value.

EINVAL

Description: once_control or init_routine is NULL.

Yielding Thread Execution
Use sched_yield to cause the current thread to yield its execution in favor of another thread
with the same or greater priority. If no such threads are ready to run, the calling thread
continues to run. The sched_yield() function is not part of the Pthread API, but is a function
in the Realtime Library Functions. You must include <sched.h> to use sched_yield().

sched_yield Syntax
int sched_yield(void);

#include <sched.h>

int ret;
ret = sched_yield();

sched_yield Return Values
sched_yield() returns zero after completing successfully. Otherwise, -1 is returned and errno
is set to indicate the error condition.

Setting the Thread Policy and Scheduling Parameters
Use pthread_setschedparam(3C) to modify the scheduling policy and scheduling parameters
of an individual thread.

pthread_setschedparam Syntax
int pthread_setschedparam(pthread_t tid, int policy,

const struct sched_param *param);

#include <pthread.h>

pthread_t tid;

The Pthreads Library

Multithreaded Programming Guide • October 2012 (Beta)40

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-setschedparam-3c

int ret;
struct sched_param param;

int priority;

/* sched_priority will be the priority of the thread */

sched_param.sched_priority = priority;
policy = SCHED_OTHER;

/* scheduling parameters of target thread */

ret = pthread_setschedparam(tid,
policy, ¶m);

Supported policies are SCHED_FIFO, SCHED_RR, and SCHED_OTHER.

pthread_setschedparam Return Values
pthread_setschedparam() returns zero after completing successfully. Any other return value
indicates that an error occurred. When either of the following conditions occurs, the
pthread_setschedparam() function fails and returns the corresponding value.

EINVAL

Description: The value of the attribute being set is not valid.

EPERM

Description: The caller does not have the appropriate permission to set either the scheduling
parameters or the scheduling policy of the specified thread.

ESRCH

Description: The value specified by tid does not refer to an existing thread.

Getting the Thread Policy and Scheduling Parameters
pthread_getschedparam(3C) gets the scheduling policy and scheduling parameters of an
individual thread.

pthread_getschedparam Syntax
int pthread_getschedparam(pthread_t tid, int *restrict policy,

struct sched_param *restrict param);

#include <pthread.h>

pthread_t tid;
sched_param param;

int priority;
int policy;
int ret;

/* scheduling parameters of target thread */

The Pthreads Library

Chapter 2 • Basic Threads Programming 41

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-getschedparam-3c

ret = pthread_getschedparam (tid, &policy, ¶m);

/* sched_priority contains the priority of the thread */

priority = param.sched_priority;

pthread_getschedparam Return Values
pthread_getschedparam() returns zero after completing successfully. Any other return value
indicates that an error occurred. When the following condition occurs, the function fails and
returns the corresponding value.

ESRCH

Description: The value specified by tid does not refer to an existing thread.

Setting the Thread Priority
pthread_setschedprio(3C) sets the scheduling priority for the specified thread.

pthread_setschedprio Syntax
int pthread_setschedprio(pthread_t tid, int prio);

#include <pthread.h>

pthread_t tid;
int prio;
int ret;

pthread_setschedprio Return Values
pthread_setschedprio() returns zero after completing successfully. Any other return value
indicates that an error occurred. When the following condition occurs, the function fails and
returns the corresponding value.

EINVAL

Description: The value of prio is invalid for the scheduling policy of the specified thread.

ENOTSUP

Description: An attempt was made to set the priority to an unsupported value.

EPERM

Description: The caller does not have the appropriate permission to set the scheduling
priority of the specified thread.

ESRCH

Description: The value specified by tid does not refer to an existing thread.

The Pthreads Library

Multithreaded Programming Guide • October 2012 (Beta)42

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-setschedprio-3c

Sending a Signal to a Thread
Use pthread_kill(3C) to send a signal to a thread.

pthread_kill Syntax
int pthread_kill(pthread_t tid, int sig);

#include <pthread.h>

#include <signal.h>

int sig;
pthread_t tid;
int ret;

ret = pthread_kill(tid,
sig);

pthread_kill() sends the signal sig to the thread specified by tid. tid must be a thread within
the same process as the calling thread. Thesig argument must be from the list that is given in
signal.h(3HEAD).

When sig is zero, error checking is performed but no signal is actually sent. This error checking
can be used to check the validity of tid.

pthread_kill Return Values
pthread_kill() returns zero after completing successfully. Any other return value indicates
that an error occurred. When either of the following conditions occurs, pthread_kill() fails
and returns the corresponding value.

EINVAL

Description: sig is not a valid signal number.

ESRCH

Description: tid cannot be found in the current process.

Accessing the Signal Mask of the Calling Thread
Use pthread_sigmask(3C) to change or examine the signal mask of the calling thread.

pthread_sigmask Syntax
int pthread_sigmask(int how, const sigset_t *new, sigset_t *old);

#include <pthread.h>

#include <signal.h>

The Pthreads Library

Chapter 2 • Basic Threads Programming 43

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-kill-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-sigmask-3c

int ret;
sigset_t old, new;

ret = pthread_sigmask(SIG_SETMASK, &new, &old); /* set new mask */

ret = pthread_sigmask(SIG_BLOCK, &new, &old); /* blocking mask */

ret = pthread_sigmask(SIG_UNBLOCK, &new, &old); /* unblocking */

how determines how the signal set is changed. how can have one of the following values:

■ SIG_BLOCK. Add new to the current signal mask, where new indicates the set of signals to
block.

■ SIG_UNBLOCK. Delete new from the current signal mask, where new indicates the set of
signals to unblock.

■ SIG_SETMASK . Replace the current signal mask with new, where new indicates the new signal
mask.

When the value of new is NULL, the value of how is not significant. The signal mask of the thread
is unchanged. To inquire about currently blocked signals, assign a NULL value to the new
argument.

The old variable points to the space where the previous signal mask is stored, unless old is NULL.

pthread_sigmask Return Values
pthread_sigmask() returns zero when the call completes successfully. Any other return value
indicates that an error occurred. When the following condition occurs, pthread_sigmask()
fails and returns the corresponding value.

EINVAL

Description: The value of how is not defined and old is NULL.

Forking Safely
See the discussion about pthread_atfork(3C) in “Solution: pthread_atfork” on page 148.

pthread_atfork Syntax
int pthread_atfork(void (*prepare) (void), void (*parent) (void),

void (*child) (void));

pthread_atfork Return Values
pthread_atfork() returns zero when the call completes successfully. Any other return value
indicates that an error occurred. When the following condition occurs, pthread_atfork() fails
and returns the corresponding value.

ENOMEM

Description: Insufficient table space exists to record the fork handler addresses.

The Pthreads Library

Multithreaded Programming Guide • October 2012 (Beta)44

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-atfork-3c

Terminating a Thread
Use pthread_exit(3C) to terminate a thread.

pthread_exit Syntax
void pthread_exit(void *status);

#include <pthread.h>

void *status;
pthread_exit(status); /* exit with status */

The pthread_exit() function terminates the calling thread. All thread-specific data bindings
are released. If the calling thread is not detached, then the thread's ID and the exit status
specified by status are retained until your application calls pthread_join() to wait for the
thread. Otherwise, status is ignored. The thread's ID can be reclaimed immediately. For
information on thread detachment, see “Setting Detach State” on page 54.

pthread_exit Return Values
The calling thread terminates with its exit status set to the contents of status.

Finishing Up
A thread can terminate its execution in the following ways:

■ By returning from its first (outermost) procedure, the threads start routine. See
pthread_create.

■ By calling pthread_exit(), supplying an exit status.
■ By termination with POSIX cancel functions. See pthread_cancel() .

The default behavior of a thread is to linger until some other thread has acknowledged its
demise by “joining” with the lingering thread. This behavior is the same as the default
pthread_create() attribute that is nondetached, see pthread_detach. The result of the join is
that the joining thread picks up the exit status of the terminated thread and the terminated
thread vanishes.

An important special case arises when the initial thread, calling main(), returns from calling
main() or calls exit(). This action causes the entire process to be terminated, along with all its
threads. So, take care to ensure that the initial thread does not return from main() prematurely.

Note that when the main thread merely calls pthread_exit, the main thread terminates itself
only. The other threads in the process, as well as the process, continue to exist. The process
terminates when all threads terminate.

The Pthreads Library

Chapter 2 • Basic Threads Programming 45

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-exit-3c

Cancel a Thread
Cancellation allows a thread to request the termination of any other thread in the process.
Cancellation is an option when all further operations of a related set of threads are undesirable
or unnecessary.

One example of thread cancellation is an asynchronously generated cancel condition, such as,
when a user requesting to close or exit a running application. Another example is the
completion of a task undertaken by a number of threads. One of the threads might ultimately
complete the task while the others continue to operate. Since the running threads serve no
purpose at that point, these threads should be cancelled.

Cancellation Points
Be careful to cancel a thread only when cancellation is safe. The pthreads standard specifies
several cancellation points, including:

■ Programmatically, establish a thread cancellation point through a pthread_testcancel
call.

■ Threads waiting for the occurrence of a particular condition in pthread_cond_wait or
pthread_cond_timedwait(3C).

■ Threads blocked on sigwait(2).
■ Some standard library calls. In general, these calls include functions in which threads can

block. See the cancellation(5) man page for a list.

Cancellation is enabled by default. At times, you might want an application to disable
cancellation. Disabled cancellation has the result of deferring all cancellation requests until
cancellation requests are enabled again.

See “pthread_setcancelstate Syntax” on page 48 for information about disabling
cancellation.

Placing Cancellation Points
Dangers exist in performing cancellations. Most deal with properly restoring invariants and
freeing shared resources. A thread that is cancelled without care might leave a mutex in a locked
state, leading to a deadlock. Or a cancelled thread might leave a region of allocated memory
with no way to identify the memory and therefore unable to free the memory.

The standard C library specifies a cancellation interface that permits or forbids cancellation
programmatically. The library defines cancellation points that are the set of points at which
cancellation can occur. The library also allows the scope of cancellation handlers to be defined
so that the handlers are sure to operate when and where intended. The cancellation handlers
provide clean up services to restore resources and state to a condition that is consistent with the
point of origin.

The Pthreads Library

Multithreaded Programming Guide • October 2012 (Beta)46

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5cancellation-5

Placement of cancellation points and the effects of cancellation handlers must be based on an
understanding of the application. A mutex is explicitly not a cancellation point and should be
held only for the minimal essential time.

Limit regions of asynchronous cancellation to sequences with no external dependencies that
could result in dangling resources or unresolved state conditions. Take care to restore
cancellation state when returning from some alternate, nested cancellation state. The interface
provides features to facilitate restoration: pthread_setcancelstate(3C) preserves the current
cancel state in a referenced variable, pthread_setcanceltype(3C) preserves the current cancel
type in the same way.

Cancellations can occur under three different circumstances:
■ Asynchronously
■ At various points in the execution sequence as defined by the standard
■ At a call to pthread_testcancel()

By default, cancellation can occur only at well-defined points as defined by the POSIX standard.

In all cases, take care that resources and state are restored to a condition consistent with the
point of origin.

Cancelling a Thread
Use pthread_cancel(3C) to cancel a thread.

pthread_cancel Syntax
int pthread_cancel(pthread_t thread);

#include <pthread.h>

pthread_t thread;
int ret;

ret = pthread_cancel(thread);

How the cancellation request is treated depends on the state of the target thread. Two functions,
pthread_setcancelstate(3C) and pthread_setcanceltype(3C) , determine that state.

pthread_cancel Return Values
pthread_cancel() returns zero after completing successfully. Any other return value indicates
that an error occurred. When the following condition occurs, the function fails and returns the
corresponding value.

ESRCH

Description: No thread could be found corresponding to that specified by the given thread ID.

The Pthreads Library

Chapter 2 • Basic Threads Programming 47

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-cancel-3c

Enabling or Disabling Cancellation
Use pthread_setcancelstate(3C) to enable or disable thread cancellation. When a thread is
created, thread cancellation is enabled by default.

pthread_setcancelstate Syntax
int pthread_setcancelstate(int state, int *oldstate);

#include <pthread.h>

int oldstate;
int ret;

/* enabled */

ret = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate);

/* disabled */

ret = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &oldstate);

pthread_setcancelstate Return Values
pthread_setcancelstate() returns zero after completing successfully. Any other return value
indicates that an error occurred. When the following condition occurs, the
pthread_setcancelstate() function fails and returns the corresponding value.

EINVAL

Description: The state is not PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE.

Setting Cancellation Type
Use pthread_setcanceltype(3C) to set the cancellation type to either deferred or
asynchronous mode.

pthread_setcanceltype Syntax
int pthread_setcanceltype(int type, int *oldtype);

#include <pthread.h>

int oldtype;
int ret;

/* deferred mode */

ret = pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, &oldtype);

/* async mode*/

ret = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &oldtype);

The Pthreads Library

Multithreaded Programming Guide • October 2012 (Beta)48

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-setcancelstate-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-setcanceltype-3c

When a thread is created, the cancellation type is set to deferred mode by default. In deferred
mode, the thread can be cancelled only at cancellation points. In asynchronous mode, a thread
can be cancelled at any point during its execution. The use of asynchronous mode is
discouraged.

pthread_setcanceltype Return Values
pthread_setcanceltype() returns zero after completing successfully. Any other return value
indicates that an error occurred. When the following condition occurs, the function fails and
returns the corresponding value.

EINVAL

Description: The type is not PTHREAD_CANCEL_DEFERRED or PTHREAD_CANCEL_ASYNCHRONOUS.

Creating a Cancellation Point
Use pthread_testcancel(3C) to establish a cancellation point for a thread.

pthread_testcancel Syntax
void pthread_testcancel(void);

#include <pthread.h>

pthread_testcancel();

The pthread_testcancel() function is effective when thread cancellation is enabled and in
deferred mode. pthread_testcancel() has no effect if called while cancellation is disabled.

Be careful to insert pthread_testcancel() only in sequences where thread cancellation is safe.
In addition to programmatically establishing cancellation points through the
pthread_testcancel() call, the pthreads standard specifies several cancellation points. See
“Cancellation Points” on page 46 for more details.

pthread_testcancel Return Values
pthread_testcancel() has no return value.

Pushing a Handler Onto the Stack
Use cleanup handlers to restore conditions to a state that is consistent with that state at the
point of origin. This consistent state includes cleaning up allocated resources and restoring
invariants. Use the pthread_cleanup_push(3C) and pthread_cleanup_pop(3C) functions to
manage the handlers.

The Pthreads Library

Chapter 2 • Basic Threads Programming 49

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-testcancel-3c

Cleanup handlers are pushed and popped in the same lexical scope of a program. The push and
pop should always match. Otherwise, compiler errors are generated.

pthread_cleanup_push Syntax
Use pthread_cleanup_push(3C) to push a cleanup handler onto a cleanup stack (LIFO).

void pthread_cleanup_push(void(*routine)(void *), void *args);

#include <pthread.h>

/* push the handler "routine" on cleanup stack */

pthread_cleanup_push (routine, arg);

pthread_cleanup_push Return Values
pthread_cleanup_push() has no return value.

Pulling a Handler Off the Stack
Use pthread_cleanup_pop(3C) to pull the cleanup handler off the cleanup stack.

pthread_cleanup_pop Syntax
void pthread_cleanup_pop(int execute);

#include <pthread.h>

/* pop the "func" out of cleanup stack and execute "func" */

pthread_cleanup_pop (1);

/* pop the "func" and DONT execute "func" */

pthread_cleanup_pop (0);

A nonzero argument in the pop function removes the handler from the stack and executes the
handler. An argument of zero pops the handler without executing the handler.

pthread_cleanup_pop() is effectively called with a nonzero argument when a thread either
explicitly or implicitly calls pthread_exit() or when the thread accepts a cancel request.

pthread_cleanup_pop Return Values
pthread_cleanup_pop() has no return values.

The Pthreads Library

Multithreaded Programming Guide • October 2012 (Beta)50

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-cleanup-push-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-cleanup-pop-3c

Thread Attributes

The previous chapter covered the basics of threads creation using default attributes. This
chapter discusses setting attributes at thread creation time.

Attribute Object
Attributes provide a way to specify behavior that is different from the default thread creation
behavior. When a thread is created with pthread_create(3C) or when a synchronization
variable is initialized, an attribute object can be specified. The defaults are usually sufficient.

An attribute object is opaque, and cannot be directly modified by assignments. A set of
functions is provided to initialize, configure, and destroy each object type.

Once an attribute is initialized and configured, the attribute has process-wide scope. The
suggested method for using attributes is to configure all required state specifications at one time
in the early stages of program execution. The appropriate attribute object can then be referred
to as needed.

The use of attribute objects provides two primary advantages.

■ Using attribute objects adds to code portability.
Even though supported attributes might vary between implementations, you need not
modify function calls that create thread entities. These function calls do not require
modification because the attribute object is hidden from the interface.
If the target port supports attributes that are not found in the current port, provision must
be made to manage the new attributes. Management of these attributes is an easy porting
task because attribute objects need only be initialized once in a well-defined location.

■ State specification in an application is simplified.
As an example, consider that several sets of threads might exist within a process. Each set of
threads provides a separate service. Each set has its own state requirements.

3C H A P T E R 3

51

At some point in the early stages of the application, a thread attribute object can be
initialized for each set. All future thread creations will then refer to the attribute object that
is initialized for that type of thread. The initialization phase is simple and localized. Any
future modifications can be made quickly and reliably.

Attribute objects require attention at process exit time. When the object is initialized, memory
is allocated for the object. This memory must be returned to the system. The pthreads standard
provides function calls to destroy attribute objects.

Pthreads functions can be used to manipulate thread attribute objects. The functions are
described in the following sections.
■ “Initializing Attributes” on page 52
■ “Destroying Attributes” on page 54
■ “Setting Detach State” on page 54
■ “Getting the Detach State” on page 55
■ “Setting the Stack Guard Size” on page 56
■ “Getting the Stack Guard Size” on page 57
■ “Setting the Scope” on page 57
■ “Getting the Scope” on page 58
■ “Setting the Thread Concurrency Level” on page 59
■ “Getting the Thread Concurrency Level” on page 59
■ “Setting the Scheduling Policy” on page 60
■ “Getting the Scheduling Policy” on page 61
■ “Setting the Inherited Scheduling Policy” on page 62
■ “Getting the Inherited Scheduling Policy” on page 62
■ “Setting the Scheduling Parameters” on page 63
■ “Getting the Scheduling Parameters” on page 64
■ “About Stacks” on page 65
■ “Setting the Stack Size” on page 66
■ “Getting the Stack Size” on page 67
■ “Setting the Stack Address and Size” on page 68
■ “Getting the Stack Address and Size” on page 69

Initializing Attributes
Use pthread_attr_init(3C) to initialize object attributes to their default values. The storage is
allocated by the thread system during execution.

pthread_attr_init Syntax
int pthread_attr_init(pthread_attr_t *tattr);

#include <pthread.h>

pthread_attr_t tattr;

Attribute Object

Multithreaded Programming Guide • October 2012 (Beta)52

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-attr-init-3c

int ret;

/* initialize an attribute to the default value */

ret = pthread_attr_init(&tattr);

Table 3–1 shows the default values for attributes (tattr).

TABLE 3–1 Default Attribute Values for tattr

Attribute Value Result

scope PTHREAD_SCOPE_PROCESS New thread contends with other
threads in the process.

detachstate PTHREAD_CREATE_JOINABLE Completion status and thread ID
are preserved after the thread
exits.

stackaddr NULL New thread has system-allocated
stack address.

stacksize 0 New thread has system-defined
stack size.

priority 0 New thread has priority 0.

inheritsched PTHREAD_EXPLICIT_SCHED New thread does not inherit
parent thread scheduling
priority.

schedpolicy SCHED_OTHER New thread uses the traditional
Oracle Solaris time-sharing (TS)
scheduling class.

guardsize PAGESIZE Stack overflow protection.

Note – The default value for the inheritsched attribute might change from
PTHREAD_EXPLICIT_SCHED to PTHREAD_INHERIT_SCHED in a future Oracle Solaris release. You
should call pthread_attr_setinheritsched() to set the inheritsched attribute to the value you
want rather than accepting the default, in order to avoid any potential problems caused by this
change.

pthread_attr_init Return Values
pthread_attr_init() returns zero after completing successfully. Any other return value
indicates that an error occurred. If the following condition occurs, the function fails and returns
the corresponding value.

Attribute Object

Chapter 3 • Thread Attributes 53

ENOMEM

Description: Returned when not enough memory is allocated to initialize the thread attributes
object.

Destroying Attributes
Use pthread_attr_destroy(3C) to remove the storage that was allocated during initialization.
The attribute object becomes invalid.

pthread_attr_destroy Syntax
int pthread_attr_destroy(pthread_attr_t *tattr);

#include <pthread.h>

pthread_attr_t tattr;
int ret;

/* destroy an attribute */

ret = pthread_attr_destroy(&tattr);

pthread_attr_destroy Return Values
pthread_attr_destroy() returns zero after completing successfully. Any other return value
indicates that an error occurred. If the following condition occurs, the function fails and returns
the corresponding value.

EINVAL

Description: Indicates that the value of tattr was not valid.

Setting Detach State
When a thread is created detached (PTHREAD_CREATE_DETACHED), its thread ID and other
resources can be reused as soon as the thread exits. Use pthread_attr_setdetachstate(3C)
when the calling thread does not want to wait for the thread to exit.

pthread_attr_setdetachstate(3C) Syntax
int pthread_attr_setdetachstate(pthread_attr_t *tattr,int detachstate);

#include <pthread.h>

pthread_attr_t tattr;
int ret;
/* set the thread detach state */

ret = pthread_attr_setdetachstate(&tattr,PTHREAD_CREATE_DETACHED);

Attribute Object

Multithreaded Programming Guide • October 2012 (Beta)54

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-attr-destroy-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-attr-setdetachstate-3c

When a thread is created nondetached with PTHREAD_CREATE_JOINABLE, the assumption is that
your application will wait for the thread to complete. That is, the program will execute a
pthread_join() on the thread.

Whether a thread is created detached or nondetached, the process does not exit until all threads
have exited. See “Finishing Up” on page 45 for a discussion of process termination caused by
premature exit from main().

Note – When no explicit synchronization prevents a newly created, detached thread from
exiting, its thread ID can be reassigned to another new thread before its creator returns from
pthread_create().

Nondetached threads must have a thread join with the nondetached thread after the
nondetached thread terminates. Otherwise, the resources of that thread are not released for use
by new threads that commonly results in a memory leak. So, when you do not want a thread to
be joined, create the thread as a detached thread.

EXAMPLE 3–1 Creating a Detached Thread

#include <pthread.h>

pthread_attr_t tattr;
pthread_t tid;
void *start_routine;
void arg
int ret;

/* initialized with default attributes */

ret = pthread_attr_init (&tattr);
ret = pthread_attr_setdetachstate (&tattr,PTHREAD_CREATE_DETACHED);
ret = pthread_create (&tid, &tattr, start_routine, arg);

pthread_attr_setdetachstate Return Values
pthread_attr_setdetachstate() returns zero after completing successfully. Any other return
value indicates that an error occurred. If the following condition occurs, the function fails and
returns the corresponding value.

EINVAL

Description: Indicates that the value of detachstate or tattr was not valid.

Getting the Detach State
Use pthread_attr_getdetachstate(3C) to retrieve the thread create state, which can be either
detached or joined.

Attribute Object

Chapter 3 • Thread Attributes 55

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-attr-getdetachstate-3c

pthread_attr_getdetachstate Syntax
int pthread_attr_getdetachstate(const pthread_attr_t *tattr, int *detachstate;

#include <pthread.h>

pthread_attr_t tattr;
int detachstate;
int ret;
/* get detachstate of thread */

ret = pthread_attr_getdetachstate (&tattr, &detachstate);

pthread_attr_getdetachstate Return Values
pthread_attr_getdetachstate() returns zero after completing successfully. Any other return
value indicates that an error occurred. If the following condition occurs, the function fails and
returns the corresponding value.

EINVAL

Description: Indicates that the value of detachstate is NULL or tattr is invalid.

Setting the Stack Guard Size
pthread_attr_setguardsize(3C) sets the guardsize of the attr object.

pthread_attr_setguardsize(3C) Syntax
#include <pthread.h>

int pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize);

The guardsize attribute is provided to the application for two reasons:

■ Overflow protection can potentially result in wasted system resources. When your
application creates a large number of threads, and you know that the threads will never
overflow their stack, you can turn off guard areas. By turning off guard areas, you can
conserve system resources.

■ When threads allocate large data structures on stack, a large guard area might be needed to
detect stack overflow.

The guardsize argument provides protection against overflow of the stack pointer. If a thread's
stack is created with guard protection, the implementation allocates extra memory at the
overflow end of the stack. This extra memory acts as a buffer against stack overflow of the stack
pointer. If an application overflows into this buffer an error results, possibly in a SIGSEGV signal
being delivered to the thread.

If guardsize is zero, a guard area is not provided for threads that are created with attr. If
guardsize is greater than zero, a guard area of at least size guardsize bytes is provided for each
thread created with attr. By default, a thread has an implementation-defined, nonzero guard
area.

Attribute Object

Multithreaded Programming Guide • October 2012 (Beta)56

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-attr-setguardsize-3c

A conforming implementation is permitted to round up the value contained in guardsize to a
multiple of the configurable system variable PAGESIZE . See PAGESIZE in sys/mman.h. If an
implementation rounds up the value of guardsize to a multiple of PAGESIZE, a call to
pthread_attr_getguardsize() that specifies attr stores, in guardsize, the guard size specified
in the previous call to pthread_attr_setguardsize().

pthread_attr_setguardsize Return Values
pthread_attr_setguardsize() fails if:

EINVAL

Description: The argument attr is invalid, the argument guardsize is invalid, or the argument
guardsize contains an invalid value.

Getting the Stack Guard Size
pthread_attr_getguardsize(3C) gets the guardsize of the attr object.

pthread_attr_getguardsize Syntax
#include <pthread.h>

int pthread_attr_getguardsize(const pthread_attr_t *restrict attr,
size_t *restrict guardsize);

A conforming implementation is permitted to round up the value contained in guardsize to a
multiple of the configurable system variable PAGESIZE . See PAGESIZE in sys/mman.h. If an
implementation rounds up the value of guardsize to a multiple of PAGESIZE, a call to
pthread_attr_getguardsize() that specifies attr stores, in guardsize, the guard size specified
in the previous call to pthread_attr_setguardsize().

pthread_attr_getguardsize Return Values
pthread_attr_getguardsize() fails if:

EINVAL

Description: The argument attr is invalid, the argument guardsize is invalid, or the argument
guardsize contains an invalid value.

Setting the Scope
Use pthread_attr_setscope(3C) to establish the contention scope of a thread, either
PTHREAD_SCOPE_SYSTEM or PTHREAD_SCOPE_PROCESS. With PTHREAD_SCOPE_SYSTEM, this
thread contends with all threads in the system. With PTHREAD_SCOPE_PROCESS , this thread
contends with other threads in the process.

Attribute Object

Chapter 3 • Thread Attributes 57

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-attr-getguardsize-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-attr-setscope-3c

Note – Both thread types are accessible only within a given process.

pthread_attr_setscope Syntax
int pthread_attr_setscope(pthread_attr_t *tattr,int scope);

#include <pthread.h>

pthread_attr_t tattr;
int ret;

/* bound thread */

ret = pthread_attr_setscope(&tattr, PTHREAD_SCOPE_SYSTEM);

/* unbound thread */

ret = pthread_attr_setscope(&tattr, PTHREAD_SCOPE_PROCESS);

This example uses three function calls: a call to initialize the attributes, a call to set any
variations from the default attributes, and a call to create the pthreads.

#include <pthread.h>

pthread_attr_t attr;
pthread_t tid;
void *start_routine(void *);

void *arg;
int ret;

/* initialized with default attributes */

ret = pthread_attr_init (&tattr);

ret = pthread_attr_setscope(&tattr, PTHREAD_SCOPE_SYSTEM);

ret = pthread_create (&tid, &tattr, start_routine, arg);

pthread_attr_setscope Return Values
pthread_attr_setscope() returns zero after completing successfully. Any other return value
indicates that an error occurred. If the following conditions occur, the function fails and returns
the corresponding value.

EINVAL

Description: An attempt was made to set tattr to a value that is not valid.

Getting the Scope
Use pthread_attr_getscope(3C) to retrieve the thread scope.

pthread_attr_getscope Syntax
int pthread_attr_getscope(pthread_attr_t *restrict tattr, int *restrict scope);

Attribute Object

Multithreaded Programming Guide • October 2012 (Beta)58

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-attr-getscope-3c

#include <pthread.h>

pthread_attr_t tattr;
int scope;
int ret;

/* get scope of thread */

ret = pthread_attr_getscope(&tattr, &scope);

pthread_attr_getscope Return Values
pthread_attr_getscope() returns zero after completing successfully. Any other return value
indicates that an error occurred. If the following condition occurs, the function fails and returns
the corresponding value.

EINVAL

Description: The value of scope is NULL or tattr is invalid.

Setting the Thread Concurrency Level
pthread_setconcurrency(3C) is provided for standards compliance.
pthread_setconcurrency() is used by an application to inform the system of the application's
desired concurrency level. For the threads implementation introduced in the Solaris 9 release,
this interface has no effect, all runnable threads are attached to LWPs.

pthread_setconcurrency Syntax
#include <pthread.h>

int pthread_setconcurrency(int new_level);

pthread_setconcurrency Return Values
pthread_setconcurrency() fails if the following conditions occur:

EINVAL

Description: The value specified by new_level is negative.

EAGAIN

Description: The value specified by new_level would cause a system resource to be exceeded.

Getting the Thread Concurrency Level
pthread_getconcurrency(3C) returns the value set by a previous call to
pthread_setconcurrency().

Attribute Object

Chapter 3 • Thread Attributes 59

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-setconcurrency-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-getconcurrency-3c

pthread_getconcurrency Syntax
#include <pthread.h>

int pthread_getconcurrency(void);

If the pthread_setconcurrency() function was not previously called,
pthread_getconcurrency() returns zero.

pthread_getconcurrency Return Values
pthread_getconcurrency() always returns the concurrency level set by a previous call to
pthread_setconcurrency() . If pthread_setconcurrency() has never been called,
pthread_getconcurrency() returns zero.

Setting the Scheduling Policy
Use pthread_attr_setschedpolicy(3C) to set the scheduling policy. The POSIX standard
specifies the scheduling policy values of SCHED_FIFO (first-in-first-out), SCHED_RR
(round-robin), or SCHED_OTHER (an implementation-defined method). In the Oracle Solaris OS,
SCHED_OTHER threads run in the traditional time-sharing (TS) scheduling class.

pthread_attr_setschedpolicy(3C) Syntax
int pthread_attr_setschedpolicy(pthread_attr_t *tattr, int policy);

#include <pthread.h>

pthread_attr_t tattr;
int policy;
int ret;

/* set the scheduling policy to SCHED_OTHER */

ret = pthread_attr_setschedpolicy(&tattr, SCHED_OTHER);

■ SCHED_FIFO

A First-In-First-Out thread runs in the real-time (RT) scheduling class and require the
calling process to be privileged. Such a thread, if not preempted by a higher priority thread,
executes until it yields or blocks.

■ SCHED_RR

Round-Robin threads whose contention scope is system (PTHREAD_SCOPE_SYSTEM) are in
real-time (RT) scheduling class if the calling process has an effective user id of 0. These
threads, if not preempted by a higher priority thread, and if the threads do not yield or
block, will execute for the system-determined time period. Use SCHED_RR for threads that
have a contention scope of process (PTHREAD_SCOPE_PROCESS) is based on the TS scheduling
class. Additionally, the calling process for these threads does not have an effective userid of
0.

Attribute Object

Multithreaded Programming Guide • October 2012 (Beta)60

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-attr-setschedpolicy-3c

A Round-Robin thread runs in the real-time (RT) scheduling class and requires the calling
process to be privileged. If a round robin thread is not preempted by a higher priority
thread, and does not yield or block, it will execute for a system-determined time period. The
thread is then forced to yield to another real time thread of equal priority.

SCHED_FIFO and SCHED_RR are optional in the POSIX standard, and are supported for real-time
threads only.

For a discussion of scheduling, see the section “Thread Scheduling” on page 23.

pthread_attr_setschedpolicy Return Values
pthread_attr_setschedpolicy() returns zero after completing successfully. Any other return
value indicates that an error occurred. When either of the following conditions occurs, the
function fails and returns the corresponding value.

EINVAL

Description: An attempt was made to set tattr to a value that is not valid.

ENOTSUP

Description: An attempt was made to set the attribute to an unsupported value.

Getting the Scheduling Policy
Use pthread_attr_getschedpolicy(3C) to retrieve the scheduling policy.

pthread_attr_getschedpolicy Syntax
int pthread_attr_getschedpolicy(pthread_attr_t *restrict tattr,

int *restrict policy);

#include <pthread.h>

pthread_attr_t tattr;
int policy;
int ret;

/* get scheduling policy of thread */

ret = pthread_attr_getschedpolicy (&tattr, &policy);

pthread_attr_getschedpolicy Return Values
pthread_attr_getschedpolicy() returns zero after completing successfully. Any other return
value indicates that an error occurred. If the following condition occurs, the function fails and
returns the corresponding value.

EINVAL

Description: The parameter policy is NULL or tattr is invalid.

Attribute Object

Chapter 3 • Thread Attributes 61

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-attr-getschedpolicy-3c

Setting the Inherited Scheduling Policy
Use pthread_attr_setinheritsched(3C) to set the inherited scheduling policy.

pthread_attr_setinheritsched Syntax
int pthread_attr_setinheritsched(pthread_attr_t *tattr, int inheritsched);

#include <pthread.h>

pthread_attr_t tattr;
int inheritsched;
int ret;

/* use creating thread’s scheduling policy and priority*/

ret = pthread_attr_setinheritsched(&tattr, PTHREAD_INHERIT_SCHED);

An inheritsched value of PTHREAD_INHERIT_SCHED means that the scheduling policy and
priority of the creating thread are to be used for the created thread. The scheduling policy and
priority in the attribute structure are to be ignored. An inheritsched value of
PTHREAD_EXPLICIT_SCHED means that the scheduling policy and priority from the attribute
structure are to be used for the created thread. The caller must have sufficient privilege for
pthread_create() to succeed in this case.

pthread_attr_setinheritsched Return Values
pthread_attr_setinheritsched() returns zero after completing successfully. Any other
return value indicates that an error occurred. When either of the following conditions occurs,
the function fails and returns the corresponding value.

EINVAL

Description: An attempt was made to set tattr to a value that is not valid.

Getting the Inherited Scheduling Policy
pthread_attr_getinheritsched(3C) returns the inheritsched attribute contained in the
attribute structure.

pthread_attr_getinheritsched Syntax
int pthread_attr_getinheritsched(pthread_attr_t *restrict tattr

int *restrict inheritsched);

#include <pthread.h>

pthread_attr_t tattr;
int inheritsched;
int ret;

ret = pthread_attr_getinheritsched (&tattr, &inheritsched);

Attribute Object

Multithreaded Programming Guide • October 2012 (Beta)62

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-attr-setinheritsched-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-attr-getinheritsched-3c

pthread_attr_getinheritsched Return Values
pthread_attr_getinheritsched() returns zero after completing successfully. Any other
return value indicates that an error occurred. If the following condition occurs, the function
fails and returns the corresponding value.

EINVAL

Description: The parameter inherit is NULL or tattr is invalid.

Setting the Scheduling Parameters
pthread_attr_setschedparam(3C) sets the scheduling parameters.

pthread_attr_setschedparam Syntax
int pthread_attr_setschedparam(pthread_attr_t *restrict tattr,

const struct sched_param *restrict param);

#include <pthread.h>

pthread_attr_t tattr;
int ret;
int newprio;
sched_param param;

newprio = 30;

/* set the priority; others are unchanged */

param.sched_priority = newprio;
/* set the new scheduling param */

ret = pthread_attr_setschedparam (&tattr, ¶m);

Scheduling parameters are defined in the param structure. Only the priority parameter is
supported.

pthread_attr_setschedparam Return Values
pthread_attr_setschedparam() returns zero after completing successfully. Any other return
value indicates that an error occurred. If the following conditions occur, the function fails and
returns the corresponding value.

EINVAL

Description: The value of param is NULL or tattr is invalid.

You can manage pthreads priority in either of two ways:

■ You can set the priority attribute before creating a child thread
■ You can change the priority of the parent thread and then change the priority back

Attribute Object

Chapter 3 • Thread Attributes 63

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-attr-setschedparam-3c

Getting the Scheduling Parameters
pthread_attr_getschedparam(3C) returns the scheduling parameters defined by
pthread_attr_setschedparam().

pthread_attr_getschedparam Syntax
int pthread_attr_getschedparam(pthread_attr_t *restrict tattr,

const struct sched_param *restrict param);

#include <pthread.h>

pthread_attr_t attr;
struct sched_param param;

int ret;
/* get the existing scheduling param */

ret = pthread_attr_getschedparam (&tattr, ¶m);

Creating a Thread With a Specified Priority

You can set the priority attribute before creating the thread. The child thread is created with the
new priority that is specified in the sched_param structure. This structure also contains other
scheduling information.

Example of Creating a Prioritized Thread

Example 3–2 shows an example of creating a child thread with a priority that is different from
its parent's priority.

EXAMPLE 3–2 Creating a Prioritized Thread

#include <pthread.h>

#include <sched.h>

pthread_attr_t tattr;
pthread_t tid;
int ret;
int newprio = 20;

sched_param param;

/* initialized with default attributes */

ret = pthread_attr_init (&tattr);

/* safe to get existing scheduling param */

ret = pthread_attr_getschedparam (&tattr, ¶m);

/* set the priority; others are unchanged */

param.sched_priority = newprio;

/* setting the new scheduling param */

ret = pthread_attr_setschedparam (&tattr, ¶m);

/* specify explicit scheduling */

Attribute Object

Multithreaded Programming Guide • October 2012 (Beta)64

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-attr-getschedparam-3c

EXAMPLE 3–2 Creating a Prioritized Thread (Continued)

ret = pthread_attr_setinheritsched (&tattr, PTHREAD_EXPLICIT_SCHED);

/* with new priority specified */

ret = pthread_create (&tid, &tattr, func, arg);

pthread_attr_getschedparam Return Values
pthread_attr_getschedparam() returns zero after completing successfully. Any other return
value indicates that an error occurred. If the following condition occurs, the function fails and
returns the corresponding value.

EINVAL

Description: The value of param is NULL or tattr is invalid.

About Stacks
Typically, thread stacks begin on page boundaries. Any specified size is rounded up to the next
page boundary. A page with no access permission is appended to the overflow end of the stack.
Most stack overflows result in sending a SIGSEGV signal to the offending thread. Thread stacks
allocated by the caller are used without modification.

When a stack is specified, the thread should also be created with PTHREAD_CREATE_JOINABLE.
That stack cannot be freed until the pthread_join(3C) call for that thread has returned. The
thread's stack cannot be freed until the thread has terminated. The only reliable way to know if
such a thread has terminated is through pthread_join(3C).

Allocating Stack Space for Threads
Generally, you do not need to allocate stack space for threads. The system allocates 1 megabyte
(for 32 bit systems) or 2 megabytes (for 64 bit systems) of virtual memory for each thread's stack
with no swap space reserved. The system uses the MAP_NORESERVE option of mmap() to make the
allocations.

Each thread stack created by the system has a red zone. The system creates the red zone by
appending a page to the overflow end of a stack to catch stack overflows. This page is invalid and
causes a memory fault if accessed. Red zones are appended to all automatically allocated stacks
whether the size is specified by the application or the default size is used.

Note – Runtime stack requirements vary for library calls and dynamic linking. You should be
absolutely certain that the specified stack satisfies the runtime requirements for library calls and
dynamic linking.

Attribute Object

Chapter 3 • Thread Attributes 65

Very few occasions exist when specifying a stack, its size, or both, is appropriate. Even an expert
has a difficult time knowing whether the right size was specified. Even a program that is
compliant with ABI standards cannot determine its stack size statically. The stack size is
dependent on the needs of the particular runtime environment in execution.

Building Your Own Stack
When you specify the thread stack size, you must account for the allocations needed by the
invoked function and by each subsequent function called. The accounting should include
calling sequence needs, local variables, and information structures.

Occasionally, you want a stack that differs a bit from the default stack. An obvious situation is
when the thread needs more than the default stack size. A less obvious situation is when the
default stack is too large. You might be creating thousands of threads with insufficient virtual
memory to handle the gigabytes of stack space required by thousands of default stacks.

The limits on the maximum size of a stack are often obvious, but what about the limits on its
minimum size? Sufficient stack space must exist to handle all stack frames that are pushed onto
the stack, along with their local variables, and so on.

To get the absolute minimum limit on stack size, call the macro PTHREAD_STACK_MIN. The
PTHREAD_STACK_MIN macro returns the amount of required stack space for a thread that
executes a NULL procedure. Useful threads need more than the minimum stack size, so be very
careful when reducing the stack size.

Setting the Stack Size
pthread_attr_setstacksize(3C) sets the thread stack size.

pthread_attr_setstacksize Syntax
int pthread_attr_setstacksize(pthread_attr_t *tattr, size_t size);

#include <pthread.h>

#include <limits.h>

pthread_attr_t tattr;
size_t size;
int ret;
size = (PTHREAD_STACK_MIN + 0x4000);

/* setting a new size */

ret = pthread_attr_setstacksize(&tattr, size);

The size attribute defines the size of the stack (in bytes) that the system allocates. The size should
not be less than the system-defined minimum stack size. See “About Stacks” on page 65 for
more information.

size contains the number of bytes for the stack that the new thread uses. If size is zero, a default
size is used. In most cases, a zero value works best.

Attribute Object

Multithreaded Programming Guide • October 2012 (Beta)66

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-attr-setstacksize-3c

PTHREAD_STACK_MIN is the amount of stack space that is required to start a thread. This stack
space does not take into consideration the threads routine requirements that are needed to
execute application code.

EXAMPLE 3–3 Example of Setting Stack Size

#include <pthread.h>

#include <limits.h>

pthread_attr_t tattr;
pthread_t tid;
int ret;

size_t size = PTHREAD_STACK_MIN + 0x4000;

/* initialized with default attributes */

ret = pthread_attr_init(&tattr);

/* setting the size of the stack also */

ret = pthread_attr_setstacksize(&tattr, size);

/* only size specified in tattr*/

ret = pthread_create(&tid, &tattr, start_routine, arg);

pthread_attr_setstacksize Return Values
pthread_attr_setstacksize() returns zero after completing successfully. Any other return
value indicates that an error occurred. If the following condition occurs, the function fails and
returns the corresponding value.

EINVAL

Description: The value of size is less than PTHREAD_STACK_MIN, or exceeds a system-imposed
limit, or tattr is not valid.

Getting the Stack Size
pthread_attr_getstacksize(3C) returns the stack size set by
pthread_attr_setstacksize().

pthread_attr_getstacksize Syntax
int pthread_attr_getstacksize(pthread_attr_t *restrict tattr, size_t *restrict size);

#include <pthread.h>

pthread_attr_t tattr;
size_t size;
int ret;
/* getting the stack size */

ret = pthread_attr_getstacksize(&tattr, &size);

Attribute Object

Chapter 3 • Thread Attributes 67

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-attr-getstacksize-3c

pthread_attr_getstacksize Return Values
pthread_attr_getstacksize() returns zero after completing successfully. Any other return
value indicates that an error occurred. If the following condition occurs, the function fails and
returns the corresponding value.

EINVAL

Description: tattr or size is not valid.

Setting the Stack Address and Size
pthread_attr_setstack(3C) sets the thread stack address and size.

pthread_attr_setstack(3C) Syntax
int pthread_attr_setstack(pthread_attr_t *tattr,void *stackaddr, size_t stacksize);

#include <pthread.h>

#include <limits.h>

pthread_attr_t tattr;
void *base;
size_t size;
int ret;
base = (void *) malloc(PTHREAD_STACK_MIN + 0x4000);

/* setting a new address and size */

ret = pthread_attr_setstack(&tattr, base,PTHREAD_STACK_MIN + 0x4000);

The stackaddr attribute defines the base (low address) of the thread's stack. The stacksize
attribute specifies the size of the stack. If stackaddr is set to non-null, rather than the NULL
default, the system initializes the stack at that address, assuming the size to be stacksize.

base contains the address for the stack that the new thread uses. If base is NULL, then
pthread_create(3C) allocates a stack for the new thread with at least stacksize bytes.

pthread_attr_setstack(3C) Return Values
pthread_attr_setstack() returns zero after completing successfully. Any other return value
indicates that an error occurred. If the following condition occurs, the function fails and returns
the corresponding value.

EINVAL

Description: The value of base or tattr is incorrect. The value of stacksize is less than
PTHREAD_STACK_MIN.

The following example shows how to create a thread with a custom stack address and size.

#include <pthread.h>

pthread_attr_t tattr;

Attribute Object

Multithreaded Programming Guide • October 2012 (Beta)68

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-attr-setstack-3c

pthread_t tid;
int ret;
void *stackbase;
size_t size;

/* initialized with default attributes */

ret = pthread_attr_init(&tattr);

/* setting the base address and size of the stack */

ret = pthread_attr_setstack(&tattr, stackbase,size);

/* address and size specified */

ret = pthread_create(&tid, &tattr, func, arg);

Getting the Stack Address and Size
pthread_attr_getstack(3C) returns the thread stack address and size set by
pthread_attr_setstack().

pthread_attr_getstack Syntax
int pthread_attr_getstack(pthread_attr_t *restrict tattr,

void **restrict stackaddr, size_t *restrict stacksize);

#include <pthread.h>

pthread_attr_t tattr;
void *base;
size_t size;
int ret;

/* getting a stack address and size */

ret = pthread_attr_getstack (&tattr
, &base, &size);

pthread_attr_getstack Return Values
pthread_attr_getstack() returns zero after completing successfully. Any other return value
indicates that an error occurred. If the following condition occurs, the function fails and returns
the corresponding value.

EINVAL

Description: The value of tattr is incorrect.

Attribute Object

Chapter 3 • Thread Attributes 69

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-attr-getstack-3c

70

Programming with Synchronization Objects

This chapter describes the synchronization types that are available with threads. The chapter
also discusses when and how to use synchronization.

■ “Mutual Exclusion Lock Attributes” on page 72
■ “Using Mutual Exclusion Locks” on page 85
■ “Using Spin Locks” on page 98
■ “Condition Variable Attributes” on page 102
■ “Using Condition Variables” on page 107
■ “Synchronization With Semaphores” on page 119
■ “Read-Write Lock Attributes” on page 126
■ “Using Read-Write Locks” on page 129
■ “Using Barrier Synchronization” on page 137
■ “Synchronization Across Process Boundaries” on page 142
■ “Comparing Primitives” on page 143

Synchronization objects are variables in memory that you access just like data. Threads in
different processes can communicate with each other through synchronization objects that are
placed in threads-controlled shared memory. The threads can communicate with each other
even though the threads in different processes are generally invisible to each other.

Synchronization objects can also be placed in files. The synchronization objects can have
lifetimes beyond the life of the creating process.

The available types of synchronization objects are

■ Mutex locks
■ Condition variables
■ Read-Write locks
■ Semaphores

Situations that can benefit from the use of synchronization include the following:

■ Synchronization is the only way to ensure consistency of shared data.

4C H A P T E R 4

71

■ Threads in two or more processes can use a single synchronization object jointly. Because
reinitializing a synchronization object sets the object to the unlocked state, the
synchronization object should be initialized by only one of the cooperating processes.

■ Synchronization can ensure the safety of mutable data.
■ A process can map a file and direct a thread in this process get a record's lock. Once the lock

is acquired, any thread in any process mapping the file attempting to acquire the lock is
blocked until the lock is released.

■ Accessing a single primitive variable, such as an integer, can use more than one memory
cycle for a single memory load. More than one memory cycle is used where the integer is not
aligned to the bus data width or is larger than the data width. While integer misalignment
cannot happen on the SPARC architecture, portable programs cannot rely on the proper
alignment.

Note – On 32-bit architectures, a long long is not atomic. (An atomic operation cannot be
divided into smaller operations.) A long long is read and written as two 32-bit quantities. The
types int, char , float, and pointers are atomic on SPARC architecture machines and Intel
Architecture machines.

Mutual Exclusion Lock Attributes
Use mutual exclusion locks (mutexes) to serialize thread execution. Mutual exclusion locks
synchronize threads, usually by ensuring that only one thread at a time executes a critical
section of code. Mutex locks can also preserve single-threaded code.

To change the default mutex attributes, you can declare and initialize an attribute object. Often,
the mutex attributes are set in one place at the beginning of the application so the attributes can
be located quickly and modified easily. Table 4–1 lists the functions that manipulate mutex
attributes.

TABLE 4–1 Mutex Attributes Routines

Operation Related Function Description

Initialize a mutex attribute object “pthread_mutexattr_init Syntax” on page 73

Destroy a mutex attribute object “pthread_mutexattr_destroy Syntax” on page 75

Set the scope of a mutex “pthread_mutexattr_setpshared Syntax” on page 75

Get the scope of a mutex “pthread_mutexattr_getpshared Syntax” on page 76

Set the mutex type attribute “pthread_mutexattr_settype Syntax” on page 76

Get the mutex type attribute “pthread_mutexattr_gettype Syntax” on page 78

Mutual Exclusion Lock Attributes

Multithreaded Programming Guide • October 2012 (Beta)72

TABLE 4–1 Mutex Attributes Routines (Continued)
Operation Related Function Description

Set mutex attribute's protocol “pthread_mutexattr_setprotocol Syntax” on page 78

Get mutex attribute's protocol “pthread_mutexattr_getprotocol Syntax” on page 80

Set mutex attribute's priority ceiling “pthread_mutexattr_setprioceiling Syntax” on page 80

Get mutex attribute's priority ceiling “pthread_mutexattr_getprioceiling Syntax” on page 81

Set mutex's priority ceiling “pthread_mutex_setprioceiling Syntax” on page 82

Get mutex's priority ceiling “pthread_mutex_getprioceiling Syntax” on page 82

Set mutex's robust attribute “pthread_mutexattr_setrobust_np Syntax” on page 83

Get mutex's robust attribute “pthread_mutexattr_getrobust_np Syntax” on page 85

Initializing a Mutex Attribute Object
Use pthread_mutexattr_init(3C) to initialize attributes that are associated with the mutex
object to their default values. Storage for each attribute object is allocated by the threads system
during execution.

pthread_mutexattr_init Syntax
int pthread_mutexattr_init(pthread_mutexattr_t *mattr);

#include <pthread.h>

pthread_mutexattr_t mattr;
int ret;

/* initialize an attribute to default value */

ret = pthread_mutexattr_init(&mattr);

mattr is an opaque type that contains a system-allocated attribute object. See Table 4–2 for
information about the attributes in the mattr object.

Before a mutex attribute object can be reinitialized, the object must first be destroyed by a call to
pthread_mutexattr_destroy(3C). The pthread_mutexattr_init() call results in the
allocation of an opaque object. If the object is not destroyed, a memory leak results.

Mutual Exclusion Lock Attributes

Chapter 4 • Programming with Synchronization Objects 73

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutexattr-init-3c

TABLE 4–2 Default Attribute Values for mattr

Attribute Value Result

pshared PTHREAD_PROCESS_PRIVATE The initialized mutex can be used
within a process. Only those
threads created by the same
process can operate on the
mutex.

type PTHREAD_MUTEX_DEFAULT The Oracle Solaris Pthreads
implementation maps
PTHREAD_MUTEX_DEFAULT to
PTHREAD_MUTEX_NORMAL, which
does not detect deadlock.

protocol PTHREAD_PRIO_NONE Thread priority and scheduling
are not affected by the priority of
the mutex owned by the thread.

prioceiling – The prioceiling value is drawn
from the existing priority range
for the SCHED_FIFO policy, as
returned by the
sched_get_priority_min() and
sched_get_priority_max()

functions. This priority range is
determined by the Oracle Solaris
version on which the mutex is
created.

robustness PTHREAD_MUTEX_STALLED_NP When the owner of a mutex dies,
all future calls to
pthread_mutex_lock() for this
mutex will be blocked from
progress.

pthread_mutexattr_init Return Values
pthread_mutexattr_init() returns zero after completing successfully. Any other return value
indicates that an error occurred. If either of the following conditions occurs, the function fails
and returns the corresponding value.

ENOMEM

Description: Insufficient memory exists to initialize the mutex attribute object.

Mutual Exclusion Lock Attributes

Multithreaded Programming Guide • October 2012 (Beta)74

Destroying a Mutex Attribute Object
pthread_mutexattr_destroy(3C) deallocates the storage space used to maintain the attribute
object created by pthread_mutexattr_init().

pthread_mutexattr_destroy Syntax
int pthread_mutexattr_destroy(pthread_mutexattr_t *mattr)

#include <pthread.h>

pthread_mutexattr_t mattr;
int ret;
/* destroy an attribute */

ret = pthread_mutexattr_destroy(&mattr);

pthread_mutexattr_destroy Return Values
pthread_mutexattr_destroy() returns zero after completing successfully. Any other return
value indicates that an error occurred. If the following condition occurs, the function fails and
returns the corresponding value.

EINVAL

Description: The value specified by mattr is invalid.

Setting the Scope of a Mutex
pthread_mutexattr_setpshared(3C) sets the scope of the mutex variable.

pthread_mutexattr_setpshared Syntax
int pthread_mutexattr_setpshared(pthread_mutexattr_t *restrict mattr,

int *restrict pshared);

#include <pthread.h>

pthread_mutexattr_t mattr;
int ret;
ret = pthread_mutexattr_init(&mattr);
/* * resetting to its default value: private */

ret = pthread_mutexattr_setpshared(&mattr, PTHREAD_PROCESS_PRIVATE);

The scope of a mutex variable can be either process private (intraprocess) or system wide
(interprocess). To share the mutex among threads from more than one process, create the
mutex in shared memory with the pshared attribute set to PTHREAD_PROCESS_SHARED .

If the mutex pshared attribute is set to PTHREAD_PROCESS_PRIVATE , only those threads created
by the same process can operate on the mutex.

Mutual Exclusion Lock Attributes

Chapter 4 • Programming with Synchronization Objects 75

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutexattr-destroy-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutexattr-setpshared-3c

pthread_mutexattr_setpshared Return Values
pthread_mutexattr_setpshared() returns zero after completing successfully. Any other
return value indicates that an error occurred. If the following condition occurs, the function
fails and returns the corresponding value.

EINVAL

Description: The value specified by mattr is invalid.

Getting the Scope of a Mutex
pthread_mutexattr_getpshared(3C) returns the scope of the mutex variable defined by
pthread_mutexattr_setpshared().

pthread_mutexattr_getpshared Syntax
int pthread_mutexattr_getpshared(pthread_mutexattr_t *restrict mattr,

int *restrict pshared);

#include <pthread.h>

pthread_mutexattr_t mattr;
int pshared, ret;
/* get pshared of mutex */

ret = pthread_mutexattr_getpshared(&mattr, &pshared);

Get the current value of pshared for the attribute object mattr. The value is either
PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE.

pthread_mutexattr_getpshared Return Values
pthread_mutexattr_getpshared() returns zero after completing successfully. Any other
return value indicates that an error occurred. If the following condition occurs, the function
fails and returns the corresponding value.

EINVAL

Description: The value specified by mattr is invalid.

Setting the Mutex Type Attribute
pthread_mutexattr_settype(3C) sets the mutex type attribute.

pthread_mutexattr_settype Syntax
#include <pthread.h>

int pthread_mutexattr_settype(pthread_mutexattr_t *attr , int type);

Mutual Exclusion Lock Attributes

Multithreaded Programming Guide • October 2012 (Beta)76

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutexattr-getpshared-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutexattr-settype-3c

The default value of the type attribute is PTHREAD_MUTEX_DEFAULT.

The type argument specifies the type of mutex. The following list describes the valid mutex
types:

PTHREAD_MUTEX_NORMAL

Description: This type of mutex does not detect deadlock. A thread attempting to relock this
mutex without first unlocking the mutex deadlocks. Attempting to unlock a mutex locked
by a different thread results in undefined behavior. Attempting to unlock an unlocked
mutex results in undefined behavior.

PTHREAD_MUTEX_ERRORCHECK

Description: This type of mutex provides error checking. A thread attempting to relock this
mutex without first unlocking the mutex returns an error. A thread attempting to unlock a
mutex that another thread has locked returns an error. A thread attempting to unlock an
unlocked mutex returns an error.

PTHREAD_MUTEX_RECURSIVE

Description: A thread attempting to relock this mutex without first unlocking the mutex
succeeds in locking the mutex. The relocking deadlock that can occur with mutexes of type
PTHREAD_MUTEX_NORMAL cannot occur with this type of mutex. Multiple locks of this mutex
require the same number of unlocks to release the mutex before another thread can acquire
the mutex. A thread attempting to unlock a mutex that another thread has locked returns an
error. A thread attempting to unlock an unlocked mutex returns an error.

PTHREAD_MUTEX_DEFAULT

Description: An implementation is allowed to map this attribute to one of the other mutex
types. The Oracle Solaris implementation maps this attribute to PTHREAD_PROCESS_NORMAL.

pthread_mutexattr_settype Return Values
If successful, the pthread_mutexattr_settype function returns zero. Otherwise, an error
number is returned to indicate the error.

EINVAL

Description: The value type or attr is invalid.

Getting the Mutex Type Attribute
pthread_mutexattr_gettype(3C) gets the mutex type attribute set by
pthread_mutexattr_settype().

Mutual Exclusion Lock Attributes

Chapter 4 • Programming with Synchronization Objects 77

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutexattr-gettype-3c

pthread_mutexattr_gettype Syntax
#include <pthread.h>

int pthread_mutexattr_gettype(pthread_mutexattr_t *restrict attr ,

int *restrict type);

The default value of the type attribute is PTHREAD_MUTEX_DEFAULT.

The type argument specifies the type of mutex. Valid mutex types include

■ PTHREAD_MUTEX_NORMAL

■ PTHREAD_MUTEX_ERRORCHECK

■ PTHREAD_MUTEX_RECURSIVE

■ PTHREAD_MUTEX_DEFAULT

For a description of each type, see “pthread_mutexattr_settype Syntax” on page 76.

pthread_mutexattr_gettype Return Values
On successful completion, pthread_mutexattr_gettype() returns 0. Any other return value
indicates that an error occurred.

EINVAL

Description: The value specified by type is invalid.

Setting the Mutex Attribute's Protocol
pthread_mutexattr_setprotocol(3C) sets the protocol attribute of a mutex attribute object.

pthread_mutexattr_setprotocol Syntax
#include <pthread.h>

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,
int protocol);

attr points to a mutex attribute object created by an earlier call to pthread_mutexattr_init().

protocol defines the protocol that is applied to the mutex attribute object.

The value of protocol that is defined in pthread.h can be one of the following values:
PTHREAD_PRIO_NONE , PTHREAD_PRIO_INHERIT, or PTHREAD_PRIO_PROTECT .

■ PTHREAD_PRIO_NONE

A thread's priority and scheduling are not affected by the mutex ownership.
■ PTHREAD_PRIO_INHERIT

Mutual Exclusion Lock Attributes

Multithreaded Programming Guide • October 2012 (Beta)78

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutexattr-setprotocol-3c

This protocol value affects an owning thread's priority and scheduling. When
higher-priority threads block on one or more mutexes owned by thrd1 where those
mutexes are initialized with PTHREAD_PRIO_INHERIT, thrd1 runs with the higher of its
priority or the highest priority of any thread waiting on any of the mutexes owned by thrd1.

If thrd1 blocks on a mutex owned by another thread, thrd3, the same priority inheritance
effect recursively propagates to thrd3.

Use PTHREAD_PRIO_INHERIT to avoid priority inversion. Priority inversion occurs when a
low-priority thread holds a lock that a higher-priority thread requires. The higher-priority
thread cannot continue until the lower-priority thread releases the lock.

Without priority inheritance, the lower priority thread might not be scheduled to run for a
long time, causing the higher priority thread to block equally long. Priority inheritance
temporarily raises the priority of the lower priority thread so it will be scheduled to run
quickly and release the lock, allowing the higher priority thread to acquire it. The
lower-priority thread reverts to its lower priority when it releases the lock.

■ PTHREAD_PRIO_PROTECT

This protocol value affects the priority and scheduling of a thread, such as thrd2, when the
thread owns one or more mutexes that are initialized with PTHREAD_PRIO_PROTECT. thrd2
runs with the higher of its priority or the highest-priority ceiling of all mutexes owned by
thrd2. Higher-priority threads blocked on any of the mutexes, owned by thrd2, have no
effect on the scheduling of thrd2.

The PTHREAD_PRIO_INHERIT and PTHREAD_PRIO_PROTECT mutex attributes are usable only by
privileged processes running in the realtime (RT) scheduling class SCHED_FIFO or SCHED_RR.

A thread can simultaneously own several mutexes initialized with a mix of
PTHREAD_PRIO_INHERIT and PTHREAD_PRIO_PROTECT. In this case, the thread executes at the
highest priority obtained by either of these protocols.

pthread_mutexattr_setprotocol Return Values
On successful completion, pthread_mutexattr_setprotocol() returns 0. Any other return
value indicates that an error occurred.

If either of the following conditions occurs, pthread_mutexattr_setprotocol() might fail
and return the corresponding value.

EINVAL

Description: The value specified by attr or protocol is not valid.

EPERM

Description: The caller does not have the privilege to perform the operation.

Mutual Exclusion Lock Attributes

Chapter 4 • Programming with Synchronization Objects 79

Getting the Mutex Attribute's Protocol
pthread_mutexattr_getprotocol(3C) gets the protocol attribute of a mutex attribute object.

pthread_mutexattr_getprotocol Syntax
#include <pthread.h>

int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *restrict attr,
int *restrict protocol);

attr points to a mutex attribute object created by an earlier call to pthread_mutexattr_init().

protocol contains one of the following protocol attributes: PTHREAD_PRIO_NONE,
PTHREAD_PRIO_INHERIT, or PTHREAD_PRIO_PROTECT which are defined by the header
<pthread.h>.

pthread_mutexattr_getprotocol Return Values
On successful completion, pthread_mutexattr_getprotocol() returns 0. Any other return
value indicates that an error occurred.

If either of the following conditions occurs, pthread_mutexattr_getprotocol() might fail
and return the corresponding value.

EINVAL

Description: The value specified by attr is NULL, or the value specified by attr or protocol is
invalid.

EPERM

Description: The caller does not have the privilege to perform the operation.

Setting the Mutex Attribute's Priority Ceiling
pthread_mutexattr_setprioceiling(3C) sets the priority ceiling attribute of a mutex
attribute object.

pthread_mutexattr_setprioceiling Syntax
#include <pthread.h>

int pthread_mutexattr_setprioceiling(pthread_mutexatt_t *attr, int prioceiling);

attr points to a mutex attribute object created by an earlier call to pthread_mutexattr_init().

prioceiling specifies the priority ceiling of initialized mutexes. The ceiling defines the minimum
priority level at which the critical section guarded by the mutex is executed. prioceiling falls
within the maximum range of priorities defined by SCHED_FIFO. To avoid priority inversion, set
prioceiling to a priority higher than or equal to the highest priority of all threads that might lock
the particular mutex.

Mutual Exclusion Lock Attributes

Multithreaded Programming Guide • October 2012 (Beta)80

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutexattr-getprotocol-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutexattr-setprioceiling-3c

pthread_mutexattr_setprioceiling Return Values
On successful completion, pthread_mutexattr_setprioceiling() returns 0. Any other
return value indicates that an error occurred.

If either of the following conditions occurs, pthread_mutexattr_setprioceiling() might fail
and return the corresponding value.

EINVAL

Description: The value specified by attr is NULL or invalid or prioceiling is invalid.

EPERM

Description: The caller does not have the privilege to perform the operation.

Getting the Mutex Attribute's Priority Ceiling
pthread_mutexattr_getprioceiling(3C) gets the priority ceiling attribute of a mutex
attribute object.

pthread_mutexattr_getprioceiling Syntax
#include <pthread.h>

int pthread_mutexattr_getprioceiling(const pthread_mutexatt_t *restrict attr,
int *restrict prioceiling);

attr designates the attribute object created by an earlier call to pthread_mutexattr_init().

pthread_mutexattr_getprioceiling() returns the priority ceiling of initialized mutexes in
prioceiling. The ceiling defines the minimum priority level at which the critical section guarded
by the mutex is executed. prioceiling falls within the maximum range of priorities defined by
SCHED_FIFO. To avoid priority inversion, set prioceiling to a priority higher than or equal to the
highest priority of all threads that might lock the particular mutex.

pthread_mutexattr_getprioceiling Return Values
On successful completion, pthread_mutexattr_getprioceiling() returns 0. Any other
return value indicates that an error occurred.

If either of the following conditions occurs, pthread_mutexattr_getprioceiling() might fail
and return the corresponding value.

EINVAL

Description: The value specified by attr is NULL.

EPERM

Description: The caller does not have the privilege to perform the operation.

Mutual Exclusion Lock Attributes

Chapter 4 • Programming with Synchronization Objects 81

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutexattr-getprioceiling-3c

Setting the Mutex's Priority Ceiling
pthread_mutexattr_setprioceiling(3C) sets the priority ceiling of a mutex.

pthread_mutex_setprioceiling Syntax
#include <pthread.h>

int pthread_mutex_setprioceiling(pthread_mutex_t *restrict mutex,
int prioceiling, int *restrict old_ceiling);

pthread_mutex_setprioceiling() changes the priority ceiling, prioceiling, of a mutex, mutex.
pthread_mutex_setprioceiling() locks a mutex if unlocked, or blocks until
pthread_mutex_setprioceiling() successfully locks the mutex, changes the priority ceiling
of the mutex and releases the mutex. The process of locking the mutex need not adhere to the
priority protect protocol.

If pthread_mutex_setprioceiling() succeeds, the previous value of the priority ceiling is
returned in old_ceiling. If pthread_mutex_setprioceiling() fails, the mutex priority ceiling
remains unchanged.

pthread_mutex_setprioceiling Return Values
On successful completion, pthread_mutex_setprioceiling() returns 0. Any other return
value indicates that an error occurred.

If any of the following conditions occurs, pthread_mutex_setprioceiling() might fail and
return the corresponding value.

EINVAL

Description: The priority requested by prioceiling is out of range.

EINVAL

Description: The mutex was not initialized with its protocol attribute having the value of
THREAD_PRIO_PROTECT.

EPERM

Description: The caller does not have the privilege to perform the operation.

Getting the Mutex's Priority Ceiling
pthread_mutexattr_getprioceiling(3C) gets the priority ceiling of a mutex.

pthread_mutex_getprioceiling Syntax
#include <pthread.h>

int pthread_mutex_getprioceiling(const pthread_mutex_t *restrict mutex,
int *restrict prioceiling);

Mutual Exclusion Lock Attributes

Multithreaded Programming Guide • October 2012 (Beta)82

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutexattr-setprioceiling-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutexattr-getprioceiling-3c

pthread_mutex_getprioceiling() returns the priority ceiling, prioceiling of a mutex.

pthread_mutex_getprioceiling Return Values
On successful completion, pthread_mutex_getprioceiling() returns 0. Any other return
value indicates that an error occurred.

If any of the following conditions occurs, pthread_mutexatt_getprioceiling() fails and
returns the corresponding value.

If any of the following conditions occurs, pthread_mutex_getprioceiling() might fail and
return the corresponding value.

EINVAL

Description: The value specified by mutex does not refer to a currently existing mutex.

EPERM

Description: The caller does not have the privilege to perform the operation.

Setting the Mutex's Robust Attribute
pthread_mutexattr_setrobust_np sets the robust attribute of a mutex attribute object.

pthread_mutexattr_setrobust_np Syntax
#include <pthread.h>

int pthread_mutexattr_setrobust_np(pthread_mutexattr_t *attr, int *robustness);

Note – pthread_mutexattr_setrobust_np() applies only if the symbol
_POSIX_THREAD_PRIO_INHERIT is defined.

In the Oracle Solaris 10 and prior releases, the PTHREAD_MUTEX_ROBUST_NP attribute can only be
applied to mutexes that are also marked with the PTHREAD_PRIO_INHERIT protocol attribute.
This restriction is lifted in subsequent Oracle Solaris releases.

attr points to the mutex attribute object previously created by a call to
pthread_mutexattr_init().

robustness defines the behavior when the owner of the mutex terminates without unlocking the
mutex, usually because its process terminated abnormally. The value of robustness that is
defined in pthread.h is PTHREAD_MUTEX_ROBUST_NP or PTHREAD_MUTEX_STALLED_NP. The
default value is PTHREAD_MUTEX_STALLED_NP .

■ PTHREAD_MUTEX_STALLED_NP

Mutual Exclusion Lock Attributes

Chapter 4 • Programming with Synchronization Objects 83

When the owner of the mutex terminates without unlocking the mutex, all subsequent calls
to pthread_mutex_lock() are blocked from progress in an unspecified manner.

■ PTHREAD_MUTEX_ROBUST_NP

When the owner of the mutex terminates without unlocking the mutex, the mutex is
unlocked. The next owner of this mutex acquires the mutex with an error return of
EOWNERDEAD.

Note – Your application must always check the return code from pthread_mutex_lock() for
a mutex initialized with the PTHREAD_MUTEX_ROBUST_NP attribute.

■ The new owner of this mutex should make the state protected by the mutex consistent.
This state might have been left inconsistent when the previous owner terminated.

■ If the new owner is able to make the state consistent, call
pthread_mutex_consistent_np() for the mutex before unlocking the mutex. This
marks the mutex as consistent and subsequent calls to pthread_mutex_lock() and
pthread_mutex_unlock() will behave in the normal manner.

■ If the new owner is not able to make the state consistent, do not call
pthread_mutex_consistent_np() for the mutex, but unlock the mutex.
All waiters are awakened and all subsequent calls to pthread_mutex_lock() fail to
acquire the mutex. The return code is ENOTRECOVERABLE. The mutex can be made
consistent by calling pthread_mutex_destroy() to uninitialize the mutex, and calling
pthread_mutex_int() to reinitialize the mutex. However, the state that was protected
by the mutex remains inconsistent and some form of application recovery is required.

If the thread that acquires the lock with EOWNERDEAD terminates without unlocking the
mutex, the next owner acquires the lock with an EOWNERDEAD return code.

pthread_mutexattr_setrobust_np Return Values
On successful completion, pthread_mutexattr_setrobust_np() returns 0. Any other return
value indicates that an error occurred.

pthread_mutexattr_setrobust_np() might fail if the following condition occurs:

EINVAL

Description: The value specified by attr or robustness is invalid.

Getting the Mutex's Robust Attribute
pthread_mutexattr_getrobust_np gets the robust attribute of a mutex attribute object.

Mutual Exclusion Lock Attributes

Multithreaded Programming Guide • October 2012 (Beta)84

pthread_mutexattr_getrobust_np Syntax
#include <pthread.h>

int pthread_mutexattr_getrobust_np(const pthread_mutexattr_t *attr, int *robustness);

attr points to the mutex attribute object previously created by a call to
pthread_mutexattr_init().

robustness is the value of the robust attribute of a mutex attribute object.

pthread_mutexattr_getrobust_np Return Values
On successful completion, pthread_mutexattr_getrobust_np() returns 0. Any other return
value indicates that an error occurred.

pthread_mutexattr_getrobust_np() might fail if the following condition occurs:

EINVAL

Description: The value specified by attr or robustness is invalid.

Using Mutual Exclusion Locks
Table 4–3 lists the functions that manipulate mutex locks.

TABLE 4–3 Routines for Mutual Exclusion Locks

Operation Related Function Description

Initialize a mutex “pthread_mutex_init Syntax” on page 86

Make mutex consistent “pthread_mutex_consistent_np Syntax” on page 87

Lock a mutex “pthread_mutex_lock Syntax” on page 88

Unlock a mutex “pthread_mutex_unlock Syntax” on page 89

Lock with a nonblocking mutex “pthread_mutex_trylock Syntax” on page 90

Lock a mutex before a specified time “pthread_mutex_timedlock() Syntax” on page 91

Lock a mutex within a specified time interval “pthread_mutex_reltimedlock_np() Syntax” on page 92

Destroy a mutex “pthread_mutex_destroy Syntax” on page 93

The default scheduling policy, SCHED_OTHER, does not specify the order in which threads can
acquire a lock. When multiple SCHED_OTHER threads are waiting for a mutex, the order of
acquisition is undefined. Under the SCHED_FIFO and SCHED_RR real-time scheduling policies,
the behavior is to unblock waiting threads in priority order.

Using Mutual Exclusion Locks

Chapter 4 • Programming with Synchronization Objects 85

Initializing a Mutex
Use pthread_mutex_init(3C) to initialize the mutex pointed at by mp to its default value or to
specify mutex attributes that have already been set with pthread_mutexattr_init() . The
default value for mattr is NULL .

pthread_mutex_init Syntax
int pthread_mutex_init(pthread_mutex_t *restrict mp,

const pthread_mutexattr_t *restrict mattr);

#include <pthread.h>

pthread_mutex_t mp = PTHREAD_MUTEX_INITIALIZER;

pthread_mutexattr_t mattr;
int ret;

/* initialize a mutex to its default value */

ret = pthread_mutex_init(&mp, NULL);

/* initialize a mutex */

ret = pthread_mutex_init(&mp, &mattr);

When the mutex is initialized, the mutex is in an unlocked state. The mutex can be in memory
that is shared between processes or in memory private to a process.

Note – For a mutex that is being initialized with the PTHREAD_MUTEX_ROBUST_NP attribute, the
mutex memory must be cleared to zero before initialization.

The effect of mattr set to NULL is the same as passing the address of a default mutex attribute
object, but without the memory overhead.

Use the macro PTHREAD_MUTEX_INITIALIZER to initialize statically defined mutexes to their
default attributes.

Do not reinitialize or destroy a mutex lock while other threads are using the mutex. Program
failure results if either action is not done correctly. If a mutex is reinitialized or destroyed, the
application must be sure the mutex is not currently in use.

pthread_mutex_init Return Values
pthread_mutex_init() returns zero after completing successfully. Any other return value
indicates that an error occurred. When any of the following conditions occurs, the function fails
and returns the corresponding value.

Using Mutual Exclusion Locks

Multithreaded Programming Guide • October 2012 (Beta)86

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutex-init-3c

EBUSY

Description: The implementation has detected an attempt to reinitialize the object referenced
by mp, a previously initialized but not yet destroyed mutex.

EINVAL

Description: The mattr attribute value is invalid. The mutex has not been modified.

EFAULT

Description: The address for the mutex pointed at by mp is invalid.

Making a Mutex Consistent
If the owner of a robust mutex terminates without unlocking the mutex, the mutex is unlocked
and marked inconsistent. The next owner acquires the lock with an EOWNERDEAD return code.

pthread_mutex_consistent_np() makes the mutex object, mutex, consistent after the death of
its owner.

pthread_mutex_consistent_np Syntax
#include <pthread.h>

int pthread_mutex_consistent_np(pthread_mutex_t *mutex);

Call pthread_mutex_lock() to acquire the inconsistent mutex. The EOWNWERDEAD return value
indicates an inconsistent mutex.

Call pthread_mutex_consistent_np() while holding the mutex acquired by a previous call to
pthread_mutex_lock().

The critical section protected by the mutex might have been left in an inconsistent state by a
failed owner. In this case, make the mutex consistent only if you can make the critical section
protected by the mutex consistent.

Calls to pthread_mutex_lock(), pthread_mutex_unlock() , and pthread_mutex_trylock()

for a consistent mutex behave in the normal manner.

The behavior of pthread_mutex_consistent_np() for a mutex that is not inconsistent, or is
not held, is undefined.

pthread_mutex_consistent_np Return Values
pthread_mutex_consistent_np() returns zero after completing successfully. Any other return
value indicates that an error occurred.

pthread_mutex_consistent_np() fails if the following condition occurs:

Using Mutual Exclusion Locks

Chapter 4 • Programming with Synchronization Objects 87

EINVAL

Description: The current thread does not own the mutex or the mutex is not a
PTHREAD_MUTEX_ROBUST_NP mutex having an inconsistent state.

Locking a Mutex
Use pthread_mutex_lock(3C) to lock the mutex pointed to by mutex.

pthread_mutex_lock Syntax
int pthread_mutex_lock(pthread_mutex_t *mutex);

#include <pthread.h>

pthread_mutex_t mutex;
int ret;

ret = pthread_ mutex_lock(&mp); /* acquire the mutex */

When pthread_mutex_lock() returns, the mutex is locked. The calling thread is the owner. If
the mutex is already locked and owned by another thread, the calling thread blocks until the
mutex becomes available.

If the mutex type is PTHREAD_MUTEX_NORMAL , deadlock detection is not provided. Attempting to
relock the mutex causes deadlock. If a thread attempts to unlock a mutex not locked by the
thread or a mutex that is unlocked, undefined behavior results.

If the mutex type is PTHREAD_MUTEX_ERRORCHECK , then error checking is provided. If a thread
attempts to relock a mutex that the thread has already locked, an error is returned. If a thread
attempts to unlock a mutex not locked by the thread or a mutex that is unlocked, an error is
returned.

If the mutex type is PTHREAD_MUTEX_RECURSIVE , then the mutex maintains the concept of a lock
count. When a thread successfully acquires a mutex for the first time, the lock count is set to 1.
Every time a thread relocks this mutex, the lock count is incremented by 1. Every time the
thread unlocks the mutex, the lock count is decremented by 1. When the lock count reaches 0,
the mutex becomes available for other threads to acquire. If a thread attempts to unlock a mutex
not locked by the thread or a mutex that is unlocked, an error is returned.

The mutex type PTHREAD_MUTEX_DEFAULT is the same as PTHREAD_MUTEX_NORMAL.

pthread_mutex_lock Return Values
pthread_mutex_lock() returns zero after completing successfully. Any other return value
indicates that an error occurred. When any of the following conditions occurs, the function fails
and returns the corresponding value.

Using Mutual Exclusion Locks

Multithreaded Programming Guide • October 2012 (Beta)88

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutex-lock-3c

EAGAIN

Description: The mutex could not be acquired because the maximum number of recursive
locks for mutex has been exceeded.

EDEADLK

Description: The current thread already owns the mutex.

If the mutex was initialized with the PTHREAD_MUTEX_ROBUST_NProbustness attribute,
pthread_mutex_lock() may return one of the following values:

EOWNERDEAD

Description: The last owner of this mutex terminated while holding the mutex. This mutex is
now owned by the caller. The caller must attempt to make the state protected by the mutex
consistent.

If the caller is able to make the state consistent, call pthread_mutex_consistent_np() for
the mutex and unlock the mutex. Subsequent calls to pthread_mutex_lock() behave
normally.

If the caller is unable to make the state consistent, do not call pthread_mutex_init() for the
mutex. Unlock the mutex instead. Subsequent calls to pthread_mutex_lock() fail to
acquire the mutex and return an ENOTRECOVERABLE error code.

If the owner that acquired the lock with EOWNERDEAD terminates while holding the mutex,
the next owner acquires the lock with EOWNERDEAD.

ENOTRECOVERABLE

Description: The mutex you are trying to acquire was protecting state left irrecoverable by the
mutex's previous owner. The mutex has not been acquired. This irrecoverable condition can
occur when:
■ The lock was previously acquired with EOWNERDEAD

■ The owner was unable to cleanup the state
■ The owner unlocked the mutex without making the mutex state consistent

ENOMEM

Description: The limit on the number of simultaneously held mutexes has been exceeded.

Unlocking a Mutex
Use pthread_mutex_unlock(3C) to unlock the mutex pointed to by mutex.

pthread_mutex_unlock Syntax
int pthread_mutex_unlock(pthread_mutex_t *mutex);

Using Mutual Exclusion Locks

Chapter 4 • Programming with Synchronization Objects 89

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutex-unlock-3c

#include <pthread.h>

pthread_mutex_t mutex;
int ret;

ret = pthread_mutex_unlock(&mutex); /* release the mutex */

pthread_mutex_unlock() releases the mutex object referenced by mutex. The manner in which
a mutex is released is dependent upon the mutex's type attribute. If threads are blocked on the
mutex object when pthread_mutex_unlock() is called and the mutex becomes available, the
scheduling policy determines which thread acquires the mutex. For PTHREAD_MUTEX_RECURSIVE
mutexes, the mutex becomes available when the count reaches zero and the calling thread no
longer has any locks on this mutex.

pthread_mutex_unlock Return Values
pthread_mutex_unlock() returns zero after completing successfully. Any other return value
indicates that an error occurred. When the following condition occurs, the function fails and
returns the corresponding value.

EPERM

Description: The current thread does not own the mutex.

Locking a Mutex Without Blocking
Use pthread_mutex_trylock(3C) to attempt to lock the mutex pointed to by mutex, and return
immediately if the mutex is already locked.

pthread_mutex_trylock Syntax
int pthread_mutex_trylock(pthread_mutex_t *mutex);

#include <pthread.h>

pthread_mutex_t mutex;
int ret;

ret = pthread_mutex_trylock(&mutex); /* try to lock the mutex */

pthread_mutex_trylock() is a nonblocking version of pthread_mutex_lock(). If the mutex
object referenced by mutex is currently locked by any thread, including the current thread, the
call returns immediately. Otherwise, the mutex is locked and the calling thread is the owner.

pthread_mutex_trylock Return Values
pthread_mutex_trylock() returns zero after completing successfully. Any other return value
indicates that an error occurred. When any of the following conditions occurs, the function fails
and returns the corresponding value.

Using Mutual Exclusion Locks

Multithreaded Programming Guide • October 2012 (Beta)90

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutex-trylock-3c

EBUSY

Description: The mutex could not be acquired because the mutex pointed to by mutex was
already locked.

EAGAIN

Description: The mutex could not be acquired because the maximum number of recursive
locks for mutex has been exceeded.

If the symbol _POSIX_THREAD_PRIO_INHERIT is defined, the mutex is initialized with the
protocol attribute value PTHREAD_PRIO_INHERIT . Additionally, if the robustness argument of
pthread_mutexattr_setrobust_np() is PTHREAD_MUTEX_ROBUST_NP, the function fails and
returns one of the following values:

EOWNERDEAD

Description: See the discussion in “pthread_mutex_lock Return Values” on page 88.

ENOTRECOVERABLE

Description: See the discussion in “pthread_mutex_lock Return Values” on page 88.

ENOMEM

Description: The limit on the number of simultaneously held mutexes has been exceeded.

Locking a Mutex Before a Specified Absolute Time
Use the pthread_mutex_timedlock(3C) function to attempt until a specified time to lock a
mutex object.

This function works as the pthread_mutex_lock() function does, except that it does not block
indefinitely. If the mutex is already locked, the calling thread is blocked until the mutex
becomes available, but only until the timeout is reached. If the timeout occurs before the mutex
becomes available, the function returns.

pthread_mutex_timedlock() Syntax
int pthread_mutex_timedlock(pthread_mutex_t *restrict mutex,

const struct timespec *restrict abs_timeout);

#include <pthread.h>

#include <time.h>

pthread_mutex_t mutex;
timestruct_t abs_timeout;
int ret;

ret = pthread_mutex_timedlock(&mutex, &abs_timeout);

Using Mutual Exclusion Locks

Chapter 4 • Programming with Synchronization Objects 91

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutex-timedlock-3c

pthread_mutex_timedlock()Return Values
The pthread_mutex_timedlock() function return 0 if it locks the mutex successfully.
Otherwise, an error number is returned to indicate the error.

EINVAL

Description: The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT and the calling thread's priority is higher than the mutex's current
priority ceiling.

Description: The value specified by mutex does not refer to an initialized mutex object.

Description: The process or thread would have blocked, and the abs_timeout parameter
specified a nanoseconds field value less than 0 or greater than or equal to 1000 million.

ETIMEDOUT

Description: The mutex could not be locked before the specified timeout expired.

See the discussion in “pthread_mutex_lock Return Values” on page 88.

Locking a Mutex Within a Specified Time Interval
Use the pthread_mutex_reltimedlock_np(3C) function to attempt until a specified amount of
time elapses to lock a mutex object.

The timeout expires when the time interval specified by rel_timeout passes, as measured by the
CLOCK_REALTIME clock, or if the time interval specified by rel_timeout is negative at the time of
the call.

pthread_mutex_reltimedlock_np() Syntax
int pthread_mutex_reltimedlock_np(pthread_mutex_t *restrict mutex,

const struct timespec *restrict rel_timeout);

#include <pthread.h>

#include <time.h>

pthread_mutex_t mutex;
timestruct_t rel_timeout;
int ret;

ret = pthread_mutex_reltimedlock_np(&mutex, &rel_timeout);

pthread_mutex_reltimedlock_np()Return Values
The pthread_mutex_reltimedlock_np() function returns 0 if it locks the mutex successfully.
Otherwise, an error number is returned to indicate the error.

Using Mutual Exclusion Locks

Multithreaded Programming Guide • October 2012 (Beta)92

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutex-reltimedlock-np-3c

EINVAL

Description: The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT and the calling thread's priority is higher than the mutex's current
priority ceiling.

Description: The value specified by mutex does not refer to an initialized mutex object.

Description: The process or thread would have blocked, and the abs_timeout parameter
specified a nanoseconds field value less than 0 or greater than or equal to 1000 million.

ETIMEDOUT

Description: The mutex could not be locked before the specified timeout expired.

See the discussion in “pthread_mutex_lock Return Values” on page 88.

Destroying a Mutex
Use pthread_mutex_destroy(3C) to destroy any state that is associated with the mutex pointed
to by mp .

pthread_mutex_destroy Syntax
int pthread_mutex_destroy(pthread_mutex_t *mp);

#include <pthread.h>

pthread_mutex_t mp;
int ret;

ret = pthread_mutex_destroy(&mp); /* mutex is destroyed */

Note that the space for storing the mutex is not freed.

pthread_mutex_destroy Return Values
pthread_mutex_destroy() returns zero after completing successfully. Any other return value
indicates that an error occurred. When any of the following conditions occur, the function fails
and returns the corresponding value.

EINVAL

Description: The value specified by mp does not refer to an initialized mutex object.

Code Examples of Mutex Locking
Example 4–1 shows some code fragments with mutex locking.

Using Mutual Exclusion Locks

Chapter 4 • Programming with Synchronization Objects 93

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-mutex-destroy-3c

EXAMPLE 4–1 Mutex Lock Example

#include <pthread.h>

pthread_mutex_t count_mutex;

long long count;

void

increment_count()

{

pthread_mutex_lock(&count_mutex);

count = count + 1;

pthread_mutex_unlock(&count_mutex);

}

long long

get_count()

{

long long c;

pthread_mutex_lock(&count_mutex);

c = count;

pthread_mutex_unlock(&count_mutex);

return (c);

}

The two functions in Example 4–1 use the mutex lock for different purposes. The
increment_count() function uses the mutex lock to ensure an atomic update of the shared
variable. The get_count() function uses the mutex lock to guarantee that the 64-bit quantity
count is read atomically. On a 32-bit architecture, a long long is really two 32-bit quantities.

When you read an integer value, the operation is atomic because an integer is the common
word size on most machines.

Examples of Using Lock Hierarchies
Occasionally, you might want to access two resources at once. Perhaps you are using one of the
resources, and then discover that the other resource is needed as well. A problem exists if two
threads attempt to claim both resources but lock the associated mutexes in different orders. For
example, if the two threads lock mutexes 1 and 2 respectively, a deadlock occurs when each
attempts to lock the other mutex. Example 4–2 shows possible deadlock scenarios.

Using Mutual Exclusion Locks

Multithreaded Programming Guide • October 2012 (Beta)94

EXAMPLE 4–2 Deadlock

Thread 1 Thread 2

pthread_mutex_lock(&m1);

/* use resource 1 */

pthread_mutex_lock(&m2);

/* use resources 1 and 2 */

pthread_mutex_unlock(&m2);

pthread_mutex_unlock(&m1);

pthread_mutex_lock(&m2);

/* use resource 2 */

pthread_mutex_lock(&m1);

/* use resources 1 and 2 */

pthread_mutex_unlock(&m1);

pthread_mutex_unlock(&m2);

The best way to avoid this problem is to make sure that when threads lock multiple mutexes, the
threads do so in the same order. When locks are always taken in a prescribed order, deadlock
should not occur. This technique, known as lock hierarchies, orders the mutexes by logically
assigning numbers to the mutexes.

Also, honor the restriction that you cannot take a mutex that is assigned n when you are holding
any mutex assigned a number that is greater than n.

However, this technique cannot always be used. Sometimes, you must take the mutexes in an
order other than prescribed. To prevent deadlock in such a situation, use
pthread_mutex_trylock(). One thread must release its mutexes when the thread discovers
that deadlock would otherwise be inevitable.

Using Mutual Exclusion Locks

Chapter 4 • Programming with Synchronization Objects 95

EXAMPLE 4–3 Conditional Locking

thread1 thread2

pthread_mutex_lock(&m1);

pthread_mutex_lock(&m2);

/* no processing */

pthread_mutex_unlock(&m2);

pthread_mutex_unlock(&m1);

for (; ;)

{ pthread_mutex_lock(&m2);

if(pthread_mutex_trylock(&m1)==0)

/* got it */

break;

/* didn't get it */

pthread_mutex_unlock(&m2);

}

/* get locks; no processing */

pthread_mutex_unlock(&m1);

pthread_mutex_unlock(&m2);

In Example 4–3, thread1 locks mutexes in the prescribed order, but thread2 takes the mutexes
out of order. To make certain that no deadlock occurs, thread2 has to take mutex1 very
carefully. If thread2 blocks while waiting for the mutex to be released, thread2 is likely to have
just entered into a deadlock with thread1.

To ensure that thread2 does not enter into a deadlock, thread2 calls
pthread_mutex_trylock(), which takes the mutex if available. If the mutex is not available,
thread2 returns immediately, reporting failure. At this point, thread2 must release mutex2.
Thread1 can now lock mutex2, and then release both mutex1 and mutex2.

Examples of Using Nested Locking With a Singly-Linked List
Example 4–4 and Example 4–5 show how to take three locks at once. Deadlock is prevented by
taking the locks in a prescribed order.

EXAMPLE 4–4 Singly-Linked List Structure

typedef struct node1 {

int value;

struct node1 *link;

pthread_mutex_t lock;

} node1_t;

node1_t ListHead;

Using Mutual Exclusion Locks

Multithreaded Programming Guide • October 2012 (Beta)96

This example uses a singly linked list structure with each node that contains a mutex. To
remove a node from the list, first search the list starting at ListHead until the desired node is
found. ListHead is never removed.

To protect this search from the effects of concurrent deletions, lock each node before any of its
contents are accessed. Because all searches start at ListHead, a deadlock cannot occur because
the locks are always taken in list order.

When the desired node is found, lock both the node and its predecessor since the change
involves both nodes. Because the predecessor's lock is always taken first, you are again protected
from deadlock. Example 4–5 shows the C code to remove an item from a singly-linked list.

EXAMPLE 4–5 Singly-Linked List With Nested Locking

node1_t *delete(int value)

{

node1_t *prev, *current;

prev = &ListHead;

pthread_mutex_lock(&prev->lock);

while ((current = prev->link) != NULL) {

pthread_mutex_lock(¤t->lock);

if (current->value == value) {

prev->link = current->link;

pthread_mutex_unlock(¤t->lock);

pthread_mutex_unlock(&prev->lock);

current->link = NULL;

return(current);

}

pthread_mutex_unlock(&prev->lock);

prev = current;

}

pthread_mutex_unlock(&prev->lock);

return(NULL);

}

Example of Nested Locking With a Circularly-Linked List
Example 4–6 modifies the previous list structure by converting the list structure into a circular
list. Because a distinguished head node no longer exists, a thread can be associated with a
particular node and can perform operations on that node and its neighbor Lock hierarchies do
not work easily here because the obvious hierarchy, following the links, is circular.

EXAMPLE 4–6 Circular-Linked List Structure

typedef struct node2 {

int value;

struct node2 *link;

pthread_mutex_t lock;

} node2_t;

Here is the C code that acquires the locks on two nodes and performs an operation that involves
both locks.

Using Mutual Exclusion Locks

Chapter 4 • Programming with Synchronization Objects 97

EXAMPLE 4–7 Circular Linked List With Nested Locking

void Hit Neighbor(node2_t *me) {

while (1) {

pthread_mutex_lock(&me->lock);

if (pthread_mutex_trylock(&me->link->lock)!= 0) {

/* failed to get lock */

pthread_mutex_unlock(&me->lock);

continue;

}

break;

}

me->link->value += me->value;

me->value /=2;

pthread_mutex_unlock(&me->link->lock);

pthread_mutex_unlock(&me->lock);

}

Using Spin Locks
Spin locks are a low-level synchronization mechanism suitable primarily for use on shared
memory multiprocessors. When the calling thread requests a spin lock that is already held by
another thread, the second thread spins in a loop to test if the lock has become available. When
the lock is obtained, it should be held only for a short time, as the spinning wastes processor
cycles. Callers should unlock spin locks before calling sleep operations to enable other threads
to obtain the lock.

Spin locks can be implemented using mutexes and conditional variables, but the
pthread_spin_* functions are a standardized way to practice spin locking. The
pthread_spin_* functions require much lower overhead for locks of short duration.

When performing any lock, a trade-off is made between the processor resources consumed
while setting up to block the thread and the processor resources consumed by the thread while
it is blocked. Spin locks require few resources to set up the blocking of a thread and then do a
simple loop, repeating the atomic locking operation until the lock is available. The thread
continues to consume processor resources while it is waiting.

Compared to spin locks, mutexes consume a larger amount of processor resources to block the
thread. When a mutex lock is not available, the thread changes its scheduling state and adds
itself to the queue of waiting threads. When the lock becomes available, these steps must be
reversed before the thread obtains the lock. While the thread is blocked, it consumes no
processor resources.

Therefore, spin locks and mutexes can be useful for different purposes. Spin locks might have
lower overall overhead for very short-term blocking, and mutexes might have lower overall
overhead when a thread will be blocked for longer periods of time.

Using Spin Locks

Multithreaded Programming Guide • October 2012 (Beta)98

Initializing a Spin Lock
Use the pthread_spin_init(3C) function to allocate resources required to use a spin lock, and
initialize the lock to an unlocked state.

pthread_spin_init() Syntax
int pthread_spin_init(pthread_spinlock_t *lock, int pshared);

#include <pthread.h>

pthread_spinlock_t lock;
int pshared;
int ret;

/* initialize a spin lock */

ret = pthread_spin_init(&lock, pshared);

The pshared attribute has one of the following values:

PTHREAD_PROCESS_SHARED

Description: Permits a spin lock to be operated on by any thread that has access to the
memory where the spin lock is allocated. Operation on the lock is permitted even if the lock
is allocated in memory that is shared by multiple processes.

PTHREAD_PROCESS_PRIVATE

Description: Permits a spin lock to be operated upon only by threads created within the same
process as the thread that initialized the spin lock. If threads of differing processes attempt to
operate on such a spin lock, the behavior is undefined. The default value of the
process-shared attribute is PTHREAD_PROCESS_PRIVATE.

pthread_spin_init()Return Values
Upon successful completion, the pthread_spin_init() function returns 0. Otherwise, one of
the following error codes is returned.

EAGAIN

Description: The system lacks the necessary resources to initialize another spin lock.

EBUSY

Description: The system has detected an attempt to initialize or destroy a spin lock while the
lock is in use (for example, while being used in a pthread_spin_lock() call) by another
thread.

EINVAL

Description: The value specified by lock is invalid.

Using Spin Locks

Chapter 4 • Programming with Synchronization Objects 99

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-spin-init-3c

Acquiring a Spin Lock
Use the pthread_spin_lock(3C) to lock a spin lock. The calling thread acquires the lock if it is
not held by another thread. Otherwise, the thread does not return from the
pthread_spin_lock() call until the lock becomes available. The results are undefined if the
calling thread holds the lock at the time the call is made.

pthread_spin_lock() Syntax
int pthread_spin_lock(pthread_spinlock_t *lock);

#include <pthread.h>

pthread_spinlock_t lock;
int ret;

ret = pthread_ spin_lock(&lock); /* lock the spinlock */

pthread_spin_lock()Return Values
Upon successful completion, the pthread_spin_lock() function returns 0. Otherwise, one of
the following error codes is returned.

EDEADLK

Description: The current thread already owns the spin lock.

EINVAL

Description: The value specified by lock does not refer to an initialized spin lock object.

Acquiring a Non-Blocking Spin Lock
Use the pthread_spin_trylock(3C) function to lock a spin lock and fail immediately if the
lock is held by another thread.

pthread_spin_trylock() Syntax
int pthread_spin_trylock(pthread_spinlock_t *lock);

#include <pthread.h>

pthread_spinlock_t lock;
int ret;

ret = pthread_spin_trylock(&lock); /* try to lock the spin lock */

Using Spin Locks

Multithreaded Programming Guide • October 2012 (Beta)100

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-spin-lock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-spin-trylock-3c

pthread_spin_trylock()Return Values
Upon successful completion, the pthread_spin_trylock() function returns 0. Otherwise, one
of the following error codes is returned.

EBUSY

Description: A thread currently owns the spin lock.

EINVAL

Description: The value specified by lock does not refer to an initialized spin lock object.

Unlocking a Spin Lock
Use the pthread_spin_unlock(3C) function to release a locked spin lock.

pthread_spin_unlock() Syntax
int pthread_spin_unlock(pthread_spinlock_t *lock);

#include <pthread.h>

pthread_spinlock_t lock;
int ret;

ret = pthread_spin_unlock(&lock); /* spinlock is unlocked */

pthread_spin_unlock()Return Values
Upon successful completion, the pthread_spin_unlock() function returns 0. Otherwise, one
of the following error codes is returned.

EPERM

Description: The calling thread does not hold the lock.

EINVAL

Description: The value specified by lock does not refer to an initialized spin lock object.

Destroying a Spin Lock
Use the pthread_spin_destroy(3C) function to destroy a spin lock and release any resources
used by the lock.

pthread_spin_destroy() Syntax
int pthread_spin_destroy(pthread_spinlock_t *lock);

Using Spin Locks

Chapter 4 • Programming with Synchronization Objects 101

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-spin-unlock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-spin-destroy-3c

#include <pthread.h>

pthread_spinlock_t lock;
int ret;

ret = pthread_spin_destroy(&lock); /* spinlock is destroyed */

The effect of subsequent use of the lock is undefined until the lock is reinitialized by another call
to pthread_spin_init(). The results are undefined if pthread_spin_destroy() is called when
a thread holds the lock, or if this function is called with an uninitialized thread spin lock.

pthread_spin_destroy()Return Values

EBUSY

Description: The system has detected an attempt to initialize or destroy a spin lock while the
lock is in use (for example, while being used in a pthread_spin_lock() call) by another
thread.

EINVAL

Description: The value specified by lock is invalid.

Condition Variable Attributes
Use condition variables to atomically block threads until a particular condition is true. Always
use condition variables together with a mutex lock.

With a condition variable, a thread can atomically block until a condition is satisfied. The
condition is tested under the protection of a mutual exclusion lock (mutex).

When the condition is false, a thread usually blocks on a condition variable and atomically
releases the mutex waiting for the condition to change. When another thread changes the
condition, that thread can signal the associated condition variable to cause one or more waiting
threads to perform the following actions:
■ Wake up
■ Acquire the mutex again
■ Re-evaluate the condition

Condition variables can be used to synchronize threads among processes in the following
situations:
■ The threads are allocated in memory that can be written to
■ The memory is shared by the cooperating processes

The scheduling policy determines how blocking threads are awakened. The default scheduling
policy, SCHED_OTHER, does not specify the order in which threads are awakened. Under the
SCHED_FIFO and SCHED_RR real-time scheduling policies, threads are awakened in priority
order.

Condition Variable Attributes

Multithreaded Programming Guide • October 2012 (Beta)102

The attributes for condition variables must be set and initialized before the condition variables
can be used. The functions that manipulate condition variable attributes are listed in Table 4–4.

TABLE 4–4 Condition Variable Attributes

Operation Function Description

Initialize a condition variable attribute “pthread_condattr_init Syntax” on page 103

Remove a condition variable attribute “pthread_condattr_destroy Syntax” on page 104

Set the scope of a condition variable “pthread_condattr_setpshared Syntax” on page 104

Get the scope of a condition variable “pthread_condattr_getpshared Syntax” on page 105

Get the clock selection condition variable
attribute

“pthread_condattr_getclock Syntax” on page 107

Set the clock selection condition variable
attribute

“pthread_condattr_setclock Syntax” on page 106

Initializing a Condition Variable Attribute
Use pthread_condattr_init(3C) to initialize attributes that are associated with this object to
their default values. Storage for each attribute object is allocated by the threads system during
execution.

pthread_condattr_init Syntax
int pthread_condattr_init(pthread_condattr_t *cattr);

#include <pthread.h>

pthread_condattr_t cattr;
int ret;

/* initialize an attribute to default value */

ret = pthread_condattr_init(&cattr);

The default value of the pshared attribute when this function is called is
PTHREAD_PROCESS_PRIVATE. This value of pshared means that the initialized condition variable
can be used within a process.

cattr is an opaque data type that contains a system-allocated attribute object. The possible
values of cattr's scope are PTHREAD_PROCESS_PRIVATE and PTHREAD_PROCESS_SHARED .
PTHREAD_PROCESS_PRIVATE is the default value.

Before a condition variable attribute can be reused, the attribute must first be reinitialized by
pthread_condattr_destroy(3C). The pthread_condattr_init() call returns a pointer to an
opaque object. If the object is not destroyed, a memory leak results.

Condition Variable Attributes

Chapter 4 • Programming with Synchronization Objects 103

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-condattr-init-3c

pthread_condattr_init Return Values
pthread_condattr_init() returns zero after completing successfully. Any other return value
indicates that an error occurred. When either of the following conditions occurs, the function
fails and returns the corresponding value.

ENOMEM

Description: Insufficient memory allocated to initialize the thread attributes object.

EINVAL

Description: The value specified by cattr is invalid.

Removing a Condition Variable Attribute
Use pthread_condattr_destroy(3C) to remove storage and render the attribute object invalid.

pthread_condattr_destroy Syntax
int pthread_condattr_destroy(pthread_condattr_t *cattr);

#include <pthread.h>

pthread_condattr_t cattr;
int ret;

/* destroy an attribute */

ret
= pthread_condattr_destroy(&cattr);

pthread_condattr_destroy Return Values
pthread_condattr_destroy() returns zero after completing successfully. Any other return
value indicates that an error occurred. If the following condition occurs, the function fails and
returns the corresponding value.

EINVAL

Description: The value specified by cattr is invalid.

Setting the Scope of a Condition Variable
pthread_condattr_setpshared(3C) sets the scope of a condition variable to either process
private (intraprocess) or system wide (interprocess).

pthread_condattr_setpshared Syntax
int pthread_condattr_setpshared(pthread_condattr_t *cattr, int pshared);

Condition Variable Attributes

Multithreaded Programming Guide • October 2012 (Beta)104

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-condattr-destroy-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-condattr-setpshared-3c

#include <pthread.h>

pthread_condattr_t cattr;
int ret;

/* all processes */

ret = pthread_condattr_setpshared(&cattr, PTHREAD_PROCESS_SHARED);

/* within a process */

ret = pthread_condattr_setpshared(&cattr, PTHREAD_PROCESS_PRIVATE);

A condition variable created with the pshared attribute set in shared memory to
PTHREAD_PROCESS_SHARED, can be shared among threads from more than one process.

If the mutex pshared attribute is set to PTHREAD_PROCESS_PRIVATE, only those threads created
by the same process can operate on the mutex. PTHREAD_PROCESS_PRIVATE is the default value.
PTHREAD_PROCESS_PRIVATE behaves like a local condition variable. The behavior of
PTHREAD_PROCESS_SHARED is equivalent to a global condition variable.

pthread_condattr_setpshared Return Values
pthread_condattr_setpshared() returns zero after completing successfully. Any other return
value indicates that an error occurred. If the following condition occurs, the function fails and
returns the corresponding value.

EINVAL

Description: The value of cattr is invalid, or the pshared value is invalid.

Getting the Scope of a Condition Variable
pthread_condattr_getpshared(3C) gets the current value of pshared for the attribute object
cattr.

pthread_condattr_getpshared Syntax
int pthread_condattr_getpshared(const pthread_condattr_t *restrict cattr,

int *restrict pshared);

#include <pthread.h>

pthread_condattr_t cattr;
int pshared;
int ret;

/* get pshared value of condition variable */

ret = pthread_condattr_getpshared(&cattr, &pshared);

The value of the attribute object is either PTHREAD_PROCESS_SHARED or
PTHREAD_PROCESS_PRIVATE.

Condition Variable Attributes

Chapter 4 • Programming with Synchronization Objects 105

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-condattr-getpshared-3c

pthread_condattr_getpshared Return Values
pthread_condattr_getpshared() returns zero after completing successfully. Any other return
value indicates that an error occurred. When the following condition occurs, the function fails
and returns the corresponding value.

EINVAL

Description: The value of cattr is invalid.

Setting the Clock Selection Condition Variable
Use the pthread_condattr_setclock(3C) function to set the clock attribute in an initialized
attributes object referenced by attr. If pthread_condattr_setclock() is called with a clock_id
argument that refers to a CPU-time clock, the call fails. The clock attribute is the clock ID of the
clock that is used to measure the timeout service of pthread_cond_timedwait(). The default
value of the clock attribute refers to the system clock, CLOCK_REALTIME. At this time, the only
other possible value for the clock attribute is CLOCK_MONOTONIC.

pthread_condattr_setclock Syntax
int pthread_condattr_setclock(pthread_condattr_t attr,

clockid_t clock_id);

#include <pthread.h>

pthread_condattr_t attr
clockid_t clock_id
int ret

ret = pthread_condattr_setclock(&attr &clock_id

pthread_condattr_setclock Returns
pthread_condattr_setclock() returns zero after completing successfully. Any other return
value indicates that an error occurred. When the following condition occurs, the function fails
and returns the corresponding value.

EINVAL

Description: The value specified by clock_id does not refer to a known clock, or is a CPU-time
clock.

Getting the Clock Selection Condition Variable
Use the pthread_condattr_getclock(3C) function to obtain the value of the clock attribute
from the attributes object referenced by attr. The clock attribute is the clock ID of the clock that
is used to measure the timeout service of pthread_cond_timedwait().

Condition Variable Attributes

Multithreaded Programming Guide • October 2012 (Beta)106

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-condattr-setclock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-condattr-getclock-3c

pthread_condattr_getclock Syntax
int pthread_condattr_getclock(const pthread_condattr_t *restrict attr,

clockid_t *restrict clock_id);

#include <pthread.h>

pthread_condattr_t attr
clockid_t clock_id
int ret

ret = pthread_condattr_getclock(&attr &clock_id

pthread_condattr_getclock Returns
pthread_condattr_getclock() returns zero after completing successfully and stores the value
of the clock attribute of attr into the object referenced by the clock_id argument. Any other
return value indicates that an error occurred. When the following condition occurs, the
function fails and returns the corresponding value.

EINVAL

Description: The value of attr is invalid.

Using Condition Variables
This section explains how to use condition variables. Table 4–5 lists the functions that are
available.

TABLE 4–5 Condition Variables Functions

Operation Related Function Description

Initialize a condition variable “pthread_cond_init Syntax” on page 108

Block on a condition variable “pthread_cond_wait Syntax” on page 109

Unblock a specific thread “pthread_cond_signal Syntax” on page 110

Block until a specified time “pthread_cond_timedwait Syntax” on page 111

Block for a specified interval “pthread_cond_reltimedwait_np Syntax” on
page 113

Unblock all threads “pthread_cond_broadcast Syntax” on page 114

Destroy condition variable state “pthread_cond_destroy Syntax” on page 115

Using Condition Variables

Chapter 4 • Programming with Synchronization Objects 107

Initializing a Condition Variable
Use pthread_cond_init(3C) to initialize the condition variable pointed at by cv to its default
value, or to specify condition variable attributes that are already set with
pthread_condattr_init().

pthread_cond_init Syntax
int pthread_cond_init(pthread_cond_t *restrict cv,

const pthread_condattr_t *restrict cattr);

#include <pthread.h>

pthread_cond_t cv;
pthread_condattr_t cattr;
int ret;

/* initialize a condition variable to its default value */

ret = pthread_cond_init(&cv, NULL);

/* initialize a condition variable */

ret = pthread_cond_init(&cv, &cattr);

The effect of cattr set to NULL is the same as passing the address of a default condition variable
attribute object, but without the memory overhead.

Use the macro PTHREAD_COND_INITIALIZER to initialize statically defined condition variables to
their default attributes. The PTHREAD_COND_INITIALIZER macro has the same effect as
dynamically allocating pthread_cond_init() with null attributes. No error checking is done.

Multiple threads must not simultaneously initialize or reinitialize the same condition variable.
If a condition variable is reinitialized or is destroyed, the application must be sure that the
condition variable is not in use.

pthread_cond_init Return Values
pthread_cond_init() returns zero after completing successfully. Any other return value
indicates that an error occurred. When any of the following conditions occurs, the function fails
and returns the corresponding value.

EINVAL

Description: The value specified by cattr is invalid.

EBUSY

Description: The condition variable is being used.

EAGAIN

Description: The necessary resources are not available.

Using Condition Variables

Multithreaded Programming Guide • October 2012 (Beta)108

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-cond-init-3c

ENOMEM

Description: Insufficient memory exists to initialize the condition variable.

Blocking on a Condition Variable
Use pthread_cond_wait(3C) to atomically release the mutex pointed to by mp and to cause the
calling thread to block on the condition variable pointed to by cv.

pthread_cond_wait Syntax
int pthread_cond_wait(pthread_cond_t *restrict cv,pthread_mutex_t *restrict mutex);

#include <pthread.h>

pthread_cond_t cv;
pthread_mutex_t mp;
int ret;

/* wait on condition variable */

ret = pthread_cond_wait(&cv, &

mp);

The blocked thread can be awakened by a pthread_cond_signal() , a
pthread_cond_broadcast(), or when interrupted by delivery of a signal.

Any change in the value of a condition that is associated with the condition variable cannot be
inferred by the return of pthread_cond_wait(). Such conditions must be reevaluated.

The pthread_cond_wait() routine always returns with the mutex locked and owned by the
calling thread, even when returning an error.

This function blocks until the condition is signaled. The function atomically releases the
associated mutex lock before blocking, and atomically acquires the mutex again before
returning.

In typical use, a condition expression is evaluated under the protection of a mutex lock. When
the condition expression is false, the thread blocks on the condition variable. The condition
variable is then signaled by another thread when the thread changes the condition value. The
change causes at least one thread that is waiting on the condition variable to unblock and to
reacquire the mutex.

The condition that caused the wait must be retested before continuing execution from the point
of the pthread_cond_wait(). The condition could change before an awakened thread
reacquires the mutes and returns from pthread_cond_wait(). A waiting thread could be
awakened spuriously. The recommended test method is to write the condition check as a
while() loop that calls pthread_cond_wait().

Using Condition Variables

Chapter 4 • Programming with Synchronization Objects 109

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-cond-wait-3c

pthread_mutex_lock();

while(condition_is_false)

pthread_cond_wait();

pthread_mutex_unlock();

The scheduling policy determines the order in which blocked threads are awakened. The
default scheduling policy, SCHED_OTHER, does not specify the order in which threads are
awakened. Under the SCHED_FIFO and SCHED_RR real-time scheduling policies, threads are
awakened in priority order.

Note – pthread_cond_wait() is a cancellation point. If a cancel is pending and the calling thread
has cancellation enabled, the thread terminates and begins executing its cleanup handlers while
continuing to hold the lock.

pthread_cond_wait Return Values
pthread_cond_wait() returns zero after completing successfully. Any other return value
indicates that an error occurred. When the following condition occurs, the function fails and
returns the corresponding value.

EINVAL

Description: The value specified by cv or mp is invalid.

Unblocking One Thread
Use pthread_cond_signal(3C) to unblock one thread that is blocked on the condition variable
pointed to by cv.

pthread_cond_signal Syntax
int pthread_cond_signal(pthread_cond_t *cv);

#include <pthread.h>

pthread_cond_t cv;
int ret;

/* one condition variable is signaled */

ret = pthread_cond_signal(&cv);

Modify the associated condition under the protection of the same mutex used with the
condition variable being signaled. Otherwise, the condition could be modified between its test
and blocking in pthread_cond_wait(), which can cause an infinite wait.

The scheduling policy determines the order in which blocked threads are awakened. The
default scheduling policy, SCHED_OTHER, does not specify the order in which threads are
awakened. Under the SCHED_FIFO and SCHED_RR real-time scheduling policies, threads are
awakened in priority order.

Using Condition Variables

Multithreaded Programming Guide • October 2012 (Beta)110

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-cond-signal-3c

When no threads are blocked on the condition variable, calling pthread_cond_signal() has
no effect.

EXAMPLE 4–8 Using pthread_cond_wait() and pthread_cond_signal()

pthread_mutex_t count_lock;

pthread_cond_t count_nonzero;

unsigned count;

decrement_count()

{

pthread_mutex_lock(&count_lock);

while (count == 0)

pthread_cond_wait(&count_nonzero, &count_lock);

count = count - 1;

pthread_mutex_unlock(&count_lock);

}

increment_count()

{

pthread_mutex_lock(&count_lock);

if (count == 0)

pthread_cond_signal(&count_nonzero);

count = count + 1;

pthread_mutex_unlock(&count_lock);

}

pthread_cond_signal Return Values
pthread_cond_signal() returns zero after completing successfully. Any other return value
indicates that an error occurred. When the following condition occurs, the function fails and
returns the corresponding value.

EINVAL

Description: cv points to an illegal address.

Example 4–8 shows how to use pthread_cond_wait() and pthread_cond_signal().

Blocking Until a Specified Time
Use pthread_cond_timedwait(3C) as you would use pthread_cond_wait(), except that
pthread_cond_timedwait() does not block past the time of day specified by abstime .

pthread_cond_timedwait Syntax
int pthread_cond_timedwait(pthread_cond_t *restrict cv,

pthread_mutex_t *restrict mp,
const struct timespec *restrict abstime);

#include <pthread.h>

#include <time.h>

Using Condition Variables

Chapter 4 • Programming with Synchronization Objects 111

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-cond-timedwait-3c

pthread_cond_t cv;
pthread_mutex_t mp;
timestruct_t abstime;
int ret;

/* wait on condition variable */

ret = pthread_cond_timedwait(&cv, &

mp, &abstime);

pthread_cond_timedwait() always returns with the mutex locked and owned by the calling
thread, even when pthread_cond_timedwait() is returning an error.

The pthread_cond_timedwait() function blocks until the condition is signaled or until the
time of day specified by the last argument has passed.

Note – pthread_cond_timedwait() is also a cancellation point.

EXAMPLE 4–9 Timed Condition Wait

pthread_timestruc_t to;

pthread_mutex_t m;

pthread_cond_t c;

...

pthread_mutex_lock(&m);

clock_gettime(CLOCK_REALTIME, &to);

to.tv_sec += TIMEOUT;

while (cond == FALSE) {

err = pthread_cond_timedwait(&c, &m, &to);

if (err == ETIMEDOUT) {

/* timeout, do something */

break;

}

}

pthread_mutex_unlock(&m);

pthread_cond_timedwait Return Values
pthread_cond_timedwait() returns zero after completing successfully. Any other return value
indicates that an error occurred. When either of the following conditions occurs, the function
fails and returns the corresponding value.

EINVAL

Description: cv, mp, or abstime points to an illegal address.

EINVAL

Description: Different mutexes were supplied for concurrent pthread_cond_timedwait()
operations on the same condition variable.

ETIMEDOUT

Description: The time specified by abstime has passed.

Using Condition Variables

Multithreaded Programming Guide • October 2012 (Beta)112

EPERM

Description: The mutex was not owned by the current thread at the time of the call.

The timeout is specified as a time of day so that the condition can be retested efficiently without
recomputing the value, as shown in Example 4–9.

Blocking For a Specified Interval
Use pthread_cond_reltimedwait_np(3C) as you would use pthread_cond_timedwait() with
one exception. pthread_cond_reltimedwait_np() takes a relative time interval rather than an
absolute future time of day as the value of its last argument.

pthread_cond_reltimedwait_np Syntax
int pthread_cond_reltimedwait_np(pthread_cond_t *cv,

pthread_mutex_t *mp,
const struct timespec *reltime);

#include <pthread.h>

#include <time.h>

pthread_cond_t cv;
pthread_mutex_t mp;
timestruct_t reltime;
int ret;

/* wait on condition variable */

ret = pthread_cond_reltimedwait_np(&cv, &mp, &reltime);

pthread_cond_reltimedwait_np() always returns with the mutex locked and owned by the
calling thread, even when pthread_cond_reltimedwait_np() is returning an error. The
pthread_cond_reltimedwait_np() function blocks until the condition is signaled or until the
time interval specified by the last argument has elapsed.

Note – pthread_cond_reltimedwait_np() is also a cancellation point.

pthread_cond_reltimedwait_np Return Values
pthread_cond_reltimedwait_np() returns zero after completing successfully. Any other
return value indicates that an error occurred. When either of the following conditions occurs,
the function fails and returns the corresponding value.

EINVAL

Description: The value specified by reltime is invalid.

ETIMEDOUT

Description: The time interval specified by reltime has passed.

Using Condition Variables

Chapter 4 • Programming with Synchronization Objects 113

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-cond-reltimedwait-np-3c

Unblocking All Threads
Use pthread_cond_broadcast(3C) to unblock all threads that are blocked on the condition
variable pointed to by cv, specified by pthread_cond_wait().

pthread_cond_broadcast Syntax
int pthread_cond_broadcast(pthread_cond_t *cv);

#include <pthread.h>

pthread_cond_t cv;
int ret;

/* all condition variables are signaled */

ret = pthread_cond_broadcast(&cv);

When no threads are blocked on the condition variable, pthread_cond_broadcast() has no
effect.

Since pthread_cond_broadcast() causes all threads blocked on the condition to contend again
for the mutex lock, use pthread_cond_broadcast() with care. For example, use
pthread_cond_broadcast() to allow threads to contend for varying resource amounts when
resources are freed, as shown in Example 4–10.

EXAMPLE 4–10 Condition Variable Broadcast

pthread_mutex_t rsrc_lock;

pthread_cond_t rsrc_add;

unsigned int resources;

get_resources(int amount)

{

pthread_mutex_lock(&rsrc_lock);

while (resources < amount) {

pthread_cond_wait(&rsrc_add, &rsrc_lock);

}

resources -= amount;

pthread_mutex_unlock(&rsrc_lock);

}

add_resources(int amount)

{

pthread_mutex_lock(&rsrc_lock);

resources += amount;

pthread_cond_broadcast(&rsrc_add);

pthread_mutex_unlock(&rsrc_lock);

}

Note that in add_resources() whether resources are updated first, or if
pthread_cond_broadcast() is called first inside the mutex lock does not matter.

Using Condition Variables

Multithreaded Programming Guide • October 2012 (Beta)114

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-cond-broadcast-3c

Modify the associated condition under the protection of the same mutex that is used with the
condition variable being signaled. Otherwise, the condition could be modified between its test
and blocking in pthread_cond_wait(), which can cause an infinite wait.

pthread_cond_broadcast Return Values
pthread_cond_broadcast() returns zero after completing successfully. Any other return value
indicates that an error occurred. When the following condition occurs, the function fails and
returns the corresponding value.

EINVAL

Description: cv points to an illegal address.

Destroying the Condition Variable State
Use pthread_cond_destroy(3C) to destroy any state that is associated with the condition
variable pointed to by cv.

pthread_cond_destroy Syntax
int pthread_cond_destroy(pthread_cond_t *cv);

#include <pthread.h>

pthread_cond_t cv;
int ret;

/* Condition variable is destroyed */

ret = pthread_cond_destroy(&cv);

Note that the space for storing the condition variable is not freed.

pthread_cond_destroy Return Values
pthread_cond_destroy() returns zero after completing successfully. Any other return value
indicates that an error occurred. When the following condition occurs, the function fails and
returns the corresponding value.

EINVAL

Description: The value specified by cv is invalid.

Lost Wake-Up Problem
A call to pthread_cond_signal() or pthread_cond_broadcast() when the thread does not
hold the mutex lock associated with the condition can lead to lost wake-up bugs.

A lost wake-up occurs when all of the following conditions are in effect:

Using Condition Variables

Chapter 4 • Programming with Synchronization Objects 115

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-cond-destroy-3c

■ A thread calls pthread_cond_signal() or pthread_cond_broadcast()
■ Another thread is between the test of the condition and the call to pthread_cond_wait()

■ No threads are waiting
The signal has no effect, and therefore is lost

This can occur only if the condition being tested is modified without holding the mutex lock
associated with the condition. As long as the condition being tested is modified only while
holding the associated mutex, pthread_cond_signal() and pthread_cond_broadcast() can
be called regardless of whether they are holding the associated mutex.

Producer and Consumer Problem
The producer and consumer problem is one of the small collection of standard, well-known
problems in concurrent programming. A finite-size buffer and two classes of threads, producers
and consumers, put items into the buffer (producers) and take items out of the buffer
(consumers).

A producer cannot put something in the buffer until the buffer has space available. A consumer
cannot take something out of the buffer until the producer has written to the buffer.

A condition variable represents a queue of threads that wait for some condition to be signaled.

Example 4–11 has two such queues. One (less) queue for producers waits for a slot in the buffer.
The other (more) queue for consumers waits for a buffer slot containing information. The
example also has a mutex, as the data structure describing the buffer must be accessed by only
one thread at a time.

EXAMPLE 4–11 Producer and Consumer Problem With Condition Variables

typedef struct {

char buf[BSIZE];

int occupied;

int nextin;

int nextout;

pthread_mutex_t mutex;

pthread_cond_t more;

pthread_cond_t less; }

buffer_t;

buffer_t buffer;

As Example 4–12 shows, the producer thread acquires the mutex protecting the buffer data
structure. The producer thread then makes certain that space is available for the item produced.
If space is not available, the producer thread calls pthread_cond_wait() .
pthread_cond_wait() causes the producer thread to join the queue of threads that are waiting
for the condition less to be signaled. less represents available room in the buffer.

Using Condition Variables

Multithreaded Programming Guide • October 2012 (Beta)116

At the same time, as part of the call to pthread_cond_wait(), the thread releases its lock on the
mutex. The waiting producer threads depend on consumer threads to signal when the
condition is true, as shown in Example 4–12. When the condition is signaled, the first thread
waiting on less is awakened. However, before the thread can return from
pthread_cond_wait(), the thread must acquire the lock on the mutex again.

Acquire the mutex to ensure that the thread again has mutually exclusive access to the buffer
data structure. The thread then must check that available room in the buffer actually exists. If
room is available, the thread writes into the next available slot.

At the same time, consumer threads might be waiting for items to appear in the buffer. These
threads are waiting on the condition variable more . A producer thread, having just deposited
something in the buffer, calls pthread_cond_signal() to wake up the next waiting consumer.
If no consumers are waiting, this call has no effect.

Finally, the producer thread unlocks the mutex, allowing other threads to operate on the buffer
data structure.

EXAMPLE 4–12 The Producer and Consumer Problem: the Producer

void producer(buffer_t *b, char item)

{

pthread_mutex_lock(&b->mutex);

while (b->occupied >= BSIZE)

pthread_cond_wait(&b->less, &b->mutex);

assert(b->occupied < BSIZE);

b->buf[b->nextin++] = item;

b->nextin %= BSIZE;

b->occupied++;

/* now: either b->occupied < BSIZE and b->nextin is the index

of the next empty slot in the buffer, or

b->occupied == BSIZE and b->nextin is the index of the

next (occupied) slot that will be emptied by a consumer

(such as b->nextin == b->nextout) */

pthread_cond_signal(&b->more);

pthread_mutex_unlock(&b->mutex);

}

Note the use of the assert() statement. Unless the code is compiled with NDEBUG defined,
assert() does nothing when its argument evaluates to true (nonzero). The program aborts if
the argument evaluates to false (zero). Such assertions are especially useful in multithreaded
programs. assert() immediately points out runtime problems if the assertion fails. assert()
has the additional effect of providing useful comments.

Using Condition Variables

Chapter 4 • Programming with Synchronization Objects 117

The comment that begins /* now: either b->occupied ... could better be expressed as an
assertion, but the statement is too complicated as a Boolean-valued expression and so is given in
English.

Both assertions and comments are examples of invariants. These invariants are logical
statements that should not be falsified by the execution of the program with the following
exception. The exception occurs during brief moments when a thread is modifying some of the
program variables mentioned in the invariant. An assertion, of course, should be true whenever
any thread executes the statement.

The use of invariants is an extremely useful technique. Even if the invariants are not stated in
the program text, think in terms of invariants when you analyze a program.

The invariant in the producer code that is expressed as a comment is always true whenever a
thread executes the code where the comment appears. If you move this comment to just after
the mutex_unlock(), the comment does not necessarily remain true. If you move this comment
to just after the assert() , the comment is still true.

This invariant therefore expresses a property that is true at all times with the following
exception. The exception occurs when either a producer or a consumer is changing the state of
the buffer. While a thread is operating on the buffer under the protection of a mutex, the thread
might temporarily falsify the invariant. However, once the thread is finished, the invariant
should be true again.

Example 4–13 shows the code for the consumer. The logic flow is symmetric with the logic flow
of the producer.

EXAMPLE 4–13 The Producer and Consumer Problem: the Consumer

char consumer(buffer_t *b)

{

char item;

pthread_mutex_lock(&b->mutex);

while(b->occupied <= 0)

pthread_cond_wait(&b->more, &b->mutex);

assert(b->occupied > 0);

item = b->buf[b->nextout++];

b->nextout %= BSIZE;

b->occupied--;

/* now: either b->occupied > 0 and b->nextout is the index

of the next occupied slot in the buffer, or

b->occupied == 0 and b->nextout is the index of the next

(empty) slot that will be filled by a producer (such as

b->nextout == b->nextin) */

pthread_cond_signal(&b->less);

pthread_mutex_unlock(&b->mutex);

return(item);

Using Condition Variables

Multithreaded Programming Guide • October 2012 (Beta)118

EXAMPLE 4–13 The Producer and Consumer Problem: the Consumer (Continued)

}

Synchronization With Semaphores
A semaphore is a programming construct designed by E. W. Dijkstra in the late 1960s.
Dijkstra's model was the operation of railroads. Consider a stretch of railroad where a single
track is present over which only one train at a time is allowed.

A semaphore synchronizes travel on this track. A train must wait before entering the single
track until the semaphore is in a state that permits travel. When the train enters the track, the
semaphore changes state to prevent other trains from entering the track. A train that is leaving
this section of track must again change the state of the semaphore to allow another train to
enter.

In the computer version, a semaphore appears to be a simple integer. A thread waits for
permission to proceed and then signals that the thread has proceeded by performing a P
operation on the semaphore.

The thread must wait until the semaphore's value is positive, then change the semaphore's value
by subtracting 1 from the value. When this operation is finished, the thread performs a V
operation, which changes the semaphore's value by adding 1 to the value. These operations
must take place atomically. These operations cannot be subdivided into pieces between which
other actions on the semaphore can take place. In the P operation, the semaphore's value must
be positive just before the value is decremented, resulting in a value that is guaranteed to be
nonnegative and 1 less than what it was before it was decremented.

In both P and V operations, the arithmetic must take place without interference. The net effect of
two V operations performed simultaneously on the same semaphore, should be that the
semaphore's new value is 2 greater than it was.

The mnemonic significance of P and V is unclear to most of the world, as Dijkstra is Dutch.
However, in the interest of true scholarship: P stands for prolagen, a made-up word derived
from proberen te verlagen, which means try to decrease. V stands for verhogen, which means
increase. The mnemonic significance is discussed in one of Dijkstra's technical notes, EWD 74.

sem_wait(3RT) and sem_post(3RT) correspond to Dijkstra's P and V operations.
sem_trywait(3RT) is a conditional form of the P operation. If the calling thread cannot
decrement the value of the semaphore without waiting, the call to returns immediately with a
nonzero value.

The two basic sorts of semaphores are binary semaphores and counting semaphores. Binary
semaphores never take on values other than zero or one, and counting semaphores take on
arbitrary nonnegative values. A binary semaphore is logically just like a mutex.

Synchronization With Semaphores

Chapter 4 • Programming with Synchronization Objects 119

However, although not always enforced, mutexes should be unlocked only by the thread that
holds the lock. Because no notion exists of “the thread that holds the semaphore,” any thread
can perform a V or sem_post (3RT) operation.

Counting semaphores are nearly as powerful as conditional variables when used in conjunction
with mutexes. In many cases, the code might be simpler when implemented with counting
semaphores rather than with condition variables, as shown in Example 4–14, Example 4–15,
and Example 4–16.

However, when a mutex is used with condition variables, an implied bracketing is present. The
bracketing clearly delineates which part of the program is being protected. This behavior is not
necessarily the case for a semaphore, which might be called the go to of concurrent
programming. A semaphore is powerful but too easy to use in an unstructured, indeterminate
way.

Named and Unnamed Semaphores
POSIX semaphores can be unnamed or named. Unnamed semaphores are allocated in process
memory and initialized. Unnamed semaphores might be usable by more than one process,
depending on how the semaphore is allocated and initialized. Unnamed semaphores are either
private, inherited through fork(), or are protected by access protections of the regular file in
which they are allocated and mapped.

Named semaphores are like process-shared semaphores, except that named semaphores are
referenced with a pathname rather than a pshared value. Named semaphores are sharable by
several processes. Named semaphores have an owner user-id, group-id, and a protection mode.

The functions sem_open, sem_getvalue, sem_close, and sem_unlink are available to open,
retrieve, close, and remove named semaphores. By using sem_open, you can create a named
semaphore that has a name defined in the file system name space.

For more information about named semaphores, see the sem_open, sem_getvalue, sem_close,
and sem_unlink man pages.

Counting Semaphores Overview
Conceptually, a semaphore is a nonnegative integer count. Semaphores are typically used to
coordinate access to resources, with the semaphore count initialized to the number of free
resources. Threads then atomically increment the count when resources are added and
atomically decrement the count when resources are removed.

When the semaphore count becomes zero, no more resources are present. Threads that try to
decrement the semaphore when the count is zero block until the count becomes greater than
zero.

Synchronization With Semaphores

Multithreaded Programming Guide • October 2012 (Beta)120

TABLE 4–6 Routines for Semaphores

Operation Related Function Description

Initialize a semaphore “sem_init Syntax” on page 121

Increment a semaphore “sem_post Syntax” on page 123

Block on a semaphore count “sem_wait Syntax” on page 123

Decrement a semaphore count “sem_trywait Syntax” on page 124

Destroy the semaphore state “sem_destroy Syntax” on page 124

Because semaphores need not be acquired and be released by the same thread, semaphores can
be used for asynchronous event notification, such as in signal handlers. And, because
semaphores contain state, semaphores can be used asynchronously without acquiring a mutex
lock as is required by condition variables. However, semaphores are not as efficient as mutex
locks.

The scheduling policy determines the order in which blocked threads are awakened. The
default scheduling policy, SCHED_OTHER, does not specify the order in which threads are
awakened. Under the SCHED_FIFO and SCHED_RR real-time scheduling policies, threads are
awakened in priority order.

Semaphores must be initialized before use, however semaphores do not have attributes.

Initializing a Semaphore
Use sem-init to initialize the unnamed semaphore variable pointed to by sem to value amount.

sem_init Syntax
int sem_init(sem_t *sem, int pshared, unsigned int value);

#include <semaphore.h>

sem_t sem;

int pshared;
int ret;
int value;

/* initialize a private semaphore */

pshared = 0;

value = 1;

ret = sem_init(&sem, pshared, value);

If the value of pshared is zero, then the semaphore cannot be shared between processes. If the
value of pshared is nonzero, then the semaphore can be shared between processes.

Multiple threads must not initialize the same semaphore.

Synchronization With Semaphores

Chapter 4 • Programming with Synchronization Objects 121

A semaphore must not be reinitialized while other threads might be using the semaphore.

Initializing Semaphores With Intraprocess Scope

When pshared is 0, the semaphore can be used by all the threads in this process only.

#include <semaphore.h>

sem_t sem;

int ret;
int count = 4;

/* to be used within this process only */

ret = sem_init(&sem, 0, count);

Initializing Semaphores With Interprocess Scope

When pshared is nonzero, the semaphore can be shared by other processes.

#include <semaphore.h>

sem_t sem;

int ret;
int count = 4;

/* to be shared among processes */

ret = sem_init(&sem, 1, count);

sem_init Return Values
sem_init() returns zero after completing successfully. Any other return value indicates that an
error occurred. When any of the following conditions occurs, the function fails and returns the
corresponding value.

EINVAL

Description: The value argument exceeds SEM_VALUE_MAX .

ENOSPC

Description: A resource that is required to initialize the semaphore has been exhausted. The
limit on semaphores SEM_NSEMS_MAX has been reached.

EPERM

Description: The process lacks the appropriate privileges to initialize the semaphore.

Incrementing a Semaphore
Use sem_post to atomically increment the semaphore pointed to by sem.

Synchronization With Semaphores

Multithreaded Programming Guide • October 2012 (Beta)122

sem_post Syntax
int sem_post(sem_t *sem);

#include <semaphore.h>

sem_t sem;

int ret;

ret = sem_post(&sem); /* semaphore is posted */

When any threads are blocked on the semaphore, one of the threads is unblocked.

sem_post Return Values
sem_post() returns zero after completing successfully. Any other return value indicates that an
error occurred. When the following condition occurs, the function fails and returns the
corresponding value.

EINVAL

Description: sem points to an illegal address.

Blocking on a Semaphore Count
Use sem_wait to block the calling thread until the semaphore count pointed to by sem becomes
greater than zero, then atomically decrement the count.

sem_wait Syntax
int sem_wait(sem_t *sem);

#include <semaphore.h>

sem_t sem;

int ret;

ret = sem_wait(&sem); /* wait for semaphore */

sem_wait Return Values
sem_wait() returns zero after completing successfully. Any other return value indicates that an
error occurred. When any of the following conditions occurs, the function fails and returns the
corresponding value.

EINVAL

Description: sem points to an illegal address.

EINTR

Description: A signal interrupted this function.

Synchronization With Semaphores

Chapter 4 • Programming with Synchronization Objects 123

Decrementing a Semaphore Count
Use sem_trywait to try to atomically decrement the count in the semaphore pointed to by sem
when the count is greater than zero.

sem_trywait Syntax
int sem_trywait(sem_t *sem);

#include <semaphore.h>

sem_t sem;

int ret;

ret = sem_trywait(&sem); /* try to wait for semaphore*/

This function is a nonblocking version of sem_wait(). sem_trywait() returns immediately if
unsuccessful.

sem_trywait Return Values
sem_trywait() returns zero after completing successfully. Any other return value indicates
that an error occurred. When any of the following conditions occurs, the function fails and
returns the corresponding value.

EINVAL

Description: sem points to an illegal address.

EINTR

Description: A signal interrupted this function.

EAGAIN

Description: The semaphore was already locked, so the semaphore cannot be immediately
locked by the sem_trywait() operation.

Destroying the Semaphore State
Use sem_destroy to destroy any state that is associated with the unnamed semaphore pointed
to by sem.

sem_destroy Syntax
int sem_destroy(sem_t *sem);

#include <semaphore.h>

sem_t sem;

Synchronization With Semaphores

Multithreaded Programming Guide • October 2012 (Beta)124

int ret;

ret = sem_destroy(&sem); /* the semaphore is destroyed */

The space for storing the semaphore is not freed.

sem_destroy Return Values
sem_destroy() returns zero after completing successfully. Any other return value indicates
that an error occurred. When the following condition occurs, the function fails and returns the
corresponding value.

EINVAL

Description: sem points to an illegal address.

Producer and Consumer Problem Using Semaphores
The data structure in Example 4–14 is similar to the structure used for the condition variables
example, shown in Example 4–11. Two semaphores represent the number of full and empty
buffers. The semaphores ensure that producers wait until buffers are empty and that consumers
wait until buffers are full.

EXAMPLE 4–14 Producer and Consumer Problem With Semaphores

typedef struct {

char buf[BSIZE];

sem_t occupied;

sem_t empty;

int nextin;

int nextout;

sem_t pmut;

sem_t cmut;

} buffer_t;

buffer_t buffer;

sem_init(&buffer.occupied, 0, 0);

sem_init(&buffer.empty,0, BSIZE);

sem_init(&buffer.pmut, 0, 1);

sem_init(&buffer.cmut, 0, 1);

buffer.nextin = buffer.nextout = 0;

Another pair of binary semaphores plays the same role as mutexes. The semaphores control
access to the buffer when multiple producers use multiple empty buffer slots, and when
multiple consumers use multiple full buffer slots. Mutexes would work better here, but would
not provide as good an example of semaphore use.

Synchronization With Semaphores

Chapter 4 • Programming with Synchronization Objects 125

EXAMPLE 4–15 Producer and Consumer Problem: the Producer

void producer(buffer_t *b, char item) {

sem_wait(&b->empty);

sem_wait(&b->pmut);

b->buf[b->nextin] = item;

b->nextin++;

b->nextin %= BSIZE;

sem_post(&b->pmut);

sem_post(&b->occupied);

}

EXAMPLE 4–16 Producer and Consumer Problem: the Consumer

char consumer(buffer_t *b) {

char item;

sem_wait(&b->occupied);

sem_wait(&b->cmut);

item = b->buf[b->nextout];

b->nextout++;

b->nextout %= BSIZE;

sem_post(&b->cmut);

sem_post(&b->empty);

return(item);

}

Read-Write Lock Attributes
Read-write locks permit concurrent reads and exclusive writes to a protected shared resource.
The read-write lock is a single entity that can be locked in read or write mode. To modify a
resource, a thread must first acquire the exclusive write lock. An exclusive write lock is not
permitted until all read locks have been released.

Database access can be synchronized with a read-write lock. Read-write locks support
concurrent reads of database records because the read operation does not change the record's
information. When the database is to be updated, the write operation must acquire an exclusive
write lock.

To change the default read-write lock attributes, you can declare and initialize an attribute
object. Often, the read-write lock attributes are set up in one place at the beginning of the
application. Set up at the beginning of the application makes the attributes easier to locate and
modify. The following table lists the functions discussed in this section that manipulate
read-write lock attributes.

Read-Write Lock Attributes

Multithreaded Programming Guide • October 2012 (Beta)126

TABLE 4–7 Routines for Read-Write Lock Attributes

Operation Related Function Description

Initialize a read-write lock attribute “pthread_rwlockattr_init Syntax” on page 127

Destroy a read-write lock attribute “pthread_rwlockattr_destroy Syntax” on page 127

Set a read-write lock attribute “pthread_rwlockattr_setpshared Syntax” on page 128

Get a read-write lock attribute “pthread_rwlockattr_getpshared Syntax” on page 129

Initializing a Read-Write Lock Attribute
pthread_rwlockattr_init(3C) initializes a read-write lock attributes object attr with the
default value for all of the attributes defined by the implementation.

pthread_rwlockattr_init Syntax
#include <pthread.h>

int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

Results are undefined if pthread_rwlockattr_init is called specifying an already initialized
read-write lock attributes object. After a read-write lock attributes object initializes one or more
read-write locks, any function that affects the object, including destruction, does not affect
previously initialized read-write locks.

pthread_rwlockattr_init Return Values
If successful, pthread_rwlockattr_init() returns zero. Otherwise, an error number is
returned to indicate the error.

ENOMEM

Description: Insufficient memory exists to initialize the read-write attributes object.

Destroying a Read-Write Lock Attribute
pthread_rwlockattr_destroy(3C) destroys a read-write lock attributes object.

pthread_rwlockattr_destroy Syntax
#include <pthread.h>

int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);

The effect of subsequent use of the object is undefined until the object is re-initialized by
another call to pthread_rwlockattr_init(). An implementation can cause
pthread_rwlockattr_destroy() to set the object referenced by attr to an invalid value.

Read-Write Lock Attributes

Chapter 4 • Programming with Synchronization Objects 127

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-rwlockattr-init-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-rwlockattr-destroy-3c

pthread_rwlockattr_destroy Return Values
If successful, pthread_rwlockattr_destroy() returns zero. Otherwise, an error number is
returned to indicate the error.

EINVAL

Description: The value specified by attr is invalid.

Setting a Read-Write Lock Attribute
pthread_rwlockattr_setpshared(3C) sets the process-shared read-write lock attribute.

pthread_rwlockattr_setpshared Syntax
#include <pthread.h>

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr, int pshared);

The pshared lock attribute has one of the following values:

PTHREAD_PROCESS_SHARED

Description: Permits a read-write lock to be operated on by any thread that has access to the
memory where the read-write lock is allocated. Operation on the read-write lock is
permitted even if the lock is allocated in memory that is shared by multiple processes.

PTHREAD_PROCESS_PRIVATE

Description: The read-write lock is only operated upon by threads created within the same
process as the thread that initialized the read-write lock. If threads of differing processes
attempt to operate on such a read-write lock, the behavior is undefined. The default value of
the process-shared attribute is PTHREAD_PROCESS_PRIVATE.

pthread_rwlockattr_setpshared Return Values
If successful, pthread_rwlockattr_setpshared() returns zero. Otherwise, an error number is
returned to indicate the error.

EINVAL

Description: The value specified by attr or pshared is invalid.

Getting a Read-Write Lock Attribute
pthread_rwlockattr_getpshared(3C) gets the process-shared read-write lock attribute.

Read-Write Lock Attributes

Multithreaded Programming Guide • October 2012 (Beta)128

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-rwlockattr-setpshared-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-rwlockattr-getpshared-3c

pthread_rwlockattr_getpshared Syntax
#include <pthread.h>

int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *restrict attr,
int *restrict pshared);

pthread_rwlockattr_getpshared() obtains the value of the process-shared attribute from the
initialized attributes object referenced by attr.

pthread_rwlockattr_getpshared Return Values
If successful, pthread_rwlockattr_getpshared() returns zero. Otherwise, an error number is
returned to indicate the error.

EINVAL

Description: The value specified by attr or pshared is invalid.

Using Read-Write Locks
After the attributes for a read-write lock are configured, you initialize the read-write lock. The
following functions are used to initialize or destroy, lock or unlock, or try to lock a read-write
lock. The following table lists the functions discussed in this section that manipulate read-write
locks.

TABLE 4–8 Routines that Manipulate Read-Write Locks

Operation Related Function Description

Initialize a read-write lock “pthread_rwlock_init Syntax” on page 130

Read lock on read-write lock “pthread_rwlock_rdlock Syntax” on page 130

Read lock with a nonblocking read-write lock “pthread_rwlock_tryrdlock Syntax” on page 132

Write lock on read-write lock “pthread_rwlock_wrlock Syntax” on page 133

Write lock with a nonblocking read-write lock “pthread_rwlock_trywrlock Syntax” on page 134

Unlock a read-write lock “pthread_rwlock_unlock Syntax” on page 135

Destroy a read-write lock “pthread_rwlock_destroy Syntax” on page 136

Initializing a Read-Write Lock
Use pthread_rwlock_init(3C) to initialize the read-write lock referenced by rwlock with the
attributes referenced by attr.

Using Read-Write Locks

Chapter 4 • Programming with Synchronization Objects 129

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-rwlock-init-3c

pthread_rwlock_init Syntax
#include <pthread.h>

int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,
const pthread_rwlockattr_t *restrict attr);

pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

If attr is NULL, the default read-write lock attributes are used. The effect is the same as passing
the address of a default read-write lock attributes object. After the lock is initialized, the lock can
be used any number of times without being re-initialized. On successful initialization, the state
of the read-write lock becomes initialized and unlocked. Results are undefined if
pthread_rwlock_init() is called specifying an already initialized read-write lock. Results are
undefined if a read-write lock is used without first being initialized.

In cases where default read-write lock attributes are appropriate, the macro
PTHREAD_RWLOCK_INITIALIZER can initialize read-write locks that are statically allocated. The
effect is equivalent to dynamic initialization by a call to pthread_rwlock_init() with the
parameter attr specified as NULL, except that no error checks are performed.

pthread_rwlock_init Return Values
If successful, pthread_rwlock_init() returns zero. Otherwise, an error number is returned to
indicate the error.

If pthread_rwlock_init() fails, rwlock is not initialized and the contents of rwlock are
undefined.

EINVAL

Description: The value specified by attr or rwlock is invalid.

Acquiring the Read Lock on Read-Write Lock
pthread_rwlock_rdlock(3C) applies a read lock to the read-write lock referenced by rwlock.

pthread_rwlock_rdlock Syntax
#include <pthread.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);

The calling thread acquires the read lock if a writer does not hold the lock and no writers are
blocked on the lock. Whether the calling thread acquires the lock when a writer does not hold
the lock and writers are waiting for the lock is unspecified. If a writer holds the lock, the calling
thread does not acquire the read lock. If the read lock is not acquired, the calling thread blocks.
The thread does not return from the pthread_rwlock_rdlock() until the thread can acquire
the lock. Results are undefined if the calling thread holds a write lock on rwlock at the time the
call is made.

Using Read-Write Locks

Multithreaded Programming Guide • October 2012 (Beta)130

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-rwlock-rdlock-3c

Implementations are allowed to favor writers over readers to avoid writer starvation. The
Oracle Solaris implementation favors writers over readers.

A thread can hold multiple concurrent read locks on rwlock The thread can successfully call
pthread_rwlock_rdlock() n times. The thread must call pthread_rwlock_unlock() n times
to perform matching unlocks.

Results are undefined if pthread_rwlock_rdlock() is called with an uninitialized read-write
lock.

A thread signal handler processes a signal delivered to a thread waiting for a read-write lock. On
return from the signal handler, the thread resumes waiting for the read-write lock for reading as
if the thread was not interrupted.

pthread_rwlock_rdlock Return Values
If successful, pthread_rwlock_rdlock() returns zero. Otherwise, an error number is returned
to indicate the error.

EINVAL

Description: The value specified by attr or rwlock is invalid.

Acquiring a Read Lock on a Read-Write Lock Before a
Specified Absolute Time
The pthread_rwlock_timedrdlock(3C) function applies a read lock to the read-write lock
referenced by rwlock as in the pthread_rwlock_rdlock() function.

pthread_rwlock_timedrdlock Syntax
#include <pthread.h>

#include <time.h>

int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abs_timeout);

If the lock cannot be acquired without waiting for other threads to unlock the lock, this wait will
be terminated when the specified timeout expires. The timeout expires when the absolute time
specified by abs_timeout passes, as measured by the CLOCK_REALTIME clock (that is, when the
value of that clock equals or exceeds abs_timeout), or if the absolute time specified by
abs_timeout has already been passed at the time of the call.

The resolution of the timeout is the resolution of the CLOCK_REALTIME clock. The timespec data
type is defined in the <time.h> header. Under no circumstances does the function fail with a
timeout if the lock can be acquired immediately. The validity of the timeout parameter need not
be checked if the lock can be immediately acquired.

Using Read-Write Locks

Chapter 4 • Programming with Synchronization Objects 131

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-rwlock-timedrdlock-3c

If a signal that causes a signal handler to be executed is delivered to a thread blocked on a
read-write lock with a call to pthread_rwlock_timedrdlock(), upon return from the signal
handler the thread resumes waiting for the lock as if it was not interrupted.

The calling thread might deadlock if at the time the call is made it holds a write lock on rwlock.

The pthread_rwlock_reltimedrdlock_np() function is identical to the
pthread_rwlock_timedrdlock() function, except that the timeout is specified as a relative
time interval.

pthread_rwlock_timedrdlock Return Values
If successful, returns 0 if the lock for writing on the read-write lock object referenced by rwlock
is acquired. Otherwise, an error number is returned to indicate the error.

ETIMEDOUT

Description: The lock could not be acquired before the specified timeout expired.

EAGAIN

Description: The read lock could not be acquired because the maximum number of read locks
for lock would be exceeded.

EDEADLK

Description: The calling thread already holds the rwlock.

EINVAL

Description: The value specified by rwlock does not refer to an initialized read-write lock
object, or the timeout nanosecond value is less than zero or greater than or equal to 1,000
million.

Acquiring a Non-Blocking Read Lock on a Read-Write
Lock
pthread_rwlock_tryrdlock(3C) applies a read lock as in pthread_rwlock_rdlock() with the
exception that the function fails if any thread holds a write lock on rwlock or writers are blocked
on rwlock.

pthread_rwlock_tryrdlock Syntax
#include <pthread.h>

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

Using Read-Write Locks

Multithreaded Programming Guide • October 2012 (Beta)132

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-rwlock-tryrdlock-3c

pthread_rwlock_tryrdlock Return Values
pthread_rwlock_tryrdlock() returns zero if the lock for reading on the read-write lock object
referenced by rwlock is acquired. If the lock is not acquired, an error number is returned to
indicate the error.

EBUSY

Description: The read-write lock could not be acquired for reading because a writer holds the
lock or was blocked on it.

Acquiring the Write Lock on a Read-Write Lock
pthread_rwlock_wrlock(3C) applies a write lock to the read-write lock referenced by rwlock.

pthread_rwlock_wrlock Syntax
#include <pthread.h>

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

The calling thread acquires the write lock if no other reader thread or writer thread holds the
read-write lock rwlock. Otherwise, the thread blocks. The thread does not return from the
pthread_rwlock_wrlock() call until the thread can acquire the lock. Results are undefined if
the calling thread holds the read-write lock, either a read lock or write lock, at the time the call is
made.

Implementations are allowed to favor writers over readers to avoid writer starvation. The
Oracle Solaris implementation favors writers over readers.

Results are undefined if pthread_rwlock_wrlock() is called with an uninitialized read-write
lock.

The thread signal handler processes a signal delivered to a thread waiting for a read-write lock
for writing. Upon return from the signal handler, the thread resumes waiting for the read-write
lock for writing as if the thread was not interrupted.

pthread_rwlock_wrlock Return Values
pthread_rwlock_rwlock() returns zero if the lock for writing on the read-write lock object
referenced by rwlock is acquired. If the lock is not acquired, an error number is returned to
indicate the error.

Using Read-Write Locks

Chapter 4 • Programming with Synchronization Objects 133

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-rwlock-wrlock-3c

Acquiring a Non-blocking Write Lock on a Read-Write
Lock
pthread_rwlock_trywrlock(3C) applies a write lock like pthread_rwlock_wrlock(), with the
exception that the function fails if any thread currently holds rwlock, for reading or writing.

pthread_rwlock_trywrlock Syntax
#include <pthread.h>

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

Results are undefined if pthread_rwlock_trywrlock() is called with an uninitialized
read-write lock.

pthread_rwlock_trywrlock Return Values
If successful, pthread_rwlock_trywrlock() returns zero if the lock for writing on the
read-write lock object referenced by rwlock is acquired. Otherwise, an error number is returned
to indicate the error.

EBUSY

Description: The read-write lock could not be acquired for writing because the read-write
lock is already locked for reading or writing.

Acquiring a Write Lock on a Read-Write Lock Before a
Specified Absolute Time
The pthread_rwlock_timedwrlock(3C) function applies a write lock to the read-write lock
referenced by rwlock as in the pthread_rwlock_wrlock() function, but attempts to apply the
lock only until a specified absolute time.

pthread_rwlock_timedwrlock Syntax
#include <pthread.h>

#include <time.h>

int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abs_timeout);

The calling thread acquires the write lock if no other reader thread or writer thread holds the
read-write lock rwlock. If the lock cannot be acquired without waiting for other threads to
unlock the lock, this wait will be terminated when the specified timeout expires. The timeout
expires when the absolute time specified by abs_timeoutpasses, as measured by the
CLOCK_REALTIME clock (that is, when the value of that clock equals or exceeds abs_timeout) or if

Using Read-Write Locks

Multithreaded Programming Guide • October 2012 (Beta)134

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-rwlock-trywrlock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-rwlock-timedwrlock-3c

the absolute time specified by abs_timeout has already been passed at the time of the call. The
pthread_rwlock_reltimedwrlock_np() function is identical to the
pthread_rwlock_timedwrlock() function, except that the timeout is specified as a relative
time interval.

pthread_rwlock_timedwrlock Returns
If successful, returns 0 if the lock for writing on the read-write lock object referenced by rwlock
is acquired. Otherwise, an error number is returned to indicate the error.

ETIMEDOUT

Description: The lock could not be acquired before the specified timeout expired.

EDEADLK

Description: The calling thread already holds the rwlock.

EINVAL

Description: The value specified by rwlock does not refer to an initialized read-write lock
object, or the timeout nanosecond value is less than zero or greater than or equal to 1,000
million.

Unlocking a Read-Write Lock
pthread_rwlock_unlock(3C) releases a lock held on the read-write lock object referenced by
rwlock.

pthread_rwlock_unlock Syntax
#include <pthread.h>

int pthread_rwlock_unlock (pthread_rwlock_t *rwlock);

Results are undefined if the read-write lock rwlock is not held by the calling thread.

If pthread_rwlock_unlock() is called to release a read lock from the read-write lock object,
and other read locks are currently held on this lock object, the object remains in the read locked
state. If pthread_rwlock_unlock() releases the calling thread's last read lock on this read-write
lock object, the calling thread is no longer an owner of the object. If pthread_rwlock_unlock()
releases the last read lock for this read-write lock object, the read-write lock object is put in the
unlocked state with no owners.

If pthread_rwlock_unlock() is called to release a write lock for this read-write lock object, the
lock object is put in the unlocked state with no owners.

If pthread_rwlock_unlock() unlocks the read-write lock object and multiple threads are
waiting to acquire the lock object for writing, the scheduling policy determines which thread
acquires the object for writing. If multiple threads are waiting to acquire the read-write lock

Using Read-Write Locks

Chapter 4 • Programming with Synchronization Objects 135

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-rwlock-unlock-3c

object for reading, the scheduling policy determines the order the waiting threads acquire the
object for reading. If multiple threads are blocked on rwlock for both read locks and write locks,
whether the readers or the writer acquire the lock first is unspecified.

Results are undefined if pthread_rwlock_unlock() is called with an uninitialized read-write
lock.

pthread_rwlock_unlock Return Values
If successful, pthread_rwlock_unlock() returns zero. Otherwise, an error number is returned
to indicate the error.

Destroying a Read-Write Lock
pthread_rwlock_destroy(3C) destroys the read-write lock object referenced by rwlock and
releases any resources used by the lock.

pthread_rwlock_destroy Syntax
#include <pthread.h>

int pthread_rwlock_destroy(pthread_rwlock_t **rwlock);

The effect of subsequent use of the lock is undefined until the lock is re-initialized by another
call to pthread_rwlock_init(). An implementation can cause pthread_rwlock_destroy() to
set the object referenced by rwlock to an invalid value. Results are undefined if
pthread_rwlock_destroy() is called when any thread holds rwlock. Attempting to destroy an
uninitialized read-write lock results in undefined behavior. A destroyed read-write lock object
can be re-initialized using pthread_rwlock_init(). The results of otherwise referencing the
read-write lock object after the lock object has been destroyed are undefined.

pthread_rwlock_destroy Return Values
If successful, pthread_rwlock_destroy() returns zero. Otherwise, an error number is returned
to indicate the error.

EINVAL

Description: The value specified by attr or rwlock is invalid.

Using Read-Write Locks

Multithreaded Programming Guide • October 2012 (Beta)136

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-rwlock-destroy-3c

Using Barrier Synchronization
In cases where you must wait for a number of tasks to be completed before an overall task can
proceed, barrier synchronization can be used. POSIX threads specifies a synchronization object
called a barrier, along with barrier functions. The functions create the barrier, specifying the
number of threads that are synchronizing on the barrier, and set up threads to perform tasks
and wait at the barrier until all the threads reach the barrier. When the last thread arrives at the
barrier, all the threads resume execution.

See “Parallelizing a Loop on a Shared-Memory Parallel Computer” on page 233 for more about
barrier synchronization.

Initializing a Synchronization Barrier
Use pthread_barrier_init(3C) to allocate resources for a barrier and initialize its attributes.

pthread_barrier_init() Syntax
int pthread_barrier_init(pthread_barrier_t *barrier,

const pthread_barrierattr_t *restrict attr,
unsigned count);

#include <pthread.h>

pthread_barrier_t barrier;
pthread_barrierattr_t attr;
unsigned count;
int ret;
ret = pthread_barrier_init(&barrier, &attr, count);

The pthread_barrier_init() function allocates any resources required to use the barrier
referenced by barrier and initializes the barrier with attributes referenced by attr. If attr is
NULL, the default barrier attributes are used; the effect is the same as passing the address of a
default barrier attributes object. The count argument specifies the number of threads that must
call pthread_barrier_wait() before any of them successfully return from the call. The value
specified by count must be greater than 0.

pthread_barrier_init()Return Values
pthread_barrier_init() returns zero after completing successfully. Any other return value
indicates that an error occurred. If the following condition occurs, the function fails and returns
the corresponding value.

EINVAL

Description: The value specified by count is equal to 0, or the value specified by attr is invalid

Using Barrier Synchronization

Chapter 4 • Programming with Synchronization Objects 137

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-barrier-init-3c

EAGAIN

Description: The system lacks the necessary resources to initialize another barrier.

ENOMEM

Description: Insufficient memory exists to initialize the barrier.

EBUSY

Description: There was an attempt to destroy a barrier while it is in use (for example, while
being used in a pthread_barrier_wait() call) by another thread.

Waiting for Threads to Synchronize at a Barrier
Use pthread_barrier_wait(3C) to synchronize threads at a specified barrier. The calling
thread blocks until the required number of threads have called pthread_barrier_wait()

specifying the barrier. The number of threads is specified in the pthread_barrier_init()
function.

When the required number of threads have called pthread_barrier_wait() specifying the
barrier, the constant PTHREAD_BARRIER_SERIAL_THREAD is returned to one unspecified thread
and 0 is returned to each of the remaining threads. The barrier is then reset to the state it had as
a result of the most recent pthread_barrier_init() function that referenced it.

pthread_barrier_wait() Syntax
int pthread_barrier_wait(pthread_barrier_t *barrier);

#include <pthread.h>

pthread_barrier_t barrier;
int ret;
ret = pthread_barrier_wait(&barrier);

pthread_barrier_wait()Return Values
When pthread_barrier_wait() completes successfully, the function returns
PTHREAD_BARRIER_SERIAL_THREAD, which is defined in pthread.h, for one arbitrary thread
synchronized at the barrier. The function returns zero for each of the other threads. Otherwise
an error code is returned.

EINVAL

Description: The value specified by barrier does not refer to an initialized barrier object.

Using Barrier Synchronization

Multithreaded Programming Guide • October 2012 (Beta)138

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-barrier-wait-3c

Destroying a Synchronization Barrier
When a barrier is no longer needed, it should be destroyed. Use the
pthread_barrier_destroy(3C) function to destroy the barrier referenced by barrier and
release any resources used by the barrier.

pthread_barrier_destroy Syntax
int pthread_barrier_destroy(pthread_barrier_t *barrier);

#include <pthread.h>

pthread_barrier_t barrier;
int ret;
ret = pthread_barrier_destroy(&barrier);

pthread_barrier_destroy Return Values
pthread_barrier_destroy() returns zero after completing successfully. Any other return
value indicates that an error occurred. If the following condition occurs, the function fails and
returns the corresponding value.

EINVAL

Description: Indicates that the value of barrier was not valid.

EBUSY

Description: An attempt was made to destroy a barrier while it is in use (for example, while
being used in a pthread_barrier_wait() by another thread.

Initializing a Barrier Attributes Object
The pthread_barrierattr_init(3C) function initializes a barrier attributes object attr with
the default values for the attributes defined for the object by the implementation. Currently,
only the process-shared attribute is provided, and the pthread_barrierattr_getpshared()
and pthread_barrierattr_setpshared() functions are used to get and set the attribute.

After a barrier attributes object has been used to initialize one or more barriers, any function
affecting the attributes object (including destruction) does not affect any previously initialized
barrier.

pthread_barrierattr_init() Syntax
int pthread_barrierattr_init(pthread_barrierattr_t *attr);

#include <pthread.h>

pthread_barrierattr_t attr;
int ret;
ret = pthread_barrierattr_init(&attr);

Using Barrier Synchronization

Chapter 4 • Programming with Synchronization Objects 139

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-barrier-destroy-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-barrierattr-init-3c

pthread_barrierattr_init()Return Values
pthread_barrierattr_init() returns zero after completing successfully. Any other return
value indicates that an error occurred. If the following condition occurs, the function fails and
returns the corresponding value.

ENOMEM

Description: Insufficient memory exists to initialize the barrier attributes object.

Setting a Barrier Process-Shared Attribute
The pthread_barrierattr_setpshared() function sets the process-shared attribute in an
initialized attributes object referenced by attr. The process-shared attribute can have the
following values:

PTHREAD_PROCESS_PRIVATE The barrier can only be operated upon by threads created
within the same process as the thread that initialized the
barrier. This is the default value of the process-shared attribute.

PTHREAD_PROCESS_SHARED The barrier can be operated upon by any thread that has access
to the memory where the barrier is allocated.

pthread_barrierattr_setpshared() Syntax
int pthread_barrierattr_setpshared(pthread_barrierattr_t *attr, int pshared);

pthread_barrierattr_setpshared()Return Values
pthread_barrierattr_setpshared() returns zero after completing successfully. Any other
return value indicates that an error occurred. If the following condition occurs, the function
fails and returns the corresponding value.

EINVAL

Description: Indicates that the value of attr was not valid, or the new value specified for the
pshared is not valid.

Getting a Barrier Process-Shared Attribute
The pthread_barrierattr_getpshared(3C) function obtains the value of the process-shared
attribute from the attributes object referenced by attr. The value is set by the
pthread_barrierattr_setpshared() function.

Using Barrier Synchronization

Multithreaded Programming Guide • October 2012 (Beta)140

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-barrierattr-getpshared-3c

pthread_barrierattr_getpshared() Syntax
int pthread_barrierattr_getpshared(const pthread_barrierattr_t *restrict attr,

int *restrict pshared);

pthread_barrierattr_getpshared()Return Values
pthread_barrierattr_getpshared() returns zero after completing successfully, and stores
the value of the process-shared attribute of attr into the object referenced by the pshared
parameter. Any other return value indicates that an error occurred. If the following condition
occurs, the function fails and returns the corresponding value.

EINVAL

Description: Indicates that the value of attr was not valid.

Destroying a Barrier Attributes Object
The pthread_barrierattr_destroy() function destroys a barrier attributes object. A
destroyed attr attributes object can be reinitialized using pthread_barrierattr_init().

After a barrier attributes object has been used to initialize one or more barriers, destroying the
object does not affect any previously initialized barrier.

pthread_barrierattr_destroy() Syntax
#include <pthread.h>

int pthread_barrierattr_destroy(pthread_barrierattr_t *attr);

pthread_barrierattr_destroy()Return Values
pthread_barrierattr_destroy() returns zero after completing successfully. Any other return
value indicates that an error occurred. If the following condition occurs, the function fails and
returns the corresponding value.

EINVAL

Description: Indicates that the value of attr was not valid.

Using Barrier Synchronization

Chapter 4 • Programming with Synchronization Objects 141

Synchronization Across Process Boundaries
Each of the synchronization primitives can be used across process boundaries. The primitives
are set up by ensuring that the synchronization variable is located in a shared memory segment
and by calling the appropriate init() routine. The primitive must have been initialized with its
shared attribute set to interprocess.

Producer and Consumer Problem Example
Example 4–17 shows the producer and consumer problem with the producer and consumer in
separate processes. The main routine maps zero-filled memory shared with its child process
into its address space.

A child process is created to run the consumer. The parent runs the producer.

This example also shows the drivers for the producer and consumer. The producer_driver()
reads characters from stdin and calls producer(). The consumer_driver() gets characters by
calling consumer() and writes them to stdout.

The data structure for Example 4–17 is the same as the structure used for the condition
variables example, shown in Example 4–4. Two semaphores represent the number of full and
empty buffers. The semaphores ensure that producers wait for empty buffers and that
consumers wait until the buffers are full.

EXAMPLE 4–17 Synchronization Across Process Boundaries

main() {

int zfd;

buffer_t *buffer;

pthread_mutexattr_t mattr;

pthread_condattr_t cvattr_less, cvattr_more;

zfd = open("/dev/zero", O_RDWR);

buffer = (buffer_t *)mmap(NULL, sizeof(buffer_t),

PROT_READ|PROT_WRITE, MAP_SHARED, zfd, 0);

buffer->occupied = buffer->nextin = buffer->nextout = 0;

pthread_mutex_attr_init(&mattr);

pthread_mutexattr_setpshared(&mattr,

PTHREAD_PROCESS_SHARED);

pthread_mutex_init(&buffer->lock, &mattr);

pthread_condattr_init(&cvattr_less);

pthread_condattr_setpshared(&cvattr_less, PTHREAD_PROCESS_SHARED);

pthread_cond_init(&buffer->less, &cvattr_less);

pthread_condattr_init(&cvattr_more);

pthread_condattr_setpshared(&cvattr_more,

PTHREAD_PROCESS_SHARED);

pthread_cond_init(&buffer->more, &cvattr_more);

Synchronization Across Process Boundaries

Multithreaded Programming Guide • October 2012 (Beta)142

EXAMPLE 4–17 Synchronization Across Process Boundaries (Continued)

if (fork() == 0)

consumer_driver(buffer);

else

producer_driver(buffer);

}

void producer_driver(buffer_t *b) {

int item;

while (1) {

item = getchar();

if (item == EOF) {

producer(b, ‘\0’);
break;

} else

producer(b, (char)item);

}

}

void consumer_driver(buffer_t *b) {

char item;

while (1) {

if ((item = consumer(b)) == ’\0’)

break;

putchar(item);

}

}

Comparing Primitives
The most basic synchronization primitive in threads is the mutual exclusion lock. So, mutual
exclusion lock is the most efficient mechanism in both memory use and execution time. The
basic use of a mutual exclusion lock is to serialize access to a resource.

The next most efficient primitive in threads is the condition variable. The basic use of a
condition variable is to block on a change of state. The condition variable provides a thread wait
facility. Remember that a mutex lock must be acquired before blocking on a condition variable
and must be unlocked after returning from pthread_cond_wait(). The mutex lock must also
be held across the change of state that occurs before the corresponding call to
pthread_cond_signal().

The semaphore uses more memory than the condition variable. The semaphore is easier to use
in some circumstances because a semaphore variable operates on state rather than on control.
Unlike a lock, a semaphore does not have an owner. Any thread can increment a semaphore
that has blocked.

Comparing Primitives

Chapter 4 • Programming with Synchronization Objects 143

The read-write lock permits concurrent reads and exclusive writes to a protected resource. The
read-write lock is a single entity that can be locked in read or write mode. To modify a resource,
a thread must first acquire the exclusive write lock. An exclusive write lock is not permitted
until all read locks have been released.

Comparing Primitives

Multithreaded Programming Guide • October 2012 (Beta)144

Programming With the Oracle Solaris Software

This chapter describes how multithreading interacts with the Oracle Solaris software and how
the software has changed to support multithreading.
■ “Forking Issues in Process Creation” on page 145
■ “Process Creation: exec and exit Issues” on page 149
■ “Timers, Alarms, and Profiling” on page 149
■ “Nonlocal Goto: setjmp and longjmp” on page 150
■ “Resource Limits” on page 151
■ “LWPs and Scheduling Classes” on page 151
■ “Extending Traditional Signals” on page 153
■ “I/O Issues” on page 162

Forking Issues in Process Creation
The default handling of fork() in the Solaris 9 product and earlier Oracle Solaris releases is
somewhat different from the way fork() is handled in POSIX threads. For Oracle Solaris
releases after Solaris 9, fork() behaves as specified for POSIX threads in all cases.

Table 5–1 compares the differences and similarities of fork() handling in Oracle Solaris
threads and pthreads. When the comparable interface is not available either in POSIX threads
or in Oracle Solaris threads, the ‘—' character appears in the table column.

TABLE 5–1 Comparing POSIX and Oracle Solaris fork()Handling

Oracle Solaris Interface POSIX Threads Interface

Fork-one model fork1(2)

fork(2)

fork(2)

Fork-all model forkall(2) forkall(2)

Fork safety — pthread_atfork(3C)

5C H A P T E R 5

145

Fork-One Model
As shown in Table 5–1, the behavior of the pthreads fork(2) function is the same as the
behavior of the Oracle Solaris fork1(2) function. Both the pthreads fork(2) function and the
Oracle Solaris fork1(2) function create a new process, duplicating the complete address space
in the child. However, both functions duplicate only the calling thread in the child process.

Duplication of the calling thread in the child process is useful when the child process
immediately calls exec(), which is what happens after most calls to fork(). In this case, the
child process does not need a duplicate of any thread other than the thread that called fork().

In the child, do not call any library functions after calling fork() and before calling exec().
One of the library functions might use a lock that was held in the parent at the time of the
fork(). The child process may execute only Async-Signal-Safe operations until one of the
exec() handlers is called. See “Signal Handlers and Async-Signal Safety” on page 159 for more
information about Async-Signal-Safe functions.

Fork-One Safety Problem and Solution
Besides the usual concerns such as locking shared data, a library should be well behaved with
respect to forking a child process when only the thread that called fork() is running. The
problem is that the sole thread in the child process might try to grab a lock held by a thread not
duplicated in the child.

Most programs are not likely to encounter this problem. Most programs call exec() in the child
right after the return from fork(). However, if the program has to carry out actions in the child
before calling exec(), or never calls exec(), then the child could encounter deadlocks. Each
library writer should provide a safe solution, although not providing a fork-safe library is not a
large concern because this condition is rare.

For example, assume that T1 is in the middle of printing something and holds a lock for
printf(), when T2 forks a new process. In the child process, if the sole thread (T2) calls
printf(), T2 promptly deadlocks.

The POSIX fork() or the Oracle Solaris fork1() function duplicates only the thread that calls
fork() or fork1() . If you call Oracle Solaris forkall() to duplicate all threads, this issue is not
a concern.

However, forkall() can cause other problems and should be used with care. For instance, if a
thread calls forkall(), the parent thread performing I/O to a file is replicated in the child
process. Both copies of the thread will continue performing I/O to the same file, one in the
parent and one in the child, leading to malfunctions or file corruption.

To prevent deadlock when calling fork1(), ensure that no locks are being held at the time of
forking. The most obvious way to prevent deadlock is to have the forking thread acquire all the
locks that could possibly be used by the child. Because you cannot acquire all locks for printf()
because printf() is owned by libc, you must ensure that printf() is not being used at fork()
time.

Forking Issues in Process Creation

Multithreaded Programming Guide • October 2012 (Beta)146

Tip – The Thread Analyzer utility included in the Oracle Solaris Studio software enables you to
detect deadlocks in a running program. See Oracle Solaris Studio 12.3: Thread Analyzer User’s
Guide for more information.

To manage the locks in your library, you should perform the following actions:

■ Identify all the locks used by the library.
■ Identify the locking order for the locks used by the library. If a strict locking order is not

used, then lock acquisition must be managed carefully.
■ Arrange to acquire all locks at fork time.

In the following example, the list of locks used by the library is { L1,...Ln}. The locking order
for these locks is also L1...Ln.

mutex_lock(L1);

mutex_lock(L2);

fork1(...);

mutex_unlock(L1);

mutex_unlock(L2);

When using either Oracle Solaris threads or POSIX threads, you can add a call to
pthread_atfork(f1, f2, f3) in your library's .init() section. The f1(), f2(), f3() are
defined as follows:

f1() /* This is executed just before the process forks. */

{

mutex_lock(L1); |

mutex_lock(...); | -- ordered in lock order

mutex_lock(Ln); |

} V

f2() /* This is executed in the child after the process forks. */

{

mutex_unlock(L1);

mutex_unlock(...);

mutex_unlock(Ln);

}

f3() /* This is executed in the parent after the process forks. */

{

mutex_unlock(L1);

mutex_unlock(...);

mutex_unlock(Ln);

}

Virtual Forks–vfork
The standard vfork(2) function is unsafe in multithreaded programs. vfork(2) , like
fork1(2), copies only the calling thread in the child process. As in nonthreaded
implementations, vfork() does not copy the address space for the child process.

Forking Issues in Process Creation

Chapter 5 • Programming With the Oracle Solaris Software 147

http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/E21995
http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/E21995

Be careful that the thread in the child process does not change memory before the thread calls
exec(2). vfork() gives the parent address space to the child. The parent gets its address space
back after the child calls exec() or exits. The child must not change the state of the parent.

For example, disastrous problems occur if you create new threads between the call to vfork()

and the call to exec().

Solution: pthread_atfork

Use pthread_atfork() to prevent deadlocks whenever you use the fork-one model.

#include <pthread.h>

int pthread_atfork(void (*prepare) (void), void (*

parent) (void),

void (*child) (void));

The pthread_atfork() function declares fork() handlers that are called before and after
fork() in the context of the thread that called fork().

■ The prepare handler is called before fork() starts.
■ The parent handler is called after fork() returns in the parent.
■ The child handler is called after fork() returns in the child.

Any handler argument can be set to NULL. The order in which successive calls to
pthread_atfork() are made is significant.

For example, a prepare handler could acquire all the mutexes needed. Then the parent and child
handlers could release the mutexes. The prepare handler acquiring all required mutexes ensures
that all relevant locks are held by the thread calling the fork function before the process is
forked. This technique prevents a deadlock in the child.

See the pthread_atfork(3C) man page for more information.

Fork-All Model
The Oracle Solaris forkall(2) function duplicates the address space and all the threads in the
child. Address space duplication is useful, for example, when the child process never calls
exec(2) but does use its copy of the parent address space.

When one thread in a process calls Oracle Solaris forkall(2), threads that are blocked in an
interruptible system call will return EINTR.

Be careful not to create locks that are held by both the parent and child processes. Locks held in
both parent and child processes occur when locks are allocated in shared memory by calling
mmap() with the MAP_SHARED flag. This problem does not occur if the fork-one model is used.

Forking Issues in Process Creation

Multithreaded Programming Guide • October 2012 (Beta)148

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-atfork-3c

Choosing the Right Fork
Starting with the Oracle Solaris 10 release, a call to fork() is identical to a call to fork1().
Specifically, only the calling thread is replicated in the child process. The behavior is the same as
the POSIX fork().

In previous releases of the Oracle Solaris software, the behavior of fork() was dependent on
whether the application was linked with the POSIX threads library. When linked with -lthread

(Oracle Solaris threads) but not linked with -lpthread (POSIX threads), fork() was the same
as forkall(). When linked with -lpthread, regardless of whether fork() was also linked with
-lthread , fork() was the same as fork1().

Starting with the Oracle Solaris 10 release, neither -lthread nor -lpthread is required for
multithreaded applications. The -mt option is used to indicate that you are compiling a
multithreaded application. The standard C library provides all threading support for both sets
of application program interfaces. Applications that require replicate all fork semantics must
call forkall().

Process Creation: exec and exit Issues
Both the exec(2) and exit(2) system calls work as these functions do in single-threaded
processes with the following exception. In a multithreaded application, the functions destroy all
the threads in the address space. Both calls block until all the execution resources, and so all
active threads, are destroyed.

When exec() rebuilds the process, exec() creates a single lightweight process (LWP). The
process startup code builds the initial thread. As usual, if the initial thread returns, the thread
calls exit() and the process is destroyed.

When all the threads in a process exit, the process exits. A call to any exec() function from a
process with more than one thread terminates all threads, and loads and executes the new
executable image. No destructor functions are called.

Timers, Alarms, and Profiling
Over several releases, the Oracle Solaris OS has evolved to a per-process mode for alarms,
interval timers, and profiling.

Timers
All timers are per-process except for the real time profile interval timer, which is per_LWP. See
the setitimer(2) man page for a description of the ITIMER_REALPROF timer.

Timers, Alarms, and Profiling

Chapter 5 • Programming With the Oracle Solaris Software 149

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2setitimer-2

The timer IDs of per-process timers are usable from any LWP. The expiration signals are
generated for the process rather than directed to a specific LWP.

The per-process timers are deleted only by timer_delete(3RT), or when the process
terminates.

In the Oracle Solaris 11.1 release, the POSIX timer API has been enhanced to provide a thread
(LWP) directed signal. The thread directed signal notification can be requested with the use of
the SIGEV_SIGNAL_THR sigevent type. You can effectively create per thread timers by using this
sigevent type. See the timer_create(3C) man page for more information.

Alarms
Alarms operate at the process level, not at the thread level. The alarm() function sends the
signal SIGALRM to the calling process rather than the calling thread.

Profiling a Multithreaded Program
The profil() system call for multithreaded processes has global impact on all LWPs and
threads in the process. Threads cannot use profil() for individual thread profiling. See the
profil(2) man page for more information.

Tip – The Performance Analyzer tool, included in the Oracle Solaris Studio software, can be used
for extensive profiling of multithreaded and single threaded programs. The tool enables you to
see in detail what a thread is doing at any given point. See the Oracle Solaris Studio 12.3:
Performance Analyzer for more information.

Nonlocal Goto: setjmp and longjmp
The scope of setjmp() and longjmp() is limited to one thread, which is acceptable most of the
time. However, the limited scope does mean that a thread that handles a signal can execute a
longjmp() only when a setjmp() is performed in the same thread.

Nonlocal Goto: setjmp and longjmp

Multithreaded Programming Guide • October 2012 (Beta)150

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Atimer-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2profil-2
http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/E21994
http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/E21994

Resource Limits
Resource limits are set on the entire process and are determined by adding the resource use of
all threads in the process. When a soft resource limit is exceeded, the offending thread is sent the
appropriate signal. The sum of the resources that are used in the process is available through
getrusage(3C).

LWPs and Scheduling Classes
The Oracle Solaris kernel has three ranges of dispatching priority. The highest-priority range
(100 to 159) corresponds to the Realtime (RT) scheduling class. The middle-priority range (60
to 99) corresponds to the system (SYS) scheduling class. The system class cannot be applied to a
user process. The lowest-priority range (0 to 59) is shared by the timesharing (TS), interactive
(IA), fair-share (FSS), and fixed priority (FX) scheduling classes.

A scheduling class is maintained for each LWP. When a process is created, the initial LWP
inherits the scheduling class and priority of the creating LWP in the parent process. As more
threads are created, their associated LWPs also inherit this scheduling class and priority.

Threads have the scheduling class and priority of their underlying LWPs. Each LWP in a process
can have a unique scheduling class and priority that are visible to the kernel.

Thread priorities regulate contention for synchronization objects. By default, LWPs are in the
timesharing class. For compute-bound multithreading, thread priorities are not very useful. For
multithreaded applications that use the MT libraries to do synchronization frequently, thread
priorities are more meaningful.

The scheduling class is set by priocntl(2). How you specify the first two arguments determines
whether only the calling LWP or all the LWPs of one or more processes are affected. The third
argument of priocntl() is the command, which can be one of the following commands.

■ PC_GETCID - Get the class ID and class attributes for a specific class.
■ PC_GETCLINFO - Get the class name and class attributes for a specific class.
■ PC_GETPARMS - Get the class identifier and the class-specific scheduling parameters of a

process, an LWP with a process, or a group of processes.
■ PC_SETPARMS - Set the class identifier and the class-specific scheduling parameters of a

process, an LWP with a process, or a group of processes.

The user-level priority of an LWP is its priority within its class, not its dispatch priority. This
does not change over time except by the application of the priocntl() system call. The kernel
determines the dispatch priority of an LWP based on its scheduling class, its priority within that
class, and possibly other factors such as its recently-used CPU time.

LWPs and Scheduling Classes

Chapter 5 • Programming With the Oracle Solaris Software 151

Timeshare Scheduling
Timeshare scheduling attempts to distribute processor resources fairly among the LWPs in the
timesharing (TS) and interactive (IA) scheduling classes.

The priocntl(2) call sets the class priority of one or more processes or LWPs. The normal range
of timesharing class priorities is -60 to +60. The higher the value, the higher the kernel dispatch
priority. The default timesharing class priority is 0.

The old concept of a nice value for a process, where a lower nice value means a higher priority,
is maintained for all of the TS, IA, and FSS scheduling classes. The old nice-based
setpriority(3C) and nice(2) interfaces continue to work by mapping nice values into
priority values. Setting a nice value changes the priority and vice-versa. The range of nice
values is -20 to +20. A nice value of 0 corresponds to a priority of 0. A nice value of -20
corresponds to a priority of +60.

The dispatch priority of time-shared LWPs is calculated from the instantaneous CPU use rate of
the LWP and from its class priority. The class priority indicates the relative priority of the LWPs
to the timeshare scheduler.

LWPs with a smaller class priority value get a smaller, but nonzero, share of the total processing.
An LWP that has received a larger amount of processing is given lower dispatch priority than an
LWP that has received little or no processing.

Realtime Scheduling
The Realtime class (RT) can be applied to a whole process or to one or more LWPs in a process.
You must have superuser privilege to use the Realtime class.

The normal range of realtime class priorities is 0 to 59. The dispatch priority of an LWP in the
realtime class is fixed at its class priority plus 100.

The scheduler always dispatches the highest-priority Realtime LWP. The high-priority Realtime
LWP preempts a lower-priority LWP when a higher-priority LWP becomes runnable. A
preempted LWP is placed at the head of its level queue.

A Realtime LWP retains control of a processor until the LWP is preempted, the LWP suspends,
or its Realtime priority is changed. LWPs in the RT class have absolute priority over processes in
the TS class.

A new LWP inherits the scheduling class of the parent process or LWP. An RT class LWP
inherits the parent's time slice, whether finite or infinite.

A finite time slice LWP runs until the LWP terminates, blocks on an I/O event, gets preempted
by a higher-priority runnable Realtime process, or the time slice expires.

An LWP with an infinite time slice ceases execution only when the LWP terminates, blocks, or is
preempted.

LWPs and Scheduling Classes

Multithreaded Programming Guide • October 2012 (Beta)152

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asetpriority-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2nice-2

Fair Share Scheduling
The fair share scheduler (FSS) scheduling class allows allocation of CPU time based on shares.

The normal range of fair share scheduler class priorities is -60 to 60, which get mapped by the
scheduler into dispatch priorities in the same range (0 to 59) as the TS and IA scheduling
classes. All LWPs in a process must run in the same scheduling class. The FSS class schedules
individual LWPs, not whole processes. Thus, a mix of processes in the FSS and TS/IA classes
could result in unexpected scheduling behavior in both cases.

The TS/IA or the FSS scheduling class processes do not compete for the same CPUs. Processor
sets enable mixing TS/IA with FSS in a system. However, all processes in each processor set
must be in either the TS/IA or the FSS scheduling class.

Fixed Priority Scheduling
The FX, fixed priority, scheduling class assigns fixed priorities and time quantum not adjusted
to accommodate resource consumption. Process priority can be changed only by the process
that assigned the priority or an appropriately privileged process. For more information about
FX, see the priocntl(1) and dispadmin(1M) man pages.

The normal range of fixed priority scheduler class priorities is 0 to 60, which get mapped by the
scheduler into dispatch priorities in the same range (0 to 59) as the TS and IA scheduling
classes.

Extending Traditional Signals
The traditional UNIX signal model is extended to threads in a fairly natural way. The key
characteristics are that the signal disposition is process-wide, but the signal mask is per-thread.
The process-wide disposition of signals is established using the traditional mechanisms
signal(3C),sigaction(2) , and so on.

When a signal handler is marked SIG_DFL or SIG_IGN, the action on receipt of a signal is
performed on the entire receiving process. These signals include exit, core dump, stop,
continue, and ignore. The action on receipt of these signals is carried out on all threads in the
process. Therefore, the issue of which thread picks the signal is nonexistent. The exit, core
dump, stop, continue, and ignore signals have no handlers. See the signal.h(3HEAD) man
page for basic information about signals.

Each thread has its own signal mask. The signal mask lets a thread block some signals while the
thread uses memory or another state that is also used by a signal handler. All threads in a
process share the set of signal handlers that are set up by sigaction(2) and its variants.

Extending Traditional Signals

Chapter 5 • Programming With the Oracle Solaris Software 153

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head

A thread in one process cannot send a signal to a specific thread in another process. A signal
sent by kill(2), sigsend(2), or sigqueue(3RT) to a process is handled by any receptive threads
in the process.

Signals are divided into the following categories: traps, exceptions, and interrupts. Traps and
exceptions are synchronously generated signals. Interrupts are asynchronously generated
signals.

As in traditional UNIX, if a signal is pending, additional occurrences of that signal normally
have no additional effect. A pending signal is represented by a bit, not by a counter. However,
signals that are posted through the sigqueue(3RT) interface allow multiple instances of the
same signal to be queued to the process.

As is the case with single-threaded processes, when a thread receives a signal while blocked in a
system call, the thread might return early. When a thread returns early, the thread either returns
an EINTR error code, or, in the case of I/O calls, with fewer bytes transferred than requested.

Of particular importance to multithreaded programs is the effect of signals on
pthread_cond_wait(3C). This call usually returns without error, a return value of zero, only in
response to a pthread_cond_signal(3C) or a pthread_cond_broadcast(3C). However, if the
waiting thread receives a traditional UNIX signal, pthread_cond_wait() returns with a return
value of zero even though the wakeup was spurious.

Synchronous Signals
Traps, such as SIGILL, SIGFPE, and SIGSEGV, result from an operation on the thread, such as
dividing by zero or making reference to nonexistent memory. A trap is handled only by the
thread that caused the trap. Several threads in a process can generate and handle the same type
of trap simultaneously.

The idea of signals to individual threads is easily extended for synchronously generated signals.
The handler is invoked on the thread that generated the synchronous signal.

However, if the process chooses not to establish an appropriate signal handler, the default
action is taken when a trap occurs. The default action occurs even if the offending thread is
blocked on the generated signal. The default action for such signals is to terminate the process,
perhaps with a core dump.

Such a synchronous signal usually means that something is seriously wrong with the whole
process, not just with a thread. In this case, terminating the process is often a good choice.

Asynchronous Signals
Interrupts, such as SIGINT and SIGIO, are asynchronous with any thread and result from some
action outside the process. These interrupts might be signals sent explicitly by another process,
or might represent external actions such as a user typing a Control-C.

Extending Traditional Signals

Multithreaded Programming Guide • October 2012 (Beta)154

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2kill-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2sigsend-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-cond-wait-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-cond-signal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-cond-broadcast-3c

An interrupt can be handled by any thread whose signal mask allows the interrupt. When more
than one thread is able to receive the interrupt, only one thread is chosen.

When multiple occurrences of the same signal are sent to a process, then each occurrence can
be handled by a separate thread. However, the available threads must not have the signal
masked. When all threads have the signal masked, then the signal is marked pending and the
first thread to unmask the signal handles the signal.

Continuation Semantics
Continuation semantics are the traditional way to deal with signals. When a signal handler
returns, control resumes where the process was at the time of the interruption. This control
resumption is well suited for asynchronous signals in single-threaded processes, as shown in
Example 5–1.

This control resumption is also used as the exception-handling mechanism in other
programming languages, such as PL/1.

EXAMPLE 5–1 Continuation Semantics

unsigned int nestcount;

unsigned int A(int i, int j) {

nestcount++;

if (i==0)

return(j+1)

else if (j==0)

return(A(i-1, 1));

else

return(A(i-1, A(i, j-1)));

}

void sig(int i) {

printf("nestcount = %d\n", nestcount);

}

main() {

sigset(SIGINT, sig);

A(4,4);

}

Operations on Signals
This section describes the operations on signals.

“Setting the Thread's Signal Mask” on page 156
“Sending a Signal to a Specific Thread” on page 156

Extending Traditional Signals

Chapter 5 • Programming With the Oracle Solaris Software 155

“Waiting for a Specified Signal” on page 156
“Waiting for Specified Signal Within a Given Time” on page 157

Setting the Thread's Signal Mask
pthread_sigmask(3C) does for a thread what sigprocmask(2) does for a process.
pthread_sigmask() sets the thread's signal mask. When a new thread is created, its initial mask
is inherited from its creator.

The call to sigprocmask() in a multithreaded process is equivalent to a call to
pthread_sigmask(). See the sigprocmask(2) man page for more information.

Sending a Signal to a Specific Thread
pthread_kill(3C) is the thread analog of kill(2). A pthread_kill() call sends a signal to a
specific thread. A signal that is sent to a specified thread is different from a signal that is sent to a
process. When a signal is sent to a process, the signal can be handled by any thread in the
process. A signal sent by pthread_kill() can be handled only by the specified thread.

You can use pthread_kill() to send signals only to threads in the current process. Because the
thread identifier, type thread_t, is local in scope, you cannot name a thread outside the scope of
the current process.

On receipt of a signal by the target thread, the action invoked (handler, SIG_DFL, or SIG_IGN) is
global, as usual. If you send SIGXXX to a thread, and SIGXXX to kill a process, the whole process
is killed when the target thread receives the signal.

Waiting for a Specified Signal
For multithreaded programs, sigwait(2) is the preferred interface to use because sigwait()
deals well with asynchronously generated signals.

sigwait() causes the calling thread to wait until any signal identified by the sigwait()
function's set argument is delivered to the thread. While the thread is waiting, signals identified
by the set argument are unmasked, but the original mask is restored when the call returns.

All signals identified by the set argument must be blocked on all threads, including the calling
thread. Otherwise, sigwait() might not work correctly.

Use sigwait() to separate threads from asynchronous signals. You can create one thread that
listens for asynchronous signals while you create other threads to block any asynchronous
signals set to this process.

The following example shows the syntax of sigwait() .

#include <signal.h>

int sigwait(const sigset_t *set, int *sig
);

Extending Traditional Signals

Multithreaded Programming Guide • October 2012 (Beta)156

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-sigmask-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2sigprocmask-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-kill-3c

When the signal is delivered, sigwait() clears the pending signal and places the signal number
in sig. Many threads can call sigwait() at the same time, but only one thread returns for each
signal that is received.

With sigwait(), you can treat asynchronous signals synchronously. A thread that deals with
such signals calls sigwait() and returns as soon as a signal arrives. By ensuring that all threads,
including the caller of sigwait(), mask asynchronous signals, ensures signals are handled only
by the intended handler and are handled safely.

By always masking all signals in all threads and calling sigwait() as necessary, your application
is much safer for threads that depend on signals.

Usually, you create one or more threads that call sigwait() to wait for signals. Because
sigwait() retrieves even masked signals, be sure to block the signals of interest in all other
threads so the signals are not accidentally delivered.

When a signal arrives, a signal-handling thread returns from sigwait() , handles the signal,
and calls sigwait() again to wait for more signals. The signal-handling thread is not restricted
to using Async-Signal-Safe functions. The signal-handling thread can synchronize with other
threads in the usual way. The Async-Signal-Safe category is defined in “MT Interface Safety
Levels” on page 206.

Note – sigwait() cannot receive synchronously generated signals.

Waiting for Specified Signal Within a Given Time
sigtimedwait(3RT) is similar to sigwait(2) except that sigtimedwait() fails and returns an
error when a signal is not received in the indicated amount of time. See the sigtimedwait(3RT)
man page for more information.

Thread-Directed Signals
The UNIX signal mechanism is extended with the idea of thread-directed signals.
Thread-directed signals are just like ordinary asynchronous signals, except that thread-directed
signals are sent to a particular thread instead of to a process.

A separate thread that waits for asynchronous signals can be safer and easier than installing a
signal handler that processes the signals.

A better way to deal with asynchronous signals is to treat these signals synchronously. By calling
sigwait(2), a thread can wait until a signal occurs. See “Waiting for a Specified Signal” on
page 156.

Extending Traditional Signals

Chapter 5 • Programming With the Oracle Solaris Software 157

http://www.oracle.com/pls/topic/lookup?ctx=E26505&id=REFMAN3Dsigtimedwait-3rt

EXAMPLE 5–2 Asynchronous Signals and sigwait(2)

main() {

sigset_t set;

void runA(void);

int sig;

sigemptyset(&set);

sigaddset(&set, SIGINT);

pthread_sigmask(SIG_BLOCK, &set, NULL);

pthread_create(NULL, 0, runA, NULL, PTHREAD_DETACHED, NULL);

while (1) {

sigwait(&set, &sig);

printf("nestcount = %d\n", nestcount);

printf("received signal %d\n", sig);

}

}

void runA() {

A(4,4);

exit(0);

}

This example modifies the code of Example 5–1. The main routine masks the SIGINT signal,
creates a child thread that calls function A of the previous example, and issues sigwait() to
handle the SIGINT signal.

Note that the signal is masked in the compute thread because the compute thread inherits its
signal mask from the main thread. The main thread is protected from SIGINT while, and only
while, the thread is not blocked inside of sigwait().

Also, note that no danger exists of having system calls interrupted when you use sigwait().

Completion Semantics
Another way to deal with signals is with completion semantics.

Use completion semantics when a signal indicates that something so catastrophic has happened
that no reason exists to continue executing the current code block. The signal handler runs
instead of the remainder of the block that had the problem. In other words, the signal handler
completes the block.

In Example 5–3, the block in question is the body of the then part of the if statement. The call
to setjmp(3C) saves the current register state of the program in jbuf and returns 0, thereby
executing the block.

EXAMPLE 5–3 Completion Semantics

sigjmp_buf jbuf;

void mult_divide(void) {

int a, b, c, d;

Extending Traditional Signals

Multithreaded Programming Guide • October 2012 (Beta)158

EXAMPLE 5–3 Completion Semantics (Continued)

void problem();

sigset(SIGFPE, problem);

while (1) {

if (sigsetjmp(&jbuf) == 0) {

printf("Three numbers, please:\n");
scanf("%d %d %d", &a, &b, &c);

d = a*b/c;

printf("%d*%d/%d = %d\n", a, b, c, d);

}

}

}

void problem(int sig) {

printf("Couldn’t deal with them, try again\n");
siglongjmp(&jbuf, 1);

}

If a SIGFPE floating-point exception occurs, the signal handler is invoked.

The signal handler calls siglongjmp(3C), which restores the register state saved in jbuf, causing
the program to return from sigsetjmp() again. The registers that are saved include the
program counter and the stack pointer.

This time, however, sigsetjmp(3C) returns the second argument of siglongjmp(), which is 1.
Notice that the block is skipped over, only to be executed during the next iteration of the while
loop.

You can use sigsetjmp(3C) and siglongjmp(3C) in multithreaded programs. Be careful that a
thread never does a siglongjmp() that uses the results of another thread's sigsetjmp().

Also, sigsetjmp() and siglongjmp() restore as well as save the signal mask, but setjmp(3C)
and longjmp(3C) do not.

Use sigsetjmp() and siglongjmp() when you work with signal handlers.

Completion semantics are often used to deal with exceptions. In particular, the Oracle Ada
programming language uses this model.

Note – Remember, sigwait(2) should never be used with synchronous signals.

Signal Handlers and Async-Signal Safety
A concept that is similar to thread safety is Async-Signal safety. Async-Signal-Safe operations
are guaranteed not to interfere with operations that are being interrupted.

The problem of Async-Signal safety arises when the actions of a signal handler can interfere
with the operation that is being interrupted.

Extending Traditional Signals

Chapter 5 • Programming With the Oracle Solaris Software 159

For example, suppose a program is in the middle of a call to printf(3C), and a signal occurs
whose handler calls printf(). In this case, the output of the two printf() statements would be
intertwined. To avoid the intertwined output, the handler should not directly call printf()
when printf() might be interrupted by a signal.

This problem cannot be solved by using synchronization primitives. Any attempt to
synchronize between the signal handler and the operation being synchronized would produce
an immediate deadlock.

Suppose that printf() is to protect itself by using a mutex. Now, suppose that a thread that is in
a call to printf() and so holds the lock on the mutex is interrupted by a signal.

If the handler calls printf(), the thread that holds the lock on the mutex attempts to take the
mutex again. Attempting to take the mutex results in an instant deadlock.

To avoid interference between the handler and the operation, ensure that the situation never
arises. Perhaps you can mask off signals at critical moments, or invoke only Async-Signal-Safe
operations from inside signal handlers.

The only routines that POSIX guarantees to be Async-Signal-Safe are listed in Table 5–2. Any
signal handler can safely call in to one of these functions.

TABLE 5–2 Async-Signal-Safe Functions

_Exit() fpathconf() read() sigset()

_exit() fstat() readlink() sigsuspend()

abort() fsync() recv() sockatmark()

accept() ftruncate() recvfrom() socket()

access() getegid() recvmsg() socketpair()

aio_error() geteuid() rename() stat()

aio_return() getgid() rmdir() symlink()

aio_suspend() getgroups() select() sysconf()

alarm() getpeername() sem_post() tcdrain()

bind() getpgrp() send() tcflow()

cfgetispeed() getpid() sendmsg() tcflush()

cfgetospeed() getppid() sendto() tcgetattr()

cfsetispeed() getsockname() setgid() tcgetattr()

cfsetospeed() getsockopt() setpgid() tcsendbreak()

chdir() getuid() setsid() tcsetattr()

Extending Traditional Signals

Multithreaded Programming Guide • October 2012 (Beta)160

TABLE 5–2 Async-Signal-Safe Functions (Continued)
chmod() kill() setsockopt() tcsetpgrp()

chown() link() setuid() time()

clock_gettime() listen() shutdown() timer_getoverrun()

close() lseek() sigaction() timer_gettime()

connect() lstat() sigaddset() timer_settime()

creat() mkdir() sigdelset() times()

dup() mkfifo() sigemptyset() umask()

dup2() open() sigfillset() uname()

execle() pathconf() sigismember() ulink()

execve() pause() sleep() utime()

fchmod() pipe() signal() wait()

fchown() poll() sigpause() waitpid()

fcntl() posix_trace_event() sigpending() write()

fdatasync() pselect() sigprocmask()

fork() raise() sigqueue()

Interrupted Waits on Condition Variables
When an unmasked caught signal is delivered to a thread waiting on a condition variable, when
the signal handler returns, the thread returns from the condition wait function with a spurious
wakeup: pthread_cond_wait() and pthread_cond_timedwait() return 0 even though no call
to pthread_cond_signal() or pthread_cond_broadcast() was made by another thread.
Whether SA_RESTART has been specified as a flag to sigaction() has no effect here. The
pthread_cond_wait() and pthread_cond_timedwait() functions are not automatically
restarted. In all cases, the associated mutex lock is reacquired before returning from the
condition wait.

Re-acquisition of the associated mutex lock does not imply that the mutex is locked while the
thread is executing the signal handler. The state of the mutex in the signal handler is undefined.

Extending Traditional Signals

Chapter 5 • Programming With the Oracle Solaris Software 161

I/O Issues
One of the attractions of multithreaded programming is I/O performance. The traditional
UNIX API gave you little assistance in this area. You either used the facilities of the file system
or bypassed the file system entirely.

This section shows how to use threads to get more flexibility through I/O concurrency and
multibuffering. This section also discusses the differences and similarities between the
approaches of synchronous I/O with threads, and asynchronous I/O with and without threads.

I/O as a Remote Procedure Call
In the traditional UNIX model, I/O appears to be synchronous, as if you were placing a remote
procedure call to the I/O device. Once the call returns, then the I/O has completed, or at least
appears to have completed. A write request, for example, might merely result in the transfer of
the data to a buffer in the operating environment.

The advantage of this model is familiar concept of procedure calls.

An alternative approach not found in traditional UNIX systems is the asynchronous model, in
which an I/O request merely starts an operation. The program must somehow discover when
the operation completes.

The asynchronous model is not as simple as the synchronous model. But, the asynchronous
model has the advantage of allowing concurrent I/O and processing in traditional,
single-threaded UNIX processes.

Tamed Asynchrony
You can get most of the benefits of asynchronous I/O by using synchronous I/O in a
multithreaded program. With asynchronous I/O, you would issue a request and check later to
determine when the I/O completes. You can instead have a separate thread perform the I/O
synchronously. The main thread can then check for the completion of the operation at some
later time perhaps by calling pthread_join(3C).

Asynchronous I/O
In most situations, asynchronous I/O is not required because its effects can be achieved with the
use of threads, with each thread execution of synchronous I/O. However, in a few situations,
threads cannot achieve what asynchronous I/O can.

The most straightforward example is writing to a tape drive to make the tape drive stream.
Streaming prevents the tape drive from stopping while the drive is being written to. The tape
moves forward at high speed while supplying a constant stream of data that is written to tape.

I/O Issues

Multithreaded Programming Guide • October 2012 (Beta)162

To support streaming, the tape driver in the kernel should use threads. The tape driver in the
kernel must issue a queued write request when the tape driver responds to an interrupt. The
interrupt indicates that the previous tape-write operation has completed.

Threads cannot guarantee that asynchronous writes are ordered because the order in which
threads execute is indeterminate. You cannot, for example, specify the order of a write to a tape.

Asynchronous I/O Operations
#include <aio.h>

int aio_read(struct aiocb *aiocbp);

int aio_write(struct aiocb *aiocbp);

int aio_error(const struct aiocb *aiocbp);

ssize_t aio_return(struct aiocb *aiocbp);

int aio_suspend(struct aiocb *list[], int nent,

const struct timespec *timeout);

int aio_waitn(struct aiocb *list[], uint_t nent, uint_t *nwait,

const struct timespec *timeout);

int aio_cancel(int fildes, struct aiocb *aiocbp);

aio_read(3RT) and aio_write(3RT) are similar in concept to pread(2) and pwrite(2), except
that the parameters of the I/O operation are stored in an asynchronous I/O control block
(aiocbp) that is passed to aio_read() or aio_write():

aiocbp->aio_fildes; /* file descriptor */

aiocbp->aio_buf; /* buffer */

aiocbp->aio_nbytes; /* I/O request size */

aiocbp->aio_offset; /* file offset */

In addition, if desired, an asynchronous notification type (most commonly a queued signal) can
be specified in the 'struct sigevent' member:

aiocbp->aio_sigevent; /* notification type */

A call to aio_read() or aio_write() results in the initiation or queueing of an I/O operation.
The call returns without blocking.

The aiocbp value may be used as an argument to aio_error(3RT) and aio_return(3RT) in
order to determine the error status and return status of the asynchronous operation while it is
proceeding.

Waiting for I/O Operation to Complete
You can wait for one or more outstanding asynchronous I/O operations to complete by calling
aio_suspend() or aio_waitn(). Use aio_error() and aio_return() on the completed
asynchronous I/O control blocks to determine the success or failure of the I/O operation.

I/O Issues

Chapter 5 • Programming With the Oracle Solaris Software 163

The aio_suspend() and aio_waitn() functions take a timeout argument, which indicates how
long the caller is willing to wait. A NULL pointer means that the caller is willing to wait
indefinitely. A pointer to a structure containing a zero value means that the caller is unwilling to
wait at all.

You might start an asynchronous I/O operation, do some work, then call aio_suspend() or
aio_waitn() to wait for the request to complete. Or you can rely on the asynchronous
notification event specified in aio_sigevent() to occur to notify you when the operation
completes.

Finally, a pending asynchronous I/O operation can be cancelled by calling aio_cancel(). This
function is called with the address of the I/O control block that was used to initiate the I/O
operation.

Shared I/O and New I/O System Calls
When multiple threads perform concurrent I/O operations with the same file descriptor, you
might discover that the traditional UNIX I/O interface is not thread safe. The problem occurs
with nonsequential I/O where the lseek(2) system call sets the file offset. The file offset is then
used in the next read(2) or write(2) call to indicate where in the file the operation should start.
When two or more threads are issuing an lseek() to the same file descriptor, a conflict results.

To avoid this conflict, use the pread() and pwrite() system calls.

#include <sys/types.h>

#include <unistd.h>

ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);

ssize_t pwrite(int filedes, void *buf, size_t nbyte,

off_t offset);

pread(2) and pwrite(2) behave just like read (2) and write(2) except that pread(2) and
pwrite(2) take an additional argument, the file offset. With this argument, you specify the offset
without using lseek(2), so multiple threads can use these routines safely for I/O on the same file
descriptor.

Alternatives to getc and putc
An additional problem occurs with standard I/O. Programmers are accustomed to routines,
such as getc(3C) and putc(3C) , that are implemented as macros, being very quick. Because of
the speed of getc(3C) and putc(3C), these macros can be used within the inner loop of a
program with no concerns about efficiency.

However, when getc(3C) and putc(3C) are made thread safe the macros suddenly become
more expensive. The macros now require at least two internal subroutine calls, to lock and
unlock a mutex.

I/O Issues

Multithreaded Programming Guide • October 2012 (Beta)164

To get around this problem, alternative versions of these routines are supplied:
getc_unlocked(3C) and putc_unlocked(3C).

getc_unlocked(3C) and putc_unlocked(3C) do not acquire locks on a mutex. These
getc_unlocked() or putc_unlocked() macros are as quick as the original, nonthread-safe
versions of getc(3C) and putc(3C).

However, to use these macros in a thread-safe way, you must explicitly lock and release the
mutexes that protect the standard I/O streams, using flockfile(3C) and funlockfile(3C).
The calls to these latter routines are placed outside the loop. Calls to getc_unlocked() or
putc_unlocked() are placed inside the loop.

New System Calls For Reliable Multithreaded
Programming
In the Oracle Solaris 11 release, the following new APIs and flags have been added to make
multithreaded programs more reliable:

*at() functions – Consists of versions of file handling system calls which take the working
directory for relative pathnames as an argument, to avoid races with chdir(2) calls between
multiple threads.

■ openat(2)
■ fchownat(2)
■ fstatat(2)
■ utimensat(2)
■ unlinkat(2)
■ faccessat(2)
■ fchmodat(2)
■ linkat(2)
■ mkdirat(2)
■ mknodat(2)
■ readlinkat(2)
■ renameat(2)
■ symlinkat(2)

Flags – The following flags close a race condition between the open(2), dup(2), and dup2(2) calls
and a following call to fcntl(2) function to set the FD_CLOEXEC flag by setting it atomically in
the creation system call.

■ O_CLOEXEC flag to open(2)
■ F_DUPFD_CLOEXEC() and F_DUP2FD_CLOEXEC() arguments to fcntl(2)

I/O Issues

Chapter 5 • Programming With the Oracle Solaris Software 165

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2openat-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2fchownat-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2fstatat-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2utimensat-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2unlinkat-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2faccessat-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2fchmodat-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2linkat-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mkdirat-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mknodat-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2readlinkat-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2renameat-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2symlinkat-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2fcntl-2

166

Programming With Oracle Solaris Threads

This chapter compares the application programming interface (API) for Oracle Solaris and
POSIX threads, and explains the Oracle Solaris features that are not found in POSIX threads.
The chapter discusses the following topics:

■ “Comparing APIs for Oracle Solaris Threads and POSIX Threads” on page 167
■ “Unique Oracle Solaris Threads Functions” on page 172
■ “Similar Synchronization Functions: Read-Write Locks” on page 173
■ “Similar Oracle Solaris Threads Functions” on page 179
■ “Similar Synchronization Functions: Mutual Exclusion Locks” on page 190
■ “Similar Synchronization Functions: Condition Variables” on page 194
■ “Similar Synchronization Functions: Semaphores” on page 199
■ “Special Issues for fork() and Oracle Solaris Threads” on page 204

Comparing APIs for Oracle Solaris Threads and POSIX Threads
The Oracle Solaris threads API and the pthreads API are two solutions to the same problem:
build parallelism into application software. Although each API is complete, you can safely mix
Oracle Solaris threads functions and pthread functions in the same program.

The two APIs do not match exactly, however. Oracle Solaris threads support functions that are
not found in pthreads, and pthreads include functions that are not supported in the Oracle
Solaris interface. For those functions that do match, the associated arguments might not,
although the information content is effectively the same.

By combining the two APIs, you can use features not found in one API to enhance the other
API. Similarly, you can run applications that use Oracle Solaris threads exclusively with
applications that use pthreads exclusively on the same system.

6C H A P T E R 6

167

Major API Differences
Oracle Solaris threads and pthreads are very similar in both API action and syntax. The major
differences are listed in Table 6–1 .

TABLE 6–1 Unique Oracle Solaris Threads and pthreads Features

Oracle Solaris Threads POSIX Threads

thr_ prefix for threads function names, sema_
prefix for semaphore function names

pthread_ prefix for pthreads function names, sem_ prefix
for semaphore function names

Ability to create “daemon” threads Cancellation semantics

Suspending and continuing a thread Scheduling policies

Function Comparison Table
The following table compares Oracle Solaris threads functions with pthreads functions. Note
that even when Oracle Solaris threads and pthreads functions appear to be essentially the same,
the arguments to the functions can differ.

When a comparable interface is not available either in pthreads or Oracle Solaris threads, a
hyphen ‘-' appears in the column. Entries in the pthreads column that are followed by (3RT) are
functions in librt, the POSIX.1b Realtime Extensions library, which is not part of pthreads.
Functions in this library provide most of the interfaces specified by the POSIX.1b Realtime
Extension.

TABLE 6–2 Oracle Solaris Threads and POSIX pthreads Comparison

Oracle Solaris Threads pthreads

thr_create() pthread_create()

thr_exit() pthread_exit()

thr_join() pthread_join()

thr_yield() sched_yield()(3RT)

thr_self() pthread_self()

thr_kill() pthread_kill()

thr_sigsetmask() pthread_sigmask()

thr_setprio() pthread_setschedparam()

thr_getprio() pthread_getschedparam()

thr_setconcurrency() pthread_setconcurrency()

Comparing APIs for Oracle Solaris Threads and POSIX Threads

Multithreaded Programming Guide • October 2012 (Beta)168

TABLE 6–2 Oracle Solaris Threads and POSIX pthreads Comparison (Continued)
Oracle Solaris Threads pthreads

thr_getconcurrency() pthread_getconcurrency()

thr_suspend() -

thr_continue() -

thr_keycreate() pthread_key_create()

- pthread_key_delete()

thr_setspecific() pthread_setspecific()

thr_getspecific() pthread_getspecific()

- pthread_once()

- pthread_equal()

- pthread_cancel()

- pthread_testcancel()

- pthread_cleanup_push()

- pthread_cleanup_pop()

- pthread_setcanceltype()

- pthread_setcancelstate()

mutex_lock() pthread_mutex_lock()

mutex_unlock() pthread_mutex_unlock()

mutex_trylock() pthread_mutex_trylock()

mutex_init() pthread_mutex_init()

mutex_destroy() pthread_mutex_destroy()

cond_wait() pthread_cond_wait()

cond_timedwait() pthread_cond_timedwait()

cond_reltimedwait() pthread_cond_reltimedwait_np()

cond_signal() pthread_cond_signal()

cond_broadcast() pthread_cond_broadcast()

cond_init() pthread_cond_init()

cond_destroy() pthread_cond_destroy()

rwlock_init() pthread_rwlock_init()

Comparing APIs for Oracle Solaris Threads and POSIX Threads

Chapter 6 • Programming With Oracle Solaris Threads 169

TABLE 6–2 Oracle Solaris Threads and POSIX pthreads Comparison (Continued)
Oracle Solaris Threads pthreads

rwlock_destroy() pthread_rwlock_destroy()

rw_rdlock() pthread_rwlock_rdlock()

rw_wrlock() pthread_rwlock_wrlock()

rw_unlock() pthread_rwlock_unlock()

rw_tryrdlock() pthread_rwlock_tryrdlock()

rw_trywrlock() pthread_rwlock_trywrlock()

- pthread_rwlockattr_init()

- pthread_rwlockattr_destroy()

- pthread_rwlockattr_getpshared()

- pthread_rwlockattr_setpshared()

sema_init() sem_init()(3RT)

sema_destroy() sem_destroy()(3RT)

sema_wait() sem_wait()(3RT)

sema_post() sem_post()(3RT)

sema_trywait() sem_trywait()(3RT)

fork1() fork()

- pthread_atfork()

forkall(), multiple thread copy -

- pthread_mutexattr_init()

- pthread_mutexattr_destroy()

type argument in mutex_init() pthread_mutexattr_setpshared()

- pthread_mutexattr_getpshared()

- pthread_mutex_attr_settype()

- pthread_mutex_attr_gettype()

- pthread_condattr_init()

- pthread_condattr_destroy()

type argument in cond_init() pthread_condattr_setpshared()

- pthread_condattr_getpshared()

Comparing APIs for Oracle Solaris Threads and POSIX Threads

Multithreaded Programming Guide • October 2012 (Beta)170

TABLE 6–2 Oracle Solaris Threads and POSIX pthreads Comparison (Continued)
Oracle Solaris Threads pthreads

- pthread_attr_init()

- pthread_attr_destroy()

THR_BOUND flag in thr_create() pthread_attr_setscope()

- pthread_attr_getscope()

- pthread_attr_setguardsize()

- pthread_attr_getguardsize()

stack_size argument in thr_create() pthread_attr_setstacksize()

- pthread_attr_getstacksize()

stack_addr argument in thr_create() pthread_attr_setstack()

- pthread_attr_getstack()

THR_DETACH flag in thr_create() pthread_attr_setdetachstate()

- pthread_attr_getdetachstate()

- pthread_attr_setschedparam()

- pthread_attr_getschedparam()

- pthread_attr_setinheritsched()

- pthread_attr_getinheritsched()

- pthread_attr_setsschedpolicy()

- pthread_attr_getschedpolicy()

To use the Oracle Solaris threads functions described in this chapter for Solaris 9 and previous
releases, you must link with the Oracle Solaris threads library -lthread .

Operation is virtually the same for both Oracle Solaris threads and for pthreads, even though
the function names or arguments might differ. Only a brief example consisting of the correct
include file and the function prototype is presented. Where return values are not given for the
Oracle Solaris threads functions, see the appropriate pages in man pages section 3: Basic Library
Functions for the function return values.

For more information on Oracle Solaris related functions, see the related pthreads
documentation for the similarly named function.

Where Oracle Solaris threads functions offer capabilities that are not available in pthreads, a full
description of the functions is provided.

Comparing APIs for Oracle Solaris Threads and POSIX Threads

Chapter 6 • Programming With Oracle Solaris Threads 171

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3A
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3A

Unique Oracle Solaris Threads Functions
This section describes unique Oracle Solaris threads functions: suspending thread execution
and continuing a suspended thread.

Suspending Thread Execution
thr_suspend(3C) immediately suspends the execution of the thread specified by target_thread.
On successful return from thr_suspend(), the suspended thread is no longer executing.

Because thr_suspend() suspends the target thread with no regard to the locks that the thread
might be holding, you must use thr_suspend() with extreme care. If the suspending thread
calls a function that requires a lock held by the suspended target thread, deadlock will result.

thr_suspend Syntax
#include <thread.h>

int thr_suspend(thread_t tid);

After a thread is suspended, subsequent calls to thr_suspend() have no effect. Signals cannot
awaken the suspended thread. The signals remain pending until the thread resumes execution.

In the following synopsis, pthread_t tid as defined in pthreads is the same as thread_t tid in
Oracle Solaris threads. tid values can be used interchangeably either by assignment or through
the use of casts.

thread_t tid; /* tid from thr_create() */

/* pthreads equivalent of Solaris tid from thread created */

/* with pthread_create() */

pthread_t ptid;

int ret;

ret = thr_suspend(tid);

/* using pthreads ID variable with a cast */

ret = thr_suspend((thread_t) ptid);

thr_suspend Return Values
thr_suspend() returns zero after completing successfully. Any other return value indicates
that an error occurred. When the following condition occurs, thr_suspend() fails and returns
the corresponding value.

ESRCH

Description: tid cannot be found in the current process.

Unique Oracle Solaris Threads Functions

Multithreaded Programming Guide • October 2012 (Beta)172

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-suspend-3c

Continuing a Suspended Thread
thr_continue(3C) resumes the execution of a suspended thread. Once a suspended thread is
continued, subsequent calls to thr_continue() have no effect.

thr_continue Syntax
#include <thread.h>

int thr_continue(thread_t tid);

A suspended thread is not awakened by a signal. The signal remains pending until the execution
of the thread is resumed by thr_continue() .

pthread_t tid as defined in pthreads is the same as thread_t tid in Oracle Solaris threads. tid
values can be used interchangeably either by assignment or through the use of casts.

thread_t tid; /* tid from thr_create()*/

/* pthreads equivalent of Oracle Solaris tid from thread created */

/* with pthread_create()*/

pthread_t ptid;

int ret;

ret = thr_continue(tid);

/* using pthreads ID variable with a cast */

ret = thr_continue((thread_t) ptid)

thr_continue Return Values
thr_continue() returns zero after completing successfully. Any other return value indicates
that an error occurred. When the following condition occurs, thr_continue() fails and returns
the corresponding value.

ESRCH

Description: tid cannot be found in the current process.

Similar Synchronization Functions: Read-Write Locks
Read-write locks allow simultaneous read access by many threads while restricting write access
to only one thread at a time. This section discusses the following topics:

■ Initializing a readers/writer lock
■ Acquiring a read lock
■ Trying to acquire a read lock
■ Acquiring a write lock

Similar Synchronization Functions: Read-Write Locks

Chapter 6 • Programming With Oracle Solaris Threads 173

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-continue-3c

■ Trying to acquire a write
■ Unlocking a readers/writer lock
■ Destroying readers/writer lock state

When any thread holds the lock for reading, other threads can also acquire the lock for reading
but must wait to acquire the lock for writing. If one thread holds the lock for writing, or is
waiting to acquire the lock for writing, other threads must wait to acquire the lock for either
reading or writing.

Read-write locks are slower than mutexes. But read-write locks can improve performance when
the locks protect data not frequently written but are read by many concurrent threads.

Use read-write locks to synchronize threads in this process and other processes. Allocate
read-write locks in memory that is writable and shared among the cooperating processes. See
themmap(2) man page for information about mapping read-write locks for this behavior.

By default, the acquisition order is not defined when multiple threads are waiting for a
read-write lock. However, to avoid writer starvation, the Oracle Solaris threads package tends to
favor writers over readers of equal priority.

Read-write locks must be initialized before use.

Initialize a Read-Write Lock
Use rwlock_init(3C) to initialize the read-write lock pointed to by rwlp and to set the lock
state to unlocked.

rwlock_init Syntax
#include <synch.h> (or #include <thread.h>)

int rwlock_init(rwlock_t *rwlp, int type, void *

arg);

type can be one of the following values:

■ USYNC_PROCESS The read-write lock can be used to synchronize threads in this process and
other processes. arg is ignored.

■ USYNC_THREAD The read-write lock can be used to synchronize threads in this process only.
arg is ignored.

Multiple threads must not initialize the same read-write lock simultaneously. Read-write locks
can also be initialized by allocation in zeroed memory, in which case a type of USYNC_THREAD is
assumed. A read-write lock must not be reinitialized while other threads might be using the
lock.

For POSIX threads, see “pthread_rwlock_init Syntax” on page 130 .

Similar Synchronization Functions: Read-Write Locks

Multithreaded Programming Guide • October 2012 (Beta)174

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Arwlock-init-3c

Initializing Read-Write Locks With Intraprocess Scope
#include <thread.h>

rwlock_t rwlp;
int ret;
/* to be used within this process only */

ret = rwlock_init(&rwlp, USYNC_THREAD, 0);

Initializing Read-Write Locks With Interprocess Scope
#include <thread.h>

rwlock_t rwlp;
int ret;
/* to be used among all processes */

ret = rwlock_init(&rwlp, USYNC_PROCESS, 0);

rwlock_init Return Values
rwlock_init() returns zero after completing successfully. Any other return value indicates
that an error occurred. When any of the following conditions occurs, the function fails and
returns the corresponding value.

EINVAL

Description: Invalid argument.

EFAULT

Description: rwlp or arg points to an illegal address.

Acquiring a Read Lock
Use rw_rdlock(3C) to acquire a read lock on the read-write lock pointed to by rwlp.

rw_rdlock Syntax
#include <synch.h> (or #include <thread.h>)

int rw_rdlock(rwlock_t *rwlp);

When the read-write lock is already locked for writing, the calling thread blocks until the write
lock is released. Otherwise, the read lock is acquired. For POSIX threads, see
“pthread_rwlock_rdlock Syntax” on page 130.

rw_rdlock Return Values
rw_rdlock() returns zero after completing successfully. Any other return value indicates that
an error occurred. When any of the following conditions occurs, the function fails and returns
the corresponding value.

Similar Synchronization Functions: Read-Write Locks

Chapter 6 • Programming With Oracle Solaris Threads 175

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Arw-rdlock-3c

EINVAL

Description: Invalid argument.

EFAULT

Description: rwlp points to an illegal address.

Trying to Acquire a Read Lock
Use rw_tryrdlock(3C) to attempt to acquire a read lock on the read-write lock pointed to by
rwlp.

rw_tryrdlock Syntax
#include <synch.h> (or #include <thread.h>)

int rw_tryrdlock(rwlock_t *rwlp);

When the read-write lock is already locked for writing, rw_tryrdlock() returns an error.
Otherwise, the read lock is acquired. For POSIX threads, see “pthread_rwlock_tryrdlock
Syntax” on page 132.

rw_tryrdlock Return Values
rw_tryrdlock() returns zero after completing successfully. Any other return value indicates
that an error occurred. When any of the following conditions occurs, the function fails and
returns the corresponding value.

EINVAL

Description: Invalid argument.

EFAULT

Description: rwlp points to an illegal address.

EBUSY

Description: The read-write lock pointed to by rwlp was already locked.

Acquiring a Write Lock
Use rw_wrlock(3C) to acquire a write lock on the read-write lock pointed to by rwlp.

rw_wrlock Syntax
#include <synch.h> (or #include <thread.h>)

int rw_wrlock(rwlock_t *rwlp);

Similar Synchronization Functions: Read-Write Locks

Multithreaded Programming Guide • October 2012 (Beta)176

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Arw-tryrdlock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Arw-wrlock-3c

When the read-write lock is already locked for reading or writing, the calling thread blocks until
all read locks and write locks are released. Only one thread at a time can hold a write lock on a
read-write lock. For POSIX threads, see “pthread_rwlock_wrlock Syntax” on page 133.

rw_wrlock Return Values
rw_wrlock() returns zero after completing successfully. Any other return value indicates that
an error occurred. When any of the following conditions occurs, the function fails and returns
the corresponding value.

EINVAL

Description: Invalid argument.

EFAULT

Description: rwlp points to an illegal address.

Trying to Acquire a Write Lock
Use rw_trywrlock(3C) to attempt to acquire a write lock on the read-write lock pointed to by
rwlp.

rw_trywrlock Syntax
#include <synch.h> (or #include <thread.h>)

int rw_trywrlock(rwlock_t *rwlp);

When the read-write lock is already locked for reading or writing, rw_trywrlock() returns an
error. For POSIX threads, see “pthread_rwlock_trywrlock Syntax” on page 134.

rw_trywrlock Return Values
rw_trywrlock() returns zero after completing successfully. Any other return value indicates
that an error occurred. When any of the following conditions occurs, the function fails and
returns the corresponding value.

EINVAL

Description: Invalid argument.

EFAULT

Description: rwlp points to an illegal address.

EBUSY

Description: The read-write lock pointed to by rwlp was already locked.

Similar Synchronization Functions: Read-Write Locks

Chapter 6 • Programming With Oracle Solaris Threads 177

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Arw-trywrlock-3c

Unlock a Read-Write Lock
Use rw_unlock(3C) to unlock a read-write lock pointed to by rwlp.

rw_unlock Syntax
#include <synch.h> (or #include <thread.h>)

int rw_unlock(rwlock_t *rwlp);

The read-write lock must be locked, and the calling thread must hold the lock either for reading
or writing. When any other threads are waiting for the read-write lock to become available, one
of the threads is unblocked. For POSIX threads, see “pthread_rwlock_unlock Syntax” on
page 135.

rw_unlock Return Values
rw_unlock() returns zero after completing successfully. Any other return value indicates that
an error occurred. When any of the following conditions occurs, the function fails and returns
the corresponding value.

EINVAL

Description: Invalid argument.

EFAULT

Description: rwlp points to an illegal address.

Destroying the Read-Write Lock State
Use rwlock_destroy(3C) to destroy any state that is associated with the read-write lock
pointed to by rlwp.

rwlock_destroy Syntax
#include <synch.h> (or #include <thread.h>)

int rwlock_destroy(rwlock_t *rwlp);

The space for storing the read-write lock is not freed. For POSIX threads, see
“pthread_rwlock_destroy Syntax” on page 136.

Example 6–1 uses a bank account to demonstrate read-write locks. While the program could
allow multiple threads to have concurrent read-only access to the account balance, only a single
writer is allowed. Note that the get_balance() function needs the lock to ensure that the
addition of the checking and saving balances occurs atomically.

Similar Synchronization Functions: Read-Write Locks

Multithreaded Programming Guide • October 2012 (Beta)178

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Arw-unlock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Arwlock-destroy-3c

EXAMPLE 6–1 Read-Write Bank Account

rwlock_t account_lock;

float checking_balance = 100.0;

float saving_balance = 100.0;

...

rwlock_init(&account_lock, 0, NULL);

...

float

get_balance() {

float bal;

rw_rdlock(&account_lock);

bal = checking_balance + saving_balance;

rw_unlock(&account_lock);

return(bal);

}

void

transfer_checking_to_savings(float amount) {

rw_wrlock(&account_lock);

checking_balance = checking_balance - amount;

saving_balance = saving_balance + amount;

rw_unlock(&account_lock);

}

rwlock_destroy Return Values
rwlock_destroy() returns zero after completing successfully. Any other return value indicates
that an error occurred. When any of the following conditions occurs, the function fails and
returns the corresponding value.

EINVAL

Description: Invalid argument.

EFAULT

Description: rwlp points to an illegal address.

Similar Oracle Solaris Threads Functions
TABLE 6–3 Similar Oracle Solaris Threads Functions

Operation Related Function Description

Create a thread “thr_create Syntax” on page 180

Get the minimal stack size “thr_min_stack Syntax” on page 182

Get the thread identifier “thr_self Syntax” on page 183

Yield thread execution “thr_yield Syntax” on page 183

Similar Oracle Solaris Threads Functions

Chapter 6 • Programming With Oracle Solaris Threads 179

TABLE 6–3 Similar Oracle Solaris Threads Functions (Continued)
Operation Related Function Description

Send a signal to a thread “thr_kill Syntax” on page 184

Access the signal mask of the calling thread “thr_sigsetmask Syntax” on page 184

Terminate a thread “thr_exit Syntax” on page 185

Wait for thread termination “thr_join Syntax” on page 185

Create a thread-specific data key “thr_keycreate Syntax” on page 187

Set thread-specific data “thr_setspecific Syntax” on page 188

Get thread-specific data “thr_getspecific Syntax” on page 188

Set the thread priority “thr_setprio Syntax” on page 189

Get the thread priority “thr_getprio Syntax” on page 190

Creating a Thread
The thr_create(3C) routine is one of the most elaborate of all routines in the Oracle Solaris
threads interface.

Use thr_create(3C) to add a new thread of control to the current process. For POSIX threads,
see “pthread_create Syntax” on page 29.

thr_create Syntax
#include <thread.h>

int thr_create(void *stack_base, size_t stack_size,
void *(*start_routine) (void *), void *arg,
long flags,
thread_t *new_thread);

size_t thr_min_stack(void);

Note that the new thread does not inherit pending signals, but the thread does inherit priority
and signal masks.

stack_base. Contains the address for the stack that the new thread uses. If stack_base is NULL,
then thr_create() allocates a stack for the new thread with at least stack_size bytes.

stack_size. Contains the size, in number of bytes, for the stack that the new thread uses. If
stack_size is zero, a default size is used. In most cases, a zero value works best. If stack_size is not
zero, stack_size must be greater than the value returned by thr_min_stack().

Similar Oracle Solaris Threads Functions

Multithreaded Programming Guide • October 2012 (Beta)180

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-create-3c

In general, you do not need to allocate stack space for threads. The system allocates 1 megabyte
of virtual memory for each thread's stack with no reserved swap space. The system uses the
-MAP_NORESERVE option of mmap(2) to make the allocations.

start_routine. Contains the function with which the new thread begins execution. When
start_routine() returns, the thread exits with the exit status set to the value returned by
start_routine . See “thr_exit Syntax” on page 185.

arg. Can be any variable described by void , which is typically any 4-byte value. Any larger value
must be passed indirectly by having the argument point to the variable.

Note that you can supply only one argument. To get your procedure to take multiple
arguments, encode the multiple arguments as a single argument, such as by putting the
arguments in a structure.

flags. Specifies attributes for the created thread. In most cases a zero value works best.

The value in flags is constructed from the bitwise inclusive OR of the following arguments:
■ THR_SUSPENDED. Suspends the new thread, and does not execute start_routine until the

thread is started by thr_continue(). Use THR_SUSPENDED to operate on the thread, such as
changing its priority, before you run the thread.

■ THR_DETACHED. Detaches the new thread so that its thread ID and other resources can be
reused as soon as the thread terminates. Set THR_DETACHED when you do not want to wait for
the thread to terminate.

Note – When no explicit synchronization is allocated, an unsuspended, detached thread can fail.
On failure, the thread ID is reassigned to another new thread before its creator returns from
thr_create().

■ THR_BOUND. Permanently binds the new thread to an LWP. The new thread is a bound thread.
Starting with the Solaris 9 release, no distinction is made by the system between bound and
unbound threads. All threads are treated as bound threads.

■ THR_DAEMON. Marks the new thread as a daemon. A daemon thread is always detached.
THR_DAEMON implies THR_DETACHED. The process exits when all nondaemon threads exit.
Daemon threads do not affect the process exit status and are ignored when counting the
number of thread exits.
A process can exit either by calling exit() or by having every thread in the process that was
not created with the THR_DAEMON flag call thr_exit(3C). An application or a library that the
process calls can create one or more threads that should be ignored (not counted) in the
decision of whether to exit. The THR_DAEMON flag identifies threads that are not counted in
the process exit criterion.

new_thread. When new_thread is not NULL, it points to where the ID of the new thread is stored
when thr_create() is successful. The caller is responsible for supplying the storage pointed to
by this argument. The ID is valid only within the calling process.

Similar Oracle Solaris Threads Functions

Chapter 6 • Programming With Oracle Solaris Threads 181

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2

If you are not interested in this identifier, supply a NULL value to new_thread.

thr_create Return Values
thr_create() returns zero when the function completes successfully. Any other return value
indicates that an error occurred. When any of the following conditions is detected,
thr_create() fails and returns the corresponding value.

EAGAIN

Description: A system limit is exceeded, such as when too many LWPs have been created.

ENOMEM

Description: Insufficient memory was available to create the new thread.

EINVAL

Description: stack_base is not NULL and stack_size is less than the value returned by
thr_min_stack().

Getting the Minimal Stack Size
Use thr_min_stack(3C) to get the minimum stack size for a thread.

Stack behavior in Oracle Solaris threads is generally the same as stack behavior in pthreads. For
more information about stack setup and operation, see “About Stacks” on page 65.

thr_min_stack Syntax
#include <thread.h>

size_t thr_min_stack(void);

thr_min_stack() returns the amount of space that is needed to execute a null thread. A null
thread is a thread that is created to execute a null procedure. Useful threads need more than the
absolute minimum stack size, so be very careful when reducing the stack size.

A thread that executes more than a null procedure should allocate a stack size that is larger than
the size of thr_min_stack().

When a thread is created with a user-supplied stack, the user must reserve enough space to run
the thread. A dynamically linked execution environment increases the difficulty of determining
the thread minimal stack requirements.

You can specify a custom stack in two ways. The first is to supply a NULL for the stack location,
thereby asking the runtime library to allocate the space for the stack, but to supply the desired
size in the stacksize parameter to thr_create() .

Similar Oracle Solaris Threads Functions

Multithreaded Programming Guide • October 2012 (Beta)182

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-min-stack-3c

The other approach is to take overall aspects of stack management and supply a pointer to the
stack to thr_create(). This means that you are responsible not only for stack allocation but
also for stack deallocation. When the thread terminates, you must arrange for the disposal of
the thread's stack.

When you allocate your own stack, be sure to append a red zone to its end by calling
mprotect(2).

Most users should not create threads with user-supplied stacks. User-supplied stacks exist only
to support applications that require complete control over their execution environments.

Instead, users should let the system manage stack allocation. The system provides default stacks
that should meet the requirements of any created thread.

thr_min_stack Return Values
No errors are defined.

Acquiring the Thread Identifier
Use thr_self(3C) to get the ID of the calling thread. For POSIX threads, see “pthread_self
Syntax” on page 38.

thr_self Syntax
#include <thread.h>

thread_t thr_self(void);

thr_self Return Values
No errors are defined.

Yield Thread Execution
thr_yield(3C) causes the current thread to yield its execution in favor of another thread with
the same or greater priority. Otherwise, thr_yield() has no effect. However, calling
thr_yield() does not guarantee that the thread yields its execution.

thr_yield Syntax
#include <thread.h>

void thr_yield(void);

thr_yield Return Values
thr_yield() returns nothing and does not set errno .

Similar Oracle Solaris Threads Functions

Chapter 6 • Programming With Oracle Solaris Threads 183

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-self-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-yield-3c

Send a Signal to a Thread
thr_kill(3C) sends a signal to a thread. For POSIX threads, see “pthread_kill Syntax” on
page 43.

thr_kill Syntax
#include <thread.h>

#include <signal.h>

int thr_kill(thread_t target_thread, int sig);

thr_kill Return Values
Upon successful completion, thr_kill() returns 0. When any of the following conditions is
detected, thr_kill() fails and returns the corresponding value. When a failure occurs, no
signal is sent.

ESRCH

Description: No thread was found associated with the thread designated by thread ID.

EINVAL

Description: The sig argument value is not zero. sig is an invalid or unsupported signal
number.

Access the Signal Mask of the Calling Thread
Use thr_sigsetmask(3C) to change or examine the signal mask of the calling thread.

thr_sigsetmask Syntax
#include <thread.h>

#include <signal.h>

int thr_sigsetmask(int how, const sigset_t *set,
sigset_t *oset);

thr_sigsetmask() changes or examines a calling thread's signal mask. Each thread has its own
signal mask. A new thread inherits the calling thread's signal mask and priority. However,
pending signals are not inherited. Pending signals for a new thread will be empty.

If the value of the argument set is not NULL, set points to a set of signals that can modify the
currently blocked set. If the value of set is NULL, the value of how is insignificant and the
thread's signal mask is unmodified. Use this behavior to inquire about the currently blocked
signals.

The value of how specifies the method in which the set is changed. how takes one of the
following values.

Similar Oracle Solaris Threads Functions

Multithreaded Programming Guide • October 2012 (Beta)184

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-kill-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-sigsetmask-3c

■ SIG_BLOCK. set corresponds to a set of signals to block. The signals are added to the current
signal mask.

■ SIG_UNBLOCK. set corresponds to a set of signals to unblock. These signals are deleted from
the current signal mask.

■ SIG_SETMASK. set corresponds to the new signal mask. The current signal mask is replaced
by set.

thr_sigsetmask Return Values
Upon successful completion, thr_sigsetmask() returns 0. When any of the following
conditions is detected, thr_sigsetmask() fails and returns the corresponding value.

EINVAL

Description: set is not NULL and the value of how is not defined.

Terminate a Thread
Use thr_exit(3C) to terminate a thread. For POSIX threads, see “pthread_exit Syntax” on
page 45.

thr_exit Syntax
#include <thread.h>

void thr_exit(void *status);

thr_exit Return Values
thr_exit() does not return to its caller.

Wait for Thread Termination
Use thr_join(3C) to wait for a target thread to terminate. For POSIX threads, see
“pthread_join Syntax” on page 30.

thr_join Syntax
#include <thread.h>

int thr_join(thread_t tid, thread_t *departedid, void **status);

The target thread must be a member of the current process. The target thread cannot be a
detached thread or a daemon thread.

Several threads cannot wait for the same thread to complete. One thread will complete
successfully. The others will terminate with an ESRCH error.

Similar Oracle Solaris Threads Functions

Chapter 6 • Programming With Oracle Solaris Threads 185

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-exit-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-join-3c

thr_join() will not block processing of the calling thread if the target thread has already
terminated.

thr_join, Join Specific
#include <thread.h>

thread_t tid;
thread_t departedid;
int ret;
void *status;

/* waiting to join thread "tid" with status */

ret = thr_join(tid, &departedid, &status);

/* waiting to join thread "tid" without status */

ret = thr_join(tid, &departedid, NULL);

/* waiting to join thread "tid" without return id and status */

ret = thr_join(tid, NULL, NULL);

When the tid is (thread_t)0, then thread_join() waits for any undetached thread in the
process to terminate. In other words, when no thread identifier is specified, any undetached
thread that exits causes thread_join() to return.

thr_join, Join Any
#include <thread.h>

thread_t tid;
thread_t departedid;
int ret;
void *status;

/* waiting to join any non-detached thread with status */

ret = thr_join(0, &departedid, &status);

By indicating 0 as the thread ID in the Oracle Solaris thr_join(), a join takes place when any
non detached thread in the process exits. The departedid indicates the thread ID of the exiting
thread.

thr_join Return Values
thr_join() returns 0 if successful. When any of the following conditions is detected,
thr_join() fails and returns the corresponding value.

ESRCH

Description: No undetached thread is found which corresponds to the target thread ID.

EDEADLK

Description: A deadlock was detected or the value of the target thread specifies the calling
thread.

Similar Oracle Solaris Threads Functions

Multithreaded Programming Guide • October 2012 (Beta)186

Creating a Thread-Specific Data Key
thr_keycreate(3C) allocates a key that is used to identify thread-specific data in a process. The
key is global to all threads in the process. Each thread binds a value to the key when the key gets
created.

Except for the function names and arguments, thread-specific data is the same for Oracle
Solaris threads as thread-specific data is for POSIX threads. The synopses for the Oracle Solaris
functions are described in this section. For POSIX threads, see “pthread_key_create Syntax”
on page 33.

thr_keycreate Syntax
#include <thread.h>

int thr_keycreate(thread_key_t *keyp,
void (*destructor) (void *value));

keyp independently maintains specific values for each binding thread. Each thread is initially
bound to a private element of keyp that allows access to its thread-specific data. Upon key
creation, a new key is assigned the value NULL for all active threads. Additionally, upon thread
creation, all previously created keys in the new thread are assigned the value NULL.

An optional destructor function can be associated with each keyp. Upon thread exit, if a keyp has
a non-NULL destructor and the thread has a non-NULL value associated with keyp , the
destructor is called with the currently associated value. If more than one destructor exists for a
thread when it exits, the order of destructor calls is unspecified.

thr_keycreate Return Values
thr_keycreate() returns 0 if successful. When any of the following conditions is detected,
thr_keycreate() fails and returns the corresponding value.

EAGAIN

Description: The system does not have the resources to create another thread-specific data
key, or the number of keys exceeds the per-process limit for PTHREAD_KEYS_MAX.

ENOMEM

Description: Insufficient memory is available to associate value with keyp.

Setting the Thread-Specific Data Value
thr_setspecific(3C) binds value to the thread-specific data key, key, for the calling thread.
For POSIX threads, see “pthread_setspecific Syntax” on page 35.

Similar Oracle Solaris Threads Functions

Chapter 6 • Programming With Oracle Solaris Threads 187

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-keycreate-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-setspecific-3c

thr_setspecific Syntax
#include <thread.h>

int thr_setspecific(thread_key_t key, void *value);

thr_setspecific Return Values
thr_setspecific() returns 0 if successful. When any of the following conditions is detected,
thr_setspecific() fails and returns the corresponding value.

ENOMEM

Description: Insufficient memory is available to associate value with keyp.

EINVAL

Description: keyp is invalid.

Getting the Thread-Specific Data Value
thr_getspecific(3C) stores the current value bound to key for the calling thread into the
location pointed to by valuep. For POSIX threads, see “pthread_getspecific Syntax” on
page 36.

thr_getspecific Syntax
#include <thread.h>

int thr_getspecific(thread_key_t key, void **valuep);

thr_getspecific Return Values
thr_getspecific() returns 0 if successful. When any of the following conditions is detected,
thr_getspecific() fails and returns the corresponding value.

ENOMEM

Description: Insufficient memory is available to associate value with keyp.

EINVAL

Description: keyp is invalid.

Set the Thread Priority
In Oracle Solaris threads, a thread created with a priority other than the priority of its parents is
created in SUSPEND mode. While suspended, the thread's priority is modified using the
thr_setprio(3C) function call. After thr_setprio() completes, the thread resumes execution.

Similar Oracle Solaris Threads Functions

Multithreaded Programming Guide • October 2012 (Beta)188

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-getspecific-3c

A higher priority thread receives precedence over lower priority threads with respect to
synchronization object contention.

thr_setprio Syntax
thr_setprio(3C) changes the priority of the thread, specified by tid, within the current process
to the priority specified by newprio. For POSIX threads, see “pthread_setschedparam Syntax”
on page 40.

#include <thread.h>

int thr_setprio(thread_t tid, int newprio)

The range of valid priorities for a thread depends on its scheduling policy.

thread_t tid;
int ret;
int newprio = 20;

/* suspended thread creation */

ret = thr_create(NULL, NULL, func, arg, THR_SUSPENDED, &tid);

/* set the new priority of suspended child thread */

ret = thr_setprio(tid, newprio);

/* suspended child thread starts executing with new priority */

ret = thr_continue(tid);

thr_setprio Return Values
thr_setprio() returns 0 if successful. When any of the following conditions is detected,
thr_setprio() fails and returns the corresponding value.

ESRCH

Description: The value specified by tid does not refer to an existing thread.

EINVAL

Description: The value of priority is invalid for the scheduling policy of the specified thread.

EPERM

Description: The caller does not have the appropriate permission to set the priority to the
value specified.

Get the Thread Priority
Use thr_getprio(3C) to get the current priority for the thread. Each thread inherits a priority
from its creator. thr_getprio() stores the current priority, tid, in the location pointed to by
newprio. For POSIX threads, see “pthread_getschedparam Syntax” on page 41.

Similar Oracle Solaris Threads Functions

Chapter 6 • Programming With Oracle Solaris Threads 189

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-setprio-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-getprio-3c

thr_getprio Syntax
#include <thread.h>

int thr_getprio(thread_t tid, int *newprio)

thr_getprio Return Values
thr_getprio() returns 0 if successful. When the following condition is detected,
thr_getprio() fails and returns the corresponding value.

ESRCH

Description: The value specified by tid does not refer to an existing thread.

Similar Synchronization Functions: Mutual Exclusion Locks
■ Initializing a mutex
■ Destroying a mutex
■ Acquiring a mutex
■ Releasing a mutex
■ Trying to acquire a mutex

Initialize a Mutex
Use mutex_init(3C) to initialize the mutex pointed to by mp. For POSIX threads, see
“Initializing a Mutex” on page 86.

mutex_init(3C) Syntax
#include <synch.h>

#include <thread.h>

int mutex_init(mutex_t *mp, int type, void *arg));

The type can be one of the following values.

■ USYNC_PROCESS. The mutex can be used to synchronize threads in this process and other
processes. arg is ignored.

■ USYNC_PROCESS_ROBUST. The mutex can be used to robustly synchronize threads in this
process and other processes. arg is ignored.

■ USYNC_THREAD. The mutex can be used to synchronize threads in this process only. arg is
ignored.

When a process fails while holding a USYNC_PROCESS lock, subsequent requestors of that lock
hang. This behavior is a problem for systems that share locks with client processes because the

Similar Synchronization Functions: Mutual Exclusion Locks

Multithreaded Programming Guide • October 2012 (Beta)190

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amutex-init-3c

client processes can be abnormally killed. To avoid the problem of hanging on a lock held by a
dead process, use USYNC_PROCESS_ROBUST to lock the mutex. USYNC_PROCESS_ROBUST adds two
capabilities:

■ In the case of process death, all owned locks held by that process are unlocked.
■ The next requestor for any of the locks owned by the failed process receives the lock. But, the

lock is held with an error return indicating that the previous owner failed while holding the
lock.

Mutexes can also be initialized by allocation in zeroed memory, in which case a type of
USYNC_THREAD is assumed.

Multiple threads must not initialize the same mutex simultaneously. A mutex lock must not be
reinitialized while other threads might be using the mutex.

Mutexes With Intraprocess Scope
#include <thread.h>

mutex_t mp;
int ret;

/* to be used within this process only */

ret = mutex_init(&mp, USYNC_THREAD, 0);

Mutexes With Interprocess Scope
#include <thread.h>

mutex_t mp;
int ret;

/* to be used among all processes */

ret = mutex_init(&mp, USYNC_PROCESS, 0);

Mutexes With Interprocess Scope-Robust
#include <thread.h>

mutex_t mp;
int ret;

/* to be used among all processes */

ret = mutex_init(&mp, USYNC_PROCESS_ROBUST, 0);

mutex_init Return Values
mutex_init() returns 0 if successful. When any of the following conditions is detected,
mutex_init() fails and returns the corresponding value.

Similar Synchronization Functions: Mutual Exclusion Locks

Chapter 6 • Programming With Oracle Solaris Threads 191

EFAULT

Description: mp points to an illegal address.

EINVAL

Description: The value specified by mp is invalid.

ENOMEM

Description: System has insufficient memory to initialize the mutex.

EAGAIN

Description: System has insufficient resources to initialize the mutex.

EBUSY

Description: System detected an attempt to reinitialize an active mutex.

Destroy a Mutex
Use mutex_destroy(3C) to destroy any state that is associated with the mutex pointed to by mp
. The space for storing the mutex is not freed. For POSIX threads, see “pthread_mutex_destroy
Syntax” on page 93.

mutex_destroy Syntax
#include <thread.h>

int mutex_destroy (mutex_t *mp);

mutex_destroy Return Values
mutex_destroy() returns 0 if successful. When the following condition is detected,
mutex_destroy() fails and returns the corresponding value.

EFAULT

Description: mp points to an illegal address.

Acquiring a Mutex
Use mutex_lock(3C) to lock the mutex pointed to by mp. When the mutex is already locked, the
calling thread blocks until the mutex becomes available. Blocked threads wait on a prioritized
queue. For POSIX threads, see “pthread_mutex_lock Syntax” on page 88.

mutex_lock Syntax
#include <thread.h>

int mutex_lock(mutex_t *mp);

Similar Synchronization Functions: Mutual Exclusion Locks

Multithreaded Programming Guide • October 2012 (Beta)192

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amutex-destroy-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amutex-lock-3c

mutex_lock Return Values
mutex_lock() returns 0 if successful. When any of the following conditions is detected,
mutex_lock() fails and returns the corresponding value.

EFAULT

Description: mp points to an illegal address.

EDEADLK

Description: The mutex is already locked and is owned by the calling thread.

Releasing a Mutex
Use mutex_unlock(3C) to unlock the mutex pointed to by mp. The mutex must be locked. The
calling thread must be the thread that last locked the mutex, the owner. For POSIX threads, see
“pthread_mutex_unlock Syntax” on page 89.

mutex_unlock Syntax
#include <thread.h>

int mutex_unlock(mutex_t *mp);

mutex_unlock Return Values
mutex_unlock() returns 0 if successful. When any of the following conditions is detected,
mutex_unlock() fails and returns the corresponding value.

EFAULT

Description: mp points to an illegal address.

EPERM

Description: The calling thread does not own the mutex.

Trying to Acquire a Mutex
Use mutex_trylock(3C) to attempt to lock the mutex pointed to by mp. This function is a
nonblocking version of mutex_lock(). For POSIX threads, see “pthread_mutex_trylock
Syntax” on page 90.

mutex_trylock Syntax
#include <thread.h>

int mutex_trylock(mutex_t *mp);

Similar Synchronization Functions: Mutual Exclusion Locks

Chapter 6 • Programming With Oracle Solaris Threads 193

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amutex-unlock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amutex-trylock-3c

mutex_trylock Return Values
mutex_trylock() returns 0 if successful. When any of the following conditions is detected,
mutex_trylock() fails and returns the corresponding value.

EFAULT

Description: mp points to an illegal address.

EBUSY

Description: The system detected an attempt to reinitialize an active mutex.

Similar Synchronization Functions: Condition Variables
■ Initializing a condition variable
■ Destroying a condition variable
■ Waiting for a condition
■ Waiting for an absolute time
■ Waiting for a time interval
■ Unblocking one thread
■ Unblocking all threads

Initialize a Condition Variable
Use cond_init(3C) to initialize the condition variable pointed to by cv.

cond_init Syntax
#include <thread.h>

int cond_init(cond_t *cv, int type, int arg);

The type can be one of the following values:
■ USYNC_PROCESS. The condition variable can be used to synchronize threads in this process

and other processes. arg is ignored.
■ USYNC_THREAD The condition variable can be used to synchronize threads in this process

only. arg is ignored.

Condition variables can also be initialized by allocation in zeroed memory, in which case a type
of USYNC_THREAD is assumed.

Multiple threads must not initialize the same condition variable simultaneously. A condition
variable must not be reinitialized while other threads might be using the condition variable.

For POSIX threads, see “pthread_condattr_init Syntax” on page 103 .

Similar Synchronization Functions: Condition Variables

Multithreaded Programming Guide • October 2012 (Beta)194

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Acond-init-3c

Condition Variables With Intraprocess Scope
#include <thread.h>

cond_t cv;
int ret;

/* to be used within this process only */

ret = cond_init(cv, USYNC_THREAD, 0);

Condition Variables With Interprocess Scope
#include <thread.h>

cond_t cv;
int ret;

/* to be used among all processes */

ret = cond_init(&cv, USYNC_PROCESS, 0);

cond_init Return Values
cond_init() returns 0 if successful. When any of the following conditions is detected,
cond_init() fails and returns the corresponding value.

EFAULT

Description: cv points to an illegal address.

EINVAL

Description: type is not a recognized type.

Destroying a Condition Variable
Use cond_destroy(3C) to destroy state that is associated with the condition variable pointed to
by cv . The space for storing the condition variable is not freed. For POSIX threads, see
“pthread_condattr_destroy Syntax” on page 104.

cond_destroy Syntax
#include <thread.h>

int cond_destroy(cond_t *cv);

cond_destroy Return Values
cond_destroy() returns 0 if successful. When any of the following conditions is detected,
cond_destroy() fails and returns the corresponding value.

Similar Synchronization Functions: Condition Variables

Chapter 6 • Programming With Oracle Solaris Threads 195

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Acond-destroy-3c

EFAULT

Description: cv points to an illegal address.

EBUSY

Description: The system detected an attempt to destroy an active condition variable.

Waiting for a Condition
Use cond_wait(3C) to atomically release the mutex pointed to by mp and cause the calling
thread to block on the condition variable pointed to by cv. The blocked thread can be awakened
by cond_signal(), cond_broadcast() , or when interrupted by delivery of a signal or a fork().

cond_wait() always returns with the mutex locked and owned by the calling thread, even when
returning an error.

cond_wait Syntax
#include <thread.h>

int cond_wait(cond_t *cv, mutex_t *mp);

cond_wait Return Values
cond_wait() returns 0 if successful. When any of the following conditions is detected,
cond_wait() fails and returns the corresponding value.

EFAULT

Description: cv points to an illegal address.

EINTR

Description: The wait was interrupted by a signal.

Wait for an Absolute Time
cond_timedwait(3C) is very similar to cond_wait(), except that cond_timedwait() does not
block past the time of day specified by abstime . For POSIX threads, see
“pthread_cond_timedwait Syntax” on page 111.

cond_timedwait Syntax
#include <thread.h>

int cond_timedwait(cond_t *cv, mutex_t *mp, timestruct_t abstime);

cond_timedwait() always returns with the mutex locked and owned by the calling thread, even
when returning an error.

Similar Synchronization Functions: Condition Variables

Multithreaded Programming Guide • October 2012 (Beta)196

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Acond-wait-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Acond-timedwait-3c

The cond_timedwait() function blocks until the condition is signaled or until the time of day
specified by the last argument has passed. The timeout is specified as the time of day so the
condition can be retested efficiently without recomputing the time-out value.

cond_timedwait Return Values
cond_timedwait() returns 0 if successful. When any of the following conditions is detected,
cond_timedwait() fails and returns the corresponding value.

EFAULT

Description: cv points to an illegal address.

ETIME

Description: The time specified by abstime has expired.

EINVAL

Description: abstime is invalid.

Waiting for a Time Interval
cond_reltimedwait(3C) is very similar to cond_timedwait(), except for the value for the third
argument. cond_reltimedwait() takes a relative time interval value in its third argument
rather than an absolute time of day value. For POSIX threads, see the
pthread_cond_reltimedwait_np(3C) man page.

cond_reltimedwait() always returns with the mutex locked and owned by the calling thread
even when returning an error. The cond_reltimedwait() function blocks until the condition is
signaled or until the time interval specified by the last argument has elapsed.

cond_reltimedwait Syntax
#include <thread.h>

int cond_reltimedwait(cond_t *cv, mutex_t *mp,
timestruct_t reltime);

cond_reltimedwait Return Values
cond_reltimedwait() returns 0 if successful. When any of the following conditions is detected,
cond_reltimedwait() fails and returns the corresponding value.

EFAULT

Description: cv points to an illegal address.

ETIME

Description: The time specified by reltime has expired.

Similar Synchronization Functions: Condition Variables

Chapter 6 • Programming With Oracle Solaris Threads 197

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Acond-reltimedwait-3c

Unblock One Thread
Use cond_signal(3C) to unblock one thread that is blocked on the condition variable pointed
to by cv . If no threads are blocked on the condition variable, cond_signal() has no effect.

cond_signal Syntax
#include <thread.h>

int cond_signal(cond_t *cv);

cond_signal Return Values
cond_signal() returns 0 if successful. When the following condition is detected,
cond_signal() fails and returns the corresponding value.

EFAULT

Description: cv points to an illegal address.

Unblock All Threads
Use cond_broadcast(3C) to unblock all threads that are blocked on the condition variable
pointed to by cv. When no threads are blocked on the condition variable, then
cond_broadcast() has no effect.

cond_broadcast Syntax
#include <thread.h>

int cond_broadcast(cond_t *cv);

cond_broadcast Return Values
cond_broadcast() returns 0 if successful. When the following condition is detected,
cond_broadcast() fails and returns the corresponding value.

EFAULT

Description: cv points to an illegal address.

Similar Synchronization Functions: Condition Variables

Multithreaded Programming Guide • October 2012 (Beta)198

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Acond-signal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Acond-broadcast-3c

Similar Synchronization Functions: Semaphores
Semaphore operations are the same in both the Oracle Solaris Operating Environment and the
POSIX environment. The function name changed from sema_ in the Oracle Solaris Operating
Environment to sem_ in pthreads. This section discusses the following topics:
■ Initializing a semaphore
■ Incrementing a semaphore
■ Blocking on a semaphore count
■ Decrementing a semaphore count
■ Destroying the semaphore state

Initialize a Semaphore
Use sema_init(3C) to initialize the semaphore variable pointed to by sp by count amount.

sema_init Syntax
#include <thread.h>

int sema_init(sema_t *sp, unsigned int count, int type,
void *arg);

type can be one of the following values:
■ USYNC_PROCESS. The semaphore can be used to synchronize threads in this process and

other processes. Only one process should initialize the semaphore. arg is ignored.
■ USYNC_THREAD. The semaphore can be used to synchronize threads in this process, only. arg

is ignored.

Multiple threads must not initialize the same semaphore simultaneously. A semaphore must
not be reinitialized while other threads might be using the semaphore.

Semaphores With Intraprocess Scope
#include <thread.h>

sema_t sp;
int ret;
int count;
count = 4;

/* to be used within this process only */

ret = sema_init(&sp, count, USYNC_THREAD, 0);

Semaphores With Interprocess Scope
#include <thread.h>

sema_t sp;

Similar Synchronization Functions: Semaphores

Chapter 6 • Programming With Oracle Solaris Threads 199

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asema-init-3c

int ret;
int count;
count = 4;

/* to be used among all the processes */

ret = sema_init (&sp, count, USYNC_PROCESS, 0);

sema_init Return Values
sema_init() returns 0 if successful. When any of the following conditions is detected,
sema_init() fails and returns the corresponding value.

EINVAL

Description: sp refers to an invalid semaphore.

EFAULT

Description: Either sp or arg point to an illegal address.

Increment a Semaphore
Use sema_post(3C) to atomically increment the semaphore pointed to by sp. When any threads
are blocked on the semaphore, one thread is unblocked.

sema_post Syntax
#include <thread.h>

int sema_post(sema_t *sp);

sema_post Return Values
sema_post() returns 0 if successful. When any of the following conditions is detected,
sema_post() fails and returns the corresponding value.

EINVAL

Description: sp refers to an invalid semaphore.

EFAULT

Description: sp points to an illegal address.

EOVERFLOW

Description: The semaphore value pointed to by sp exceeds SEM_VALUE_MAX.

Similar Synchronization Functions: Semaphores

Multithreaded Programming Guide • October 2012 (Beta)200

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asema-post-3c

Block on a Semaphore Count
Use sema_wait(3C) to block the calling thread until the count in the semaphore pointed to by sp
becomes greater than zero. When the count becomes greater than zero, atomically decrement
the count.

sema_wait Syntax
#include <thread.h>

int sema_wait(sema_t *sp);

sema_wait Return Values
sema_wait() returns 0 if successful. When any of the following conditions is detected,
sema_wait() fails and returns the corresponding value.

EINVAL

Description: sp refers to an invalid semaphore.

EINTR

Description: The wait was interrupted by a signal.

Decrement a Semaphore Count
Use sema_trywait(3C) to atomically decrement the count in the semaphore pointed to by sp
when the count is greater than zero. This function is a nonblocking version of sema_wait().

sema_trywait Syntax
#include <thread.h>

int sema_trywait(sema_t *sp);

sema_trywait Return Values
sema_trywait() returns 0 if successful. When any of the following conditions is detected,
sema_trywait() fails and returns the corresponding value.

EINVAL

Description: sp refers to an invalid semaphore.

EBUSY

Description: The semaphore pointed to by sp has a zero count.

Similar Synchronization Functions: Semaphores

Chapter 6 • Programming With Oracle Solaris Threads 201

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asema-wait-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asema-trywait-3c

Destroy the Semaphore State
Use sema_destroy(3C) to destroy any state that is associated with the semaphore pointed to by
sp. The space for storing the semaphore is not freed.

sema_destroy(3C) Syntax
#include <thread.h>

int sema_destroy(sema_t *sp);

sema_destroy(3C) Return Values
sema_destroy() returns 0 if successful. When the following condition is detected,
sema_destroy() fails and returns the corresponding value.

EINVAL

Description: sp refers to an invalid semaphore.

Synchronizing Across Process Boundaries
Each of the synchronization primitives can be set up to be used across process boundaries. This
cross-boundary setup is done by ensuring that the synchronization variable is located in a
shared memory segment and by calling the appropriate init routine with type set to
USYNC_PROCESS.

If type is set to USYNC_PROCESS, then the operations on the synchronization variables work just
as the variables do when type is USYNC_THREAD.

mutex_init(&m, USYNC_PROCESS, 0);

rwlock_init(&rw, USYNC_PROCESS, 0);

cond_init(&cv, USYNC_PROCESS, 0);

sema_init(&s, count, USYNC_PROCESS, 0);

Example of Producer and Consumer Problem
Example 6–2 shows the producer and consumer problem with the producer and consumer in
separate processes. The main routine maps zero-filled memory that main shares with its child
process, into its address space. Note that mutex_init() and cond_init() must be called
because the type of the synchronization variables is USYNC_PROCESS.

A child process is created to run the consumer. The parent runs the producer.

This example also shows the drivers for the producer and consumer. The producer_driver
reads characters from stdin and calls the producer. The consumer_driver gets characters by
calling the consumer and writes them to stdout.

Synchronizing Across Process Boundaries

Multithreaded Programming Guide • October 2012 (Beta)202

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asema-destroy-3c

The data structure for Example 6–2 is the same as that used for the solution with condition
variables. See “Examples of Using Nested Locking With a Singly-Linked List” on page 96 .

EXAMPLE 6–2 Producer and Consumer Problem Using USYNC_PROCESS

main() {

int zfd;

buffer_t *buffer;

zfd = open(“/dev/zero”, O_RDWR);

buffer = (buffer_t *)mmap(NULL, sizeof(buffer_t),

PROT_READ|PROT_WRITE, MAP_SHARED, zfd, 0);

buffer->occupied = buffer->nextin = buffer->nextout = 0;

mutex_init(&buffer->lock, USYNC_PROCESS, 0);

cond_init(&buffer->less, USYNC_PROCESS, 0);

cond_init(&buffer->more, USYNC_PROCESS, 0);

if (fork() == 0)

consumer_driver(buffer);

else

producer_driver(buffer);

}

void producer_driver(buffer_t *b) {

int item;

while (1) {

item = getchar();

if (item == EOF) {

producer(b, ‘\0’);
break;

} else

producer(b, (char)item);

}

}

void consumer_driver(buffer_t *b) {

char item;

while (1) {

if ((item = consumer(b)) == ’\0’)

break;

putchar(item);

}

}

A child process is created to run the consumer. The parent runs the producer.

Synchronizing Across Process Boundaries

Chapter 6 • Programming With Oracle Solaris Threads 203

Special Issues for fork() and Oracle Solaris Threads
Prior to the Oracle Solaris 10 release, Oracle Solaris threads and POSIX threads defined the
behavior of fork() differently. See “Process Creation: exec and exit Issues” on page 149 for a
thorough discussion of fork() issues.

Oracle Solaris libthread supported both fork() and fork1(). The fork() call has “fork-all”
semantics. fork() duplicated everything in the process, including threads and LWPs, creating a
true clone of the parent. The fork1() call created a clone that had only one thread. The process
state and address space are duplicated, but only the calling thread was cloned.

POSIX libpthread supported only fork(), which has the same semantics as fork1() in Oracle
Solaris threads.

Whether fork() has “fork-all” semantics or “fork-one” semantics was dependent on which
library is used. Link with -lthread to assign “fork-all” semantics to fork(). Link with
-lpthread to assign “fork-one” semantics to fork().

Effective with the Oracle Solaris 10 release, fork() has the same semantics in both Oracle
Solaris threads and POSIX threads. More specifically, fork1() semantics replicate only the
caller. A new function, forkall() , is provided for those applications that require replicate-all
semantics.

See “Compiling and Linking a Multithreaded Program” on page 213 for more details.

Special Issues for fork() and Oracle Solaris Threads

Multithreaded Programming Guide • October 2012 (Beta)204

Safe and Unsafe Interfaces

This chapter defines MT-safety levels for functions and libraries. This chapter discusses the
following topics:

■ “Thread Safety” on page 205
■ “MT Interface Safety Levels” on page 206
■ “Async-Signal-Safe Functions in Oracle Solaris Threads” on page 208
■ “MT Safety Levels for Libraries” on page 209

Thread Safety
Thread safety is the avoidance of data races. Data races occur when data are set to either correct
or incorrect values, depending upon the order in which multiple threads access and modify the
data.

When no sharing is intended, give each thread a private copy of the data. When sharing is
important, provide explicit synchronization to make certain that the program behaves in a
deterministic manner.

A procedure is thread safe when the procedure is logically correct when executed
simultaneously by several threads. At a practical level, safety falls into the following recognized
levels.

■ Unsafe
■ Thread safe, Serializable
■ Thread safe, MT-Safe

An unsafe procedure can be made thread safe and able to be serialized by surrounding the
procedure with statements to lock and unlock a mutex. Example 7–1 shows three simplified
implementations of fputs() , initially thread unsafe.

Next is a serializable version of this routine with a single mutex protecting the procedure from
concurrent execution problems. Actually, the single mutex is stronger synchronization than is

7C H A P T E R 7

205

usually necessary. When two threads are sending output to different files by using fputs(), one
thread need not wait for the other thread. The threads need synchronization only when sharing
an output file.

The last version is MT-safe. This version uses one lock for each file, allowing two threads to
print to different files at the same time. So, a routine is MT-safe when the routine is thread safe,
and the routine's execution does not negatively affect performance.

EXAMPLE 7–1 Degrees of Thread Safety

/* not thread-safe */

fputs(const char *s, FILE *stream) {

char *p;

for (p=s; *p; p++)

putc((int)*p, stream);

}

/* serializable */

fputs(const char *s, FILE *stream) {

static mutex_t mut;

char *p;

mutex_lock(&m);

for (p=s; *p; p++)

putc((int)*p, stream);

mutex_unlock(&m);

}

/* MT-Safe */

mutex_t m[NFILE];

fputs(const char *s, FILE *stream) {

char *p;

mutex_lock(&m[fileno(stream)]);

for (p=s; *p; p++)

putc((int)*p, stream);

mutex_unlock(&m[fileno(stream)]0;

}

MT Interface Safety Levels
The man pages for functions and interfaces indicate how well the function or interface supports
threads. The ATTRIBUTES section of each man page lists the MT-Level attribute, which is set
to one of the safety level categories listed in Table 7–1. These categories are explained more fully
in the attributes(5) man page.

If a man page does not state explicitly that a function is MT-Safe, you must assume that the
function is unsafe.

MT Interface Safety Levels

Multithreaded Programming Guide • October 2012 (Beta)206

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

TABLE 7–1 Interface Safety Levels

Category Description

Safe This code can be called from a multithreaded application

Safe with exceptions See the NOTES sections of the man page for a description of the
exceptions.

Unsafe This interface is not safe to use with multithreaded applications unless the
application arranges for only one thread at a time to execute within the
library.

MT-Safe This interface is fully prepared for multithreaded access. The interface is
both safe and supports some concurrency.

MT-Safe with exceptions See the NOTES sections of the man page for a description of the
exceptions.

Async-Signal-Safe This routine can safely be called from a signal handler. A thread that is
executing an Async-Signal-Safe routine does not deadlock with itself
when interrupted by a signal. See “Async-Signal-Safe Functions in Oracle
Solaris Threads” on page 208

Fork1–Safe This interface releases locks it has held whenever Oracle Solaris fork1(2)
or POSIX fork(2) is called.

Some functions have purposely not been made safe for the following reasons.

■ The interface made MT-Safe would have negatively affected the performance of
single-threaded applications.

■ The library has an unsafe interface. For example, a function might return a pointer to a
buffer in the stack. You can use re-entrant counterparts for some of these functions. The
re-entrant function name is the original function name with “_r” appended.

Note – The only way to be certain that a function with a name not ending in “_r” is MT-Safe is to
check the function's manual page. Use of a function identified as not MT-Safe must be
protected by a synchronizing device or by restriction to the initial thread.

Reentrant Functions for Unsafe Interfaces
For most functions with unsafe interfaces, an MT-Safe version of the routine exists. The name
of the MT-Safe routine is the name of the Unsafe routine with “_r” appended. For example, the
MT-Safe version of asctime() is asctime_r(). The Table 7–2 “_r” routines are supplied in the
Oracle Solaris environment.

MT Interface Safety Levels

Chapter 7 • Safe and Unsafe Interfaces 207

TABLE 7–2 Reentrant Functions

asctime_r(3c) gethostbyname_r(3nsl) getservbyname_r(3socket)

ctermid_r(3c) gethostent_r(3nsl) getservbyport_r(3socket)

ctime_r(3c) getlogin_r(3c) getservent_r(3socket)

fgetgrent_r(3c) getnetbyaddr_r(3socket) getspent_r(3c)

fgetpwent_r(3c) getnetbyname_r(3socket) getspnam_r(3c)

fgetspent_r(3c) getnetent_r(3socket) gmtime_r(3c)

gamma_r(3m) getnetgrent_r(3c) lgamma_r(3m)

getauclassent_r(3bsm) getprotobyname_r(3socket) localtime_r(3c)

getauclassnam_r(3bsm) getprotobynumber_r(3socket) nis_sperror_r(3nsl)

getauevent_r(3bsm) getprotoent_r(3socket) rand_r(3c)

getauevnam_r(3bsm) getpwent_r(3c) readdir_r(3c)

getauevnum_r(3bsm) getpwnam_r(3c) strtok_r(3c)

getgrent_r(3c) getpwuid_r(3c) tmpnam_r(3c)

getgrgid_r(3c) getrpcbyname_r(3nsl) ttyname_r(3c)

getgrnam_r(3c) getrpcbynumber_r(3nsl)

gethostbyaddr_r(3nsl) getrpcent_r(3nsl)

Async-Signal-Safe Functions in Oracle Solaris Threads
Functions that can safely be called from signal handlers are Async-Signal-Safe. The IEEE Std
1003.1–2004 (POSIX) standard defines Async-Signal-Safe functions, which are listed in
Table 5–2. In addition to these standard Async-Signal-Safe functions, the following functions
from the Oracle Solaris threads interface are also Async-Signal-Safe:

■ sema_post(3C)

■ thr_sigsetmask(3C), similar to pthread_sigmask(3C)

■ thr_kill(3C), similar to pthread_kill(3C)

Async-Signal-Safe Functions in Oracle Solaris Threads

Multithreaded Programming Guide • October 2012 (Beta)208

MT Safety Levels for Libraries
All routines that can potentially be called by a thread from a multithreaded program should be
MT-Safe. Therefore, two or more activations of a routine must be able to correctly execute
concurrently. So, every library interface that a multithreaded program uses must be MT-Safe.

Not all libraries are now MT-Safe. The commonly used libraries that are MT-Safe are listed in
the following table. The libraries are accessed in the /usr/lib directory.

TABLE 7–3 Some MT-Safe Libraries

Library Comments

libc Interfaces that are not safe have thread-safe interfaces of the form *_r,
often with different semantics.

libm Math library that is compliant with System V Interface Definition,
Edition 3, X/Open, and ANSI C

libmalloc Space-efficient memory allocation library, see malloc(3MALLOC)

libmapmalloc Alternative mmap-based memory allocation library, see
mapmalloc(3MALLOC)

libnsl The TLI interface, XDR, RPC clients and servers, netdir, netselect
and getXXbyYY interfaces are not safe, but have thread-safe interfaces of
the form getXXbyYY_r

libresolv Domain name server library routines

libsocket Socket library for making network connections

libX11 X11 Windows library routines

libCrun C++ runtime shared objects for Oracle C++ 5.0 compilers

libCstd C++ standard library for Oracle C++ 5.0 compilers

libiostream Classic iostream library for Oracle C++ 5.0 compilers

libC.so.5 C++ runtime and iostream library for Oracle C++ 4.0 compilers

Unsafe Libraries
Routines in libraries that are not guaranteed to be MT-Safe can safely be called by
multithreaded programs only when such calls are single threaded.

MT Safety Levels for Libraries

Chapter 7 • Safe and Unsafe Interfaces 209

210

Compiling and Debugging

This chapter describes how to compile and debug multithreaded programs. This chapter
discusses the following topics:

■ “Setting Up the Oracle Solaris Environment for Developing Multithreaded Applications” on
page 211

■ “Compiling a Multithreaded Application” on page 211
■ “Debugging a Multithreaded Program” on page 214

Setting Up the Oracle Solaris Environment for Developing
Multithreaded Applications

To build software on the Oracle Solaris OS, you must install the tools you need on your
development machine. Whether you want to use the standard tools that are bundled in Oracle
Solaris OS, or use the Oracle Solaris Studio tools, you must first install the appropriate Oracle
Solaris software for a developer environment.

Compiling a Multithreaded Application
This section explains how to compile a multithreaded program using the Oracle Solaris Studio
C compiler. The Oracle Solaris Studio C compiler is optimized for parallel programming and
includes many features that are not available in other C compilers. See the Oracle Solaris
Studio 12.3: C User’s Guide for more information about the C compiler.

Preparing for Compilation
Your application must include <thread.h> for Oracle Solaris threads and <pthread.h> for
POSIX threads. You should include the appropriate file for the API you are using, or both files if

8C H A P T E R 8

211

http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/E21990
http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/E21990

your application uses both thread APIs. See the pthread.h(3HEAD) man page for more
information. The application must also include <errno.h>, <limits.h>, <signal.h> ,
<unistd.h> files.

Choosing Oracle Solaris or POSIX Threads
The Oracle Solaris implementation of Pthreads is completely compatible with Oracle Solaris
threads. You can use both Oracle Solaris threads and Pthreads in the same application. See the
pthreads(5) man page for a discussion of the differences between the thread implementations.
See also Chapter 6, “Programming With Oracle Solaris Threads,” in this manual for
information about differences.

One difference between the thread types is the behavior of the fork functions.

In the Solaris 9 release, the behavior of the fork() function depended on whether or not the
application was linked with the POSIX threads library. When linked with -lthread (Oracle
Solaris Threads) but not linked with -lpthread (POSIX Threads), fork() would duplicate in
the child thread all the threads from the parent process. When the application was linked with
-lpthread, whether or not also linked with -lthread, fork() was the same as fork1() and
only the calling thread is duplicated.

Starting in the Oracle Solaris 10 release, a call to the forkall() function replicates in the child
process all of the threads in the parent process. A call to fork1() replicates only the calling
thread in the child process. In the Oracle Solaris 10 release, a call to fork() is identical to a call
to fork1(); only the calling thread is replicated in the child process. This is the POSIX-specified
behavior for fork(). Applications that require replicate-all fork semantics must call forkall().

Including <thread.h>or <pthread.h>
The include file <thread.h> contains declarations for the Oracle Solaris threads functions. To
call any Oracle Solaris thread functions, your program needs to include <thread.h>. This file
enables you to produce compiled code that is compatible with earlier releases of the Oracle
Solaris software.

The include file <pthread.h> contains declarations for the Pthreads functions and is required if
your program uses Pthreads.

You can mix Oracle Solaris threads and POSIX threads in the same application by including
both <thread.h> and <pthread.h> in the application. Then when linking and compiling you
need to specify the -lpthread flag to link in the pthread APIs.

When using -mt, the Oracle Solaris threads APIs will be linked automatically. Always use the
-mt option instead of listing -lthread explicitly. To use Pthreads, specify the -mt option and
-lpthread option on the link command line. The libpthread library provides an interface to
libthread, so you still need libthread when using Pthreads.

Compiling a Multithreaded Application

Multithreaded Programming Guide • October 2012 (Beta)212

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fpthread.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5pthreads-5

Compiling and Linking a Multithreaded Program
The Oracle Solaris Studio C compiler (cc) provides the -mt option to compile and link
multithreaded code. The -mt option assures that libraries are linked in appropriate order.

The -mt option must be used consistently. If you compile with -mt and link in a separate step,
you must use the -mt option in the link step as well as the compile step. If you compile and link
one translation unit with -mt, you must compile and link all units of the program with -mt.

Compiling and Linking in the POSIX Threads Environment
If your application uses only Pthreads or uses both Oracle Solaris threads and Pthreads, use the
following command to compile and link:

cc -mt [flag ...] file... [library...] -lpthread

The -mt option links in the libthread library, while the -lpthread option links in the
libpthread library. Both flags are needed when using Pthreads because libpthread provides
an interface to libthread.

The -mt option can appear anywhere in the command line. The -lpthread option should come
after any user libraries. The relative positions of -mt and -lpthread do not matter.

For example, the following lines are equivalent:

cc -mt -o myprog f1.o f2.o -lmylib -lpthread

cc -o myprog f1.o f2.o -mt -lmylib -lpthread

cc -o myprog f1.o f2.o -lmylib -mt -lpthread

cc -o myprog f1.o f2.o -lmylib -lpthread -mt

See the Oracle Solaris Studio 12.3: C User’s Guide and the Oracle Solaris Studio 12.3
Command-Line Reference for more information about the cc command.

Compiling and Linking in the Oracle Solaris Threads Environment
In a Oracle Solaris threads environment, use the following options to compile and link your
application:

If you application uses only Oracle Solaris threads, use the following command to compile and
link:

cc -mt [flag ...] file... [library...]

The -mt option links in the libthread library.

See theOracle Solaris Studio 12.3: C User’s Guide for more information about the cc command.

Compiling a Multithreaded Application

Chapter 8 • Compiling and Debugging 213

http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/E21990
http://docs.oracle.com/cd/E24457_01/html/E22003/index.html
http://docs.oracle.com/cd/E24457_01/html/E22003/index.html

Compiling and Linking in a Mixed Threads Environment
If your application uses both Pthreads and Oracle Solaris threads functions, you can compile
and link with the same command used for compiling for Pthreads only:

cc -mt [flag ...] file... [library...] -lpthread

In mixed usage, you need to include both thread.h and pthread.h.

Linking With -lrt for POSIX Semaphores
The Oracle Solaris semaphore routines, sema_*(3C), are contained in the standard C library. By
contrast, you link with the -lrt library to get the standard sem_*(3RT) POSIX semaphore
routines described in “Synchronization With Semaphores” on page 119.

Alternate Threads Library
The Solaris 8 release introduced an alternate threads library implementation that is located in
the directories /usr/lib/lwp (32-bit) and /usr/lib/lwp/64 (64-bit). In the Solaris 9 release,
this implementation became the standard threads implementation found in /usr/lib and
/usr/lib/64. Effective with the Oracle Solaris 10 release, all threads functionality has been
moved into libc and no separate threads library is required. The /usr/lib/lwp directories are
maintained for compatibility of Solaris 8 applications.

Debugging a Multithreaded Program
The following discussion describes characteristics that can cause bugs in multithreaded
programs. Utilities that you can use to help debug your program are also described.

Common Oversights in Multithreaded Programs
The following list points out some of the more frequent oversights that can cause bugs in
multithreaded programs.

■ A pointer passed to the caller's stack as an argument to a new thread.
■ The shared changeable state of global memory accessed without the protection of a

synchronization mechanism leading to a data race. A data race occurs when two or more
threads in a single process access the same memory location concurrently, and at least one of
the threads tries to write to the location. When the threads do not use exclusive locks to
control their accesses to that memory, the order of accesses is non-deterministic, and the
computation may give different results from run to run depending on that order. Some data

Alternate Threads Library

Multithreaded Programming Guide • October 2012 (Beta)214

races may be benign (for example, when the memory access is used for a busy-wait), but
many data races are bugs in the program. The Thread Analyzer tool is useful for detecting
data races. See “Detecting Data Races and Deadlocks Using Thread Analyzer” on page 216.

■ Deadlocks caused by two threads trying to acquire rights to the same pair of global resources
in alternate order. One thread controls the first resource and the other controls the second
resource. Neither thread can proceed until the other gives up. The Thread Analyzer tool is
also useful for detecting deadlocks. See “Detecting Data Races and Deadlocks Using Thread
Analyzer” on page 216.

■ Trying to reacquire a lock already held (recursive deadlock).
■ Creating a hidden gap in synchronization protection. This gap in protection occurs when a

protected code segment contains a function that frees and reacquires the synchronization
mechanism before returning to the caller. The result is misleading. To the caller, the
appearance is that the global data has been protected when the data actually has not been
protected.

■ When mixing UNIX signals with threads, and not using the sigwait(2) model for handling
asynchronous signals.

■ Calling setjmp(3C) and longjmp(3C), and then long-jumping away without releasing the
mutex locks.

■ Failing to re-evaluate the conditions after returning from a call to *_cond_wait() or
*_cond_timedwait().

■ Forgetting that default threads are created PTHREAD_CREATE_JOINABLE and must be
reclaimed with pthread_join(3C). Note that pthread_exit(3C) does not free up its
storage space.

■ Making deeply nested, recursive calls and using large automatic arrays can cause problems
because multithreaded programs have a more limited stack size than single-threaded
programs.

■ Specifying an inadequate stack size, or using nondefault stacks.

Multithreaded programs, especially those containing bugs, often behave differently in two
successive runs, even with identical inputs. This behavior is caused by differences in the order
that threads are scheduled.

In general, multithreading bugs are statistical instead of deterministic. Tracing is usually a more
effective method of finding the order of execution problems than is breakpoint-based
debugging.

Tracing and Debugging with DTrace
DTrace is a comprehensive dynamic tracing facility that is built into the Oracle Solaris OS. The
DTrace facility can be used to examine the behavior of your multithreaded program. DTrace
inserts probes into running programs to collect data at points in the execution path that you

Debugging a Multithreaded Program

Chapter 8 • Compiling and Debugging 215

specify. The collected data can be examined to determine problem areas. See the Oracle
Solaris 11.1 Dynamic Tracing Guide for more information about using DTrace.

Profiling with Performance Analyzer
The Performance Analyzer tool, included in the Oracle Solaris Studio Studio software, can be
used for extensive profiling of multithreaded and single threaded programs. The tool enables
you to see in detail what a thread is doing at any given point. See the Oracle Solaris Studio 12.3:
Performance Analyzer guide for more information.

Detecting Data Races and Deadlocks Using Thread
Analyzer
The Oracle Solaris Studio software includes a tool called the Thread Analyzer. This tool enables
you to analyze the execution of a multithreaded program. It can detect multithreaded
programming errors such as data races or deadlocks in code that is written using the Pthread
API, the Oracle Solaris thread API, OpenMP directives, Oracle parallel directives, Cray parallel
directives, or a mix of these technologies.

See the Oracle Solaris Studio 12.3: Debugging a Program With dbx guide for more information.

Using dbx

The dbx utility is a debugger included in the Oracle Solaris Studio developer tools, available
from http://www.oracle.com/

technetwork/server-storage/solarisstudio/downloads/index.html. With the Oracle
Solaris Studio dbx command-line debugger, you can debug and execute source programs that
are written in C, C++, and Fortran. You can use dbx by starting it in a terminal window and
interactively debugging your program with dbx commands. If you prefer a graphical interface,
you can use the same dbx functionality in the Debugging windows of the Oracle Solaris Studio
IDE (Integrated Development Environment). For a description of how to start dbx, see the
dbx(1) man page. See the manual Oracle Solaris Studio 12.3: Debugging a Program With dbx for
an overview of dbx. The Debugging features in the Oracle Solaris Studio IDE are described in
the IDE online help.

See Chapter 11, “Debugging Multithreaded Applications,” in Oracle Solaris Studio 12.3:
Debugging a Program With dbx for detailed information about debugging multithreaded
programs. The dbx debugger provides commands to manipulate event handlers for thread
events, which are described in Appendix B, “Event Management,” in Oracle Solaris Studio 12.3:
Debugging a Program With dbx.

All the dbx options that are listed in Table 8–1 can support multithreaded applications.

Debugging a Multithreaded Program

Multithreaded Programming Guide • October 2012 (Beta)216

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=OSDTG
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=OSDTG
http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/E21994
http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/E21994
http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/E21993
http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/index.html
http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/E21993
http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/E21993blajx
http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/E21993blajx
http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/E21993blaqc
http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/E21993blaqc

TABLE 8–1 dbxOptions for MT Programs

Option Action

cont at line [-sig signo id] Continues execution at line with signal signo. The id, if
present, specifies which thread or LWP to continue.
The default value is all.

lwp [lwpid] Displays current LWP. Switches to given LWP [lwpid].

lwps Lists all LWPs in the current process.

next ... tid Steps the given thread. When a function call is skipped,
all LWPs are implicitly resumed for the duration of
that function call. Nonactive threads cannot be
stepped.

next ... lwpid Steps the given LWP. Does not implicitly resume all
LWPs when skipping a function. The LWP on which
the given thread is active. Does not implicitly resume
all LWP when skipping a function.

step... tid Steps the given thread. When a function call is skipped,
all LWPs are implicitly resumed for the duration of
that function call. Nonactive threads cannot be
stepped.

step... lwpid Steps the given LWP. Does not implicitly resume all
LWPs when skipping a function.

stepi... lwpid Steps machine instructions (stepping into calls) in the
given LWP.

stepi... tid Steps machine instructions in the LWP on which the
given thread is active.

thread [tid] Displays current thread, or switches to thread tid. In all
the following variations, omitting the l tid implies the
current thread.

thread -info [tid] Prints everything known about the given thread.

thread -blocks [tid] Prints all locks held by the given thread blocking other
threads.

thread -suspend [tid] Puts the given thread into suspended state, which
prevents it from running. A suspended thread displays
with an “S” in the threads listing.

thread -resume [tid] Unsuspends the given thread so it resumes running.

thread -hide [tid] Hides the given or current thread. The thread does not
appear in the generic threads listing.

Debugging a Multithreaded Program

Chapter 8 • Compiling and Debugging 217

TABLE 8–1 dbxOptions for MT Programs (Continued)
Option Action

thread -unhide [tid] Unhides the given or current thread.

thread -unhide all Unhides all threads.

threads Prints the list of all known threads.

threads -all Prints threads that are not usually printed (zombies).

threads -mode all|filter Controls whether threads prints all threads or filters
threads by default. When filtering is on, threads that
have been hidden by the thread -hide command are
not listed.

threads -mode auto|manual Enables automatic updating of the thread listing.

threads -mode Echoes the current modes. Any of the previous forms
can be followed by a thread or LWP ID to get the
traceback for the specified entity.

Tracing and Debugging With the TNF Utilities
Although Dtrace, Performance Analyzer, Thread Analyzer, and dbx are more modern tools,
you can also still use the older TNF utilities to trace, debug, and gather performance analysis
information from your applications and libraries. The TNF utilities integrate trace information
from the kernel as well as from multiple user processes and threads. The TNF utilities have long
been included as part of the Solaris software. See the tracing(3TNF) man page for information
about these utilities.

Using truss
See the truss(1)man page for information on tracing system calls, signals and user-level
function calls.

Using mdb
For information about mdb, see the Oracle Solaris Modular Debugger Guide.

The following mdb commands can be used to access the LWPs of a multithreaded program.

$l Prints the LWP ID of the representative thread if the target is a user process.

$L Prints the LWP IDs of each LWP in the target if the target is a user process.

pid::attach Attaches to process # pid.

Debugging a Multithreaded Program

Multithreaded Programming Guide • October 2012 (Beta)218

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1truss-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=MDB

::release Releases the previously attached process or core file. The process can
subsequently be continued by prun(1) or it can be resumed by applying MDB
or another debugger.

These commands to set conditional breakpoints are often useful.

[addr] ::bp [+/-dDestT] [-c cmd] [-n count] sym ...

Set a breakpoint at the specified locations.

addr ::delete [id | all]
Delete the event specifiers with the given ID number.

Debugging a Multithreaded Program

Chapter 8 • Compiling and Debugging 219

220

Programming Guidelines

This chapter provides some pointers on programming with threads. Most pointers apply to
both Oracle Solaris and POSIX threads, but where utility differs, the behavior is noted. A
change from single-threaded thinking to multithreaded thinking is emphasized in this chapter.
The chapter discusses the following topics:
■ “Rethinking Global Variables” on page 221
■ “Providing for Static Local Variables” on page 222
■ “Synchronizing Threads” on page 223
■ “Avoiding Deadlock” on page 226
■ “Some Basic Guidelines for Threaded Code” on page 228
■ “Creating and Using Threads” on page 229
■ “Working With Multiprocessors” on page 229
■ “Examples of Threads Programs” on page 234

Rethinking Global Variables
Historically, most code has been designed for single-threaded programs. This code design is
especially true for most of the library routines that are called from C programs. The following
implicit assumptions were made for single-threaded code:
■ When you write into a global variable and then, a moment later, read from the variable,

what you read is exactly what you just wrote.
■ A write into nonglobal, static storage, and moment later, a read from the variable results in a

read of exactly what you just wrote.
■ You do not need synchronization because concurrent access to the variable is not invoked.

The following examples discuss some of the problems that arise in multithreaded programs
because of these assumptions, and how you can deal with the problems.

Traditional, single-threaded C and UNIX have a convention for handling errors detected in
system calls. System calls can return anything as a functional value. For example, write()

9C H A P T E R 9

221

returns the number of bytes that were transferred. However, the value -1 is reserved to indicate
that something went wrong. So, when a system call returns -1, you know that the call failed.

EXAMPLE 9–1 Global Variables and errno

extern int errno;

...

if (write(file_desc, buffer, size) == -1) {

/* the system call failed */

fprintf(stderr, “something went wrong, “

“error code = %d\n”, errno);

exit(1);

}

...

Rather than returning the actual error code, which could be confused with normal return
values, the error code is placed into the global variable errno. When the system call fails, you
can look in errno to find out what went wrong.

Now, consider what happens in a multithreaded environment when two threads fail at about
the same time but with different errors. Both threads expect to find their error codes in errno,
but one copy of errno cannot hold both values. This global variable approach does not work for
multithreaded programs.

Threads solve this problem through a conceptually new storage class: thread-specific data. This
storage is similar to global storage. Thread-specific data can be accessed from any procedure in
which a thread might be running. However, thread-specific data is private to the thread. When
two threads refer to the thread-specific data location of the same name, the threads are referring
to two different areas of storage.

So, when using threads, each reference to errno is thread specific because each thread has a
private copy of errno. A reference to errno as thread-specific is achieved in this
implementation by making errno a macro that expands to a function call.

Providing for Static Local Variables
Example 9–2 shows a problem that is similar to the errno problem, but involving static storage
instead of global storage. The function gethostbyname(3NSL) is called with the computer name
as its argument. The return value is a pointer to a structure that contains the required
information for contacting the computer through network communications.

EXAMPLE 9–2 The gethostbyname()Problem

struct hostent *gethostbyname(char *name) {

static struct hostent result;

/* Lookup name in hosts database */

/* Put answer in result */

return(&result);

Providing for Static Local Variables

Multithreaded Programming Guide • October 2012 (Beta)222

EXAMPLE 9–2 The gethostbyname()Problem (Continued)

}

A pointer that is returned to a local variable is generally not a good idea. Using a pointer works
in this example because the variable is static. However, when two threads call this variable at
once with different computer names, the use of static storage conflicts.

Thread-specific data could be used as a replacement for static storage, as in the errno problem.
But, this replacement involves dynamic allocation of storage and adds to the expense of the call.

A better way to handle this kind of problem is to make the caller of gethostbyname() supply the
storage for the result of the call. An additional output argument to the routine enables the caller
to supply the storage. The additional output argument requires a new interface to the
gethostbyname() function.

This technique is used in threads to fix many of these problems. In most cases, the name of the
new interface is the old name with “_r” appended, as in gethostbyname_r(3NSL).

Synchronizing Threads
The threads in an application must cooperate and synchronize when sharing the data and the
resources of the process.

A problem arises when multiple threads call functions that manipulate an object. In a
single-threaded world, synchronizing access to such objects is not a problem. However, as
Example 9–3 illustrates, synchronization is a concern with multithreaded code. Note that the
printf(3S) function is safe to call for a multithreaded program. This example illustrates what
could happen if printf() were not safe.

EXAMPLE 9–3 printf()Problem

/* thread 1: */

printf("go to statement reached");

/* thread 2: */

printf("hello world");

printed on display:

go to hello

Synchronizing Threads

Chapter 9 • Programming Guidelines 223

Single-Threaded Strategy
One strategy is to have a single, application-wide mutex lock acquired whenever any thread in
the application is running and released before it must block. Because only one thread can be
accessing shared data at any one time, each thread has a consistent view of memory.

Because this strategy is effectively single-threaded, very little is gained by this strategy.

Reentrant Function
A better approach is to take advantage of the principles of modularity and data encapsulation. A
reentrant function behaves correctly if called simultaneously by several threads. To write a
reentrant function is a matter of understanding just what behaves correctly means for this
particular function.

Functions that are callable by several threads must be made reentrant. To make a function
reentrant might require changes to the function interface or to the implementation.

Functions that access global state, like memory or files, have reentrance problems. These
functions need to protect their use of global state with the appropriate synchronization
mechanisms provided by threads.

The two basic strategies for making functions in modules reentrant are code locking and data
locking.

Code Locking
Code locking is done at the function call level and guarantees that a function executes entirely
under the protection of a lock. The assumption is for all access to data to be done through
functions. Functions that share data should execute under the same lock.

Some parallel programming languages provide a construct called a monitor. The monitor
implicitly does code locking for functions that are defined within the scope of the monitor. A
monitor can also be implemented by a mutex lock.

Functions under the protection of the same mutex lock or within the same monitor are
guaranteed to execute atomically with respect to other functions in the monitor.

Data Locking
Data locking guarantees that access to a collection of data is maintained consistently. For data
locking, the concept of locking code is still there, but code locking is around references to
shared (global) data, only. For mutual exclusion locking, only one thread can be in the critical
section for each collection of data.

Synchronizing Threads

Multithreaded Programming Guide • October 2012 (Beta)224

Alternatively, in a multiple reader, single writer protocol, several readers can be allowed for
each collection of data or one writer. Multiple threads can execute in a single module when the
threads operate on different data collections. In particular, the threads do not conflict on a
single collection for the multiple readers, single writer protocol. So, data locking typically allows
more concurrency than does code locking.

What strategy should you use when using locks, whether implemented with mutexes, condition
variables, or semaphores, in a program? Should you try to achieve maximum parallelism by
locking only when necessary and unlocking as soon as possible, called fine-grained locking? Or
should you hold locks for long periods to minimize the overhead of taking and releasing locks,
called coarse-grained locking?

The granularity of the lock depends on the amount of data protected by the lock. A very
coarse-grained lock might be a single lock to protect all data. Dividing how the data is protected
by the appropriate number of locks is very important. Locking that is too fine-grained can
degrade performance. The overhead associated with acquiring and releasing locks can become
significant when your application contains too many locks.

The common wisdom is to start with a coarse-grained approach, identify bottlenecks, and add
finer-grained locking where necessary to alleviate the bottlenecks. This approach is reasonably
sound advice, but use your own judgment about finding the balance between maximizing
parallelism and minimizing lock overhead.

Invariants and Locks
For both code locking and data locking, invariants are important to control lock complexity. An
invariant is a condition or relation that is always true.

The definition is modified somewhat for concurrent execution: an invariant is a condition or
relation that is true when the associated lock is being set. Once the lock is set, the invariant can
be false. However, the code that holds the lock must reestablish the invariant before releasing
the lock.

An invariant can also be a condition or relation that is true when a lock is being set. Condition
variables can be thought of as having an invariant that is the condition.

EXAMPLE 9–4 Testing the Invariant With assert(3C)

mutex_lock(&lock);

while((condition)==FALSE)

cond_wait(&cv,&lock);

assert((condition)==TRUE);

.

.

.

mutex_unlock(&lock);

The assert() statement is testing the invariant. The cond_wait() function does not preserve
the invariant, which is why the invariant must be reevaluated when the thread returns.

Synchronizing Threads

Chapter 9 • Programming Guidelines 225

Another example is a module that manages a doubly linked list of elements. For each item on
the list, a good invariant is the forward pointer of the previous item on the list. The forward
pointer should also point to the same element as the backward pointer of the forward item.

Assume that this module uses code-based locking and therefore is protected by a single global
mutex lock. When an item is deleted or added, the mutex lock is acquired, the correct
manipulation of the pointers is made, and the mutex lock is released. Obviously, at some point
in the manipulation of the pointers the invariant is false, but the invariant is reestablished
before the mutex lock is released.

Avoiding Deadlock
Deadlock is a permanent blocking of a set of threads that are competing for a set of resources.
Just because some thread can make progress does not mean that a deadlock has not occurred
somewhere else.

The most common error that causes deadlock is self deadlock or recursive deadlock. In a self
deadlock or recursive deadlock, a thread tries to acquire a lock already held by the thread.
Recursive deadlock is very easy to program by mistake.

For example, assume that a code monitor has every module function grab the mutex lock for the
duration of the call. Then, any call between the functions within the module protected by the
mutex lock immediately deadlocks. If a function calls code outside the module that circuitously
calls back into any method protected by the same mutex lock, the function deadlocks too.

The solution for this kind of deadlock is to avoid calling functions outside the module that
might depend on this module through some path. In particular, avoid calling functions that call
back into the module without reestablishing invariants and do not drop all module locks before
making the call. Of course, after the call completes and the locks are reacquired, the state must
be verified to be sure the intended operation is still valid.

An example of another kind of deadlock is when two threads, thread 1 and thread 2, acquire a
mutex lock, A and B, respectively. Suppose that thread 1 tries to acquire mutex lock B and
thread 2 tries to acquire mutex lock A. Thread 1 cannot proceed while blocked waiting for
mutex lock B. Thread 2 cannot proceed while blocked waiting for mutex lock A. Nothing can
change. So, this condition is a permanent blocking of the threads, and a deadlock.

This kind of deadlock is avoided by establishing an order in which locks are acquired, a lock
hierarchy. When all threads always acquire locks in the specified order, this deadlock is avoided.

Adherence to a strict order of lock acquisition is not always optimal. For instance, thread 2 has
many assumptions about the state of the module while holding mutex lock B. Giving up mutex
lock B to acquire mutex lock A and then reacquiring mutex lock B in that order causes the
thread to discard its assumptions. The state of the module must be reevaluated.

Avoiding Deadlock

Multithreaded Programming Guide • October 2012 (Beta)226

The blocking synchronization primitives usually have variants that attempt to get a lock and fail
if the variants cannot get the lock. An example is pthread_mutex_trylock() . This behavior of
primitive variants allows threads to violate the lock hierarchy when no contention occurs.
When contention occurs, the held locks must usually be discarded and the locks reacquired in
order.

Deadlocks Related to Scheduling
Because the order in which locks are acquired is not guaranteed, a problem can occur where a
particular thread never acquires a lock.

This problem usually happens when the thread holding the lock releases the lock, lets a small
amount of time pass, and then reacquires the lock. Because the lock was released, the
appearance is that the other thread should acquire the lock. But, nothing blocks the thread
holding the lock. Consequently, that thread continues to run from the time the thread releases
the lock until the time the lock is reacquired. Thus, no other thread is run.

You can usually solve this type of problem by calling sched_yield()(3C) just before the call to
reacquire the lock. The sched_yield() function allows other threads to run and to acquire the
lock.

Because the time-slice requirements of applications are so variable, the system does not impose
any requirements. Use calls to sched_yield() to make threads share time as you require.

Locking Guidelines
Follow these simple guidelines for locking.

■ Try not to hold locks across long operations like I/O where performance can be adversely
affected.

■ Do not hold locks when calling a function that is outside the module and might reenter the
module.

■ In general, start with a coarse-grained approach, identify bottlenecks, and add finer-grained
locking where necessary to alleviate the bottlenecks. Most locks are held for short amounts
of time and contention is rare. So, fix only those locks that have measured contention.

■ When using multiple locks, avoid deadlocks by making sure that all threads acquire the
locks in the same order.

Finding Deadlocks
The Oracle Solaris Studio Thread Analyzer is a tool that you can use to find deadlocks in your
program. The Thread Analyzer can detect potential deadlocks as well as actual deadlocks. A
potential deadlock does not necessarily occur in a given run, but can occur in any execution of

Avoiding Deadlock

Chapter 9 • Programming Guidelines 227

the program depending on the scheduling of threads and the timing of lock requests by the
threads. An actual deadlock is one that occurs during the execution of a program, causing the
threads involved to hang, but may or may not cause the whole process to hang.

See the Oracle Solaris Studio 12.3: Thread Analyzer User’s Guide for more information.

Some Basic Guidelines for Threaded Code
■ Know what you are importing and know whether it is safe.

A threaded program cannot arbitrarily enter nonthreaded code.
■ Threaded code can safely refer to unsafe code only from the initial thread.

References to unsafe code in this way ensures that the static storage associated with the
initial thread is used only by that thread.

■ When making a library safe for multithreaded use, do not thread global process operations.
Do not change global operations, or actions with global side effects, to behave in a threaded
manner. For example, if file I/O is changed to per-thread operation, threads cannot
cooperate in accessing files.
For thread-specific behavior, or thread cognizant behavior, use thread facilities. For
example, when the termination of main() should terminate only the thread that is exiting
main().

pthread_exit();

/*NOTREACHED*/

■ Oracle-supplied libraries are assumed to be unsafe unless explicitly documented as safe.
If a reference manual entry does not explicitly state that an interface is MT-Safe, you should
assume that the interface is unsafe.

■ Use compilation flags to manage binary incompatible source changes. See Chapter 8,
“Compiling and Debugging,” for complete instructions.
■ -mt enables multithreading.
■ -lpthreads used with the -mt option links in the POSIX threads functions. This flag is

needed only if your program uses pthreads functions.
■ When using -mt, the Oracle Solaris threads APIs will be linked automatically. Always use

the -mt option instead of listing -lthread explicitly. The libpthread library provides an
interface to libthread, so you still need libthread when using pthreads.

Some Basic Guidelines for Threaded Code

Multithreaded Programming Guide • October 2012 (Beta)228

http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/E21995

Creating and Using Threads
The threads packages cache the threads data structure and stacks so that the repetitive creation
of threads can be reasonably inexpensive. However, creating and destroying threads as the
threads are required is usually more expensive than managing a pool of threads that wait for
independent work. A good example is an RPC server that creates a thread for each request and
destroys the thread when the reply is delivered.

Thread creation has less overhead than the overhead of process creation. However, thread
creation is not efficient when compared to the cost of creating a few instructions. Create threads
for processing that lasts at least a couple of thousand machine instructions.

Working With Multiprocessors
Multithreading enables you to take advantage of multiprocessors, including multicore and
multithreaded processors, primarily through parallelism and scalability. Programmers should
be aware of the differences between the memory models of a multiprocessor and a
uniprocessor.

Note – In this manual, whenever multiprocessors are discussed, the context applies also to
multicore and multithreaded processors unless noted otherwise.

Memory consistency is directly interrelated to the processor that interrogates memory. For
uniprocessors, memory is obviously consistent because only one processor is viewing memory.

To improve multiprocessor performance, memory consistency is relaxed. You cannot always
assume that changes made to memory by one processor are immediately reflected in the other
processors' views of that memory.

You can avoid this complexity by using synchronization variables when you use shared or
global variables.

Memory barrier synchronization is sometimes an efficient way to control parallelism on
multiprocessors.

Another multiprocessor issue is efficient synchronization when threads must wait until all
threads have reached a common point in their execution.

Note – The issues discussed here are not important when the threads synchronization primitives
are always used to access shared memory locations. See Chapter 4, “Programming with
Synchronization Objects.”

Working With Multiprocessors

Chapter 9 • Programming Guidelines 229

Underlying Architecture
Threads synchronize access to shared storage locations by using the threads synchronization
routines. With threads synchronization, running a program on a shared-memory
multiprocessor has the identical effect of running the program on a uniprocessor.

However, in many situations a programmer might be tempted to take advantage of the
multiprocessor and use “tricks” to avoid the synchronization routines. As Example 9–5 and
Example 9–6 show, such tricks can be dangerous.

An understanding of the memory models supported by common multiprocessor architectures
helps to understand the dangers.

The major multiprocessor components are:

■ The processors, including cores and their threads, which run the programs
■ Store buffers, which connect the processors to their caches
■ Caches, which hold the contents of recently accessed or modified storage locations
■ Memory, which is the primary storage and is shared by all processors

In the simple traditional model, the multiprocessor behaves as if the processors are connected
directly to memory: when one processor stores into a location and another processor
immediately loads from the same location, the second processor loads what was stored by the
first.

Caches can be used to speed the average memory access. The desired semantics can be achieved
when the caches are kept consistent with the other caches.

A problem with this simple approach is that the processor must often be delayed to make
certain that the desired semantics are achieved. Many modern multiprocessors use various
techniques to prevent such delays, which unfortunately change the semantics of the memory
model.

Two of these techniques and their effects are explained in the next two examples.

Shared-Memory Multiprocessors
Consider the purported solution to the producer and consumer problem that is shown in
Example 9–5.

Although this program works on current SPARC-based multiprocessors, the program assumes
that all multiprocessors have strongly ordered memory. This program is therefore not portable.

Working With Multiprocessors

Multithreaded Programming Guide • October 2012 (Beta)230

EXAMPLE 9–5 Producer and Consumer Problem: Shared Memory Multiprocessors

char buffer[BSIZE];

unsigned int in = 0;

unsigned int out = 0;

/* Thread 1 (producer) */ /* Thread 2 (consumer) */

void

producer(char item) {

do

{

;/* nothing */

}

while

((in - out) == BSIZE);

buffer[in%BSIZE] = item;

in++;

}

char

consumer(void) {

char item;

do

{

;/* nothing */

}

while

((in - out) == 0);

item = buffer[out%BSIZE];

out++;

}

When this program has exactly one producer and exactly one consumer and is run on a
shared-memory multiprocessor, the program appears to be correct. The difference between in

and out is the number of items in the buffer.

The producer waits, by repeatedly computing this difference, until room is available in the
buffer for a new item. The consumer waits until an item is present in the buffer.

Strongly-ordered memory makes a modification to memory on one processor immediately
available to the other processors. For strongly ordered memory, the solution is correct even
taking into account that in and out will eventually overflow. The overflow occurs as long as
BSIZE is less than the largest integer that can be represented in a word.

Shared-memory multiprocessors do not necessarily have strongly ordered memory. A change
to memory by one processor is not necessarily available immediately to the other processors.
See what happens when two changes to different memory locations are made by one processor.
The other processors do not necessarily detect the changes in the order in which the changes
were made because memory modifications do not happen immediately.

First the changes are stored in store buffers that are not visible to the cache.

The processor checks these store buffers to ensure that a program has a consistent view. But,
because store buffers are not visible to other processors, a write by one processor does not
become visible until the processor writes to cache.

Working With Multiprocessors

Chapter 9 • Programming Guidelines 231

The synchronization primitives use special instructions that flush the store buffers to cache. See
Chapter 4, “Programming with Synchronization Objects.” So, using locks around your shared
data ensures memory consistency.

When memory ordering is very relaxed, Example 9–5 has a problem. The consumer might see
that in has been incremented by the producer before the consumer sees the change to the
corresponding buffer slot.

This memory ordering is called weak ordering because stores made by one processor can appear
to happen out of order by another processor. Memory, however, is always consistent from the
same processor. To fix this inconsistency, the code should use mutexes to flush the cache.

Because the trend is toward relaxing memory order, programmers must be careful to use locks
around all global or shared data.

As demonstrated by Example 9–5 and Example 9–6, locking is essential.

Peterson's Algorithm
The code in Example 9–6 is an implementation of Peterson's Algorithm, which handles mutual
exclusion between two threads. This code tries to guarantee that only one thread is in the critical
section. When a thread calls mut_excl(), the thread enters the critical section sometime “soon.”

An assumption here is that a thread exits fairly quickly after entering the critical section.

EXAMPLE 9–6 Mutual Exclusion for Two Threads

void mut_excl(int me /* 0 or 1 */) {

static int loser;

static int interested[2] = {0, 0};

int other; /* local variable */

other = 1 - me;

interested[me] = 1;

loser = me;

while (loser == me && interested[other])

;

/* critical section */

interested[me] = 0;

}

This algorithm works some of the time when the multiprocessor has strongly ordered memory.

Some multiprocessors, including some SPARC-based multiprocessors, have store buffers.
When a thread issues a store instruction, the data is put into a store buffer. The buffer contents
are eventually sent to the cache, but not necessarily right away. The caches on each of the
processors maintain a consistent view of memory, but modified data does not reach the cache
right away.

Working With Multiprocessors

Multithreaded Programming Guide • October 2012 (Beta)232

When multiple memory locations are stored into, the changes reach the cache and memory in
the correct order, but possibly after a delay. SPARC-based multiprocessors with this property
are said to have total store order (TSO).

Suppose you have a situation where one processor stores into location A and loads from
location B. Another processor stores into location B and loads from location A. Either the first
processor fetches the newly-modified value from location B, or the second processor fetches the
newly-modified value from location A, or both. However, the case in which both processors
load the old values cannot happen.

Moreover, with the delays caused by load and store buffers, the “impossible case” can happen.

What could happen with Peterson's algorithm is that two threads running on separate
processors both enter the critical section. Each thread stores into its own slot of the particular
array and then loads from the other slot. Both threads read the old values (0), each thread
assumes that the other party is not present, and both enter the critical section. This kind of
problem might not be detected when you test a program, but only occurs much later.

To avoid this problem use the threads synchronization primitives, whose implementations
issue special instructions, to force the writing of the store buffers to the cache. See Chapter 4,
“Programming with Synchronization Objects.”

Parallelizing a Loop on a Shared-Memory Parallel Computer
In many applications, and especially numerical applications, while part of the algorithm can be
parallelized, other parts are inherently sequential, as shown in the following table. The
algorithm can use barrier synchronization to coordinate the parallel and sequential portions.

TABLE 9–1 Multithreaded Cooperation Through Barrier Synchronization

Sequential Execution Parallel Execution

Thread 1 Thread 2 through Thread n

while(many_iterations) {

sequential_computation

--- Barrier ---

parallel_computation

}

while(many_iterations) {

--- Barrier ---

parallel_computation

}

For example, you might produce a set of matrixes with a strictly linear computation, and
perform operations on the matrixes that use a parallel algorithm. You then use the results of
these operations to produce another set of matrixes, operate on these matrixes in parallel, and
so on.

Working With Multiprocessors

Chapter 9 • Programming Guidelines 233

The nature of the parallel algorithms for such a computation is that little synchronization is
required during the computation. But, synchronization of all the threads is required to ensure
that the sequential computation is finished before the parallel computation begins.

The barrier forces all the threads that are doing the parallel computation to wait until all
involved threads have reached the barrier. When the threads have reached the barrier, the
threads are released and begin computing together.

Examples of Threads Programs
This guide has covered a wide variety of important threads programming issues. Appendix A,
“Extended Example: A Thread Pool Implementation,” provides a pthreads program example
that uses many of the features and styles that have been discussed.

Further Reading
For more in-depth information about multithreading, see Programming with Threads by Steve
Kleiman, Devang Shah, and Bart Smaalders (Prentice-Hall, published in 1995). Note that
although the book is not current with changes to the Oracle Solaris OS, much of the conceptual
information is still valid.

Examples of Threads Programs

Multithreaded Programming Guide • October 2012 (Beta)234

Extended Example: A Thread Pool
Implementation

This appendix provides a sample implementation of a useful package of interfaces for
multithreaded programming: a thread pool.

■ “What is a Thread Pool?” on page 235
■ “About the Thread Pool Example” on page 236
■ “What the Thread Pool Example Shows” on page 246

What is a Thread Pool?
Threads provide a useful paradigm for an application to do many things at once: if you have
something to do, create a thread to do it. Using threads can simplify the logic of the application
and also take advantage of multiple processors, but creating too many threads can cause overall
application performance problems due to contention for resources. The application may end
up spending much of its time contending for resources, dealing with mutex locks for example,
and less of its time actually doing useful work. Also, creating a thread, though cheaper than
creating a process, is still an expense. Creating a thread to do a small amount of work is wasteful.

A thread pool manages a set of anonymous threads that perform work on request. The threads
do not terminate right away. When one of the threads completes a task, the thread becomes idle,
ready to be dispatched to another task. The overhead of creating and destroying threads is
limited to creating and destroying just the number of active worker threads in the pool. The
application can have more tasks than there are worker threads, and this is usually the case.
Processor utilization and throughput are improved by reducing contention for resources. The
submitted tasks are processed in order, usually faster than could be done by creating a thread
per task.

AA P P E N D I X A

235

About the Thread Pool Example
■ “Thread Pool Functions” on page 236
■ “Thread Pool Code Examples” on page 237

Thread Pool Functions
The thr_pool.h header file declares the following functional interfaces.

■ “thr_pool_create()” on page 236
■ “thr_pool_queue()” on page 236
■ “thr_pool_wait()” on page 237
■ “thr_pool_destroy()” on page 237

thr_pool_create()

Creates a thread pool. More than one pool can be created.

typedef struct thr_pool thr_pool_t; /* opaque to clients */

thr_pool_t *thr_pool_create(uint_t min_threads, uint_t max_threads,
uint_t linger, pthread_attr_t *attr);

min_threads Minimum number of threads in the pool.

max_threads Maximum number of threads in the pool.

linger Number of seconds that idle threads can linger before exiting, when no tasks
come in. The idle threads can only exit if they are extra threads, above the
number of minimum threads.

attr Attributes of all worker threads. This can be NULL.

On error, thr_pool_create() returns NULL with errno set to the error code.

thr_pool_queue()

Enqueue a work request or task to the thread pool job queue.

int thr_pool_queue(thr_pool_t *pool, void *(*func)(void *), void *arg);

pool A thread pool identifier returned from thr_pool_create().

func The task function to be called.

arg The only argument passed to the task function.

On error, thr_pool_queue() returns -1 with errno set to the error code.

About the Thread Pool Example

Multithreaded Programming Guide • October 2012 (Beta)236

Notice the similarity of the func and arg arguments to the start_routine and arg arguments of
pthread_create() shown in “pthread_create Syntax” on page 29. The thr_pool_queue()
function can be used as a replacement for pthread_create() in existing applications. Note that
if you use thr_pool_queue() instead of pthread_create(), you cannot use pthread_join()
to wait for the task to complete.

thr_pool_wait()

Wait for all queued jobs to complete in the thread pool.

void thr_pool_wait(thr_pool_t *pool);

pool is a thread pool identifier that is returned from thr_pool_create().

thr_pool_destroy()

Cancel all queued jobs and destroy the pool. Worker threads that are actively processing tasks
are cancelled.

extern void thr_pool_destroy(thr_pool_t *pool);

pool is a thread pool identifier that is returned from thr_pool_create().

Thread Pool Code Examples
This section shows the code for the thread pool example:

■ “thr_pool.h File” on page 237
■ “thr_pool.c File” on page 238

thr_pool.h File
This file declares the functions used in the example.

EXAMPLE A–1 thr_pool.h

/*

* Declarations for the clients of a thread pool.

*/

#include <pthread.h>

/*

* The thr_pool_t type is opaque to the client.

* It is created by thr_pool_create() and must be passed

* unmodified to the remainder of the interfaces.

*/

typedef struct thr_pool thr_pool_t;

About the Thread Pool Example

Appendix A • Extended Example: A Thread Pool Implementation 237

EXAMPLE A–1 thr_pool.h (Continued)

/*

* Create a thread pool.

* min_threads: the minimum number of threads kept in the pool,

* always available to perform work requests.

* max_threads: the maximum number of threads that can be

* in the pool, performing work requests.

* linger: the number of seconds excess idle worker threads

* (greater than min_threads) linger before exiting.

* attr: attributes of all worker threads (can be NULL);

* can be destroyed after calling thr_pool_create().

* On error, thr_pool_create() returns NULL with errno set to the error code.

*/

extern thr_pool_t *thr_pool_create(uint_t min_threads, uint_t max_threads,

uint_t linger, pthread_attr_t *attr);

/*

* Enqueue a work request to the thread pool job queue.

* If there are idle worker threads, awaken one to perform the job.

* Else if the maximum number of workers has not been reached,

* create a new worker thread to perform the job.

* Else just return after adding the job to the queue;

* an existing worker thread will perform the job when

* it finishes the job it is currently performing.

*

* The job is performed as if a new detached thread were created for it:

* pthread_create(NULL, attr, void *(*func)(void *), void *arg);

*

* On error, thr_pool_queue() returns -1 with errno set to the error code.

*/

extern int thr_pool_queue(thr_pool_t *pool,

void *(*func)(void *), void *arg);

/*

* Wait for all queued jobs to complete.

*/

extern void thr_pool_wait(thr_pool_t *pool);

/*

* Cancel all queued jobs and destroy the pool.

*/

extern void thr_pool_destroy(thr_pool_t *pool);

thr_pool.c File
This file implements the thread pool.

EXAMPLE A–2 thr_pool.c

/*

* Thread pool implementation.

* See <thr_pool.h> for interface declarations.

*/

About the Thread Pool Example

Multithreaded Programming Guide • October 2012 (Beta)238

EXAMPLE A–2 thr_pool.c (Continued)

#if !defined(_REENTRANT)

#define _REENTRANT

#endif

#include "thr_pool.h"
#include <stdlib.h>

#include <signal.h>

#include <errno.h>

/*

* FIFO queued job

*/

typedef struct job job_t;

struct job {

job_t *job_next; /* linked list of jobs */

void *(*job_func)(void *); /* function to call */

void *job_arg; /* its argument */

};

/*

* List of active worker threads, linked through their stacks.

*/

typedef struct active active_t;

struct active {

active_t *active_next; /* linked list of threads */

pthread_t active_tid; /* active thread id */

};

/*

* The thread pool, opaque to the clients.

*/

struct thr_pool {

thr_pool_t *pool_forw; /* circular linked list */

thr_pool_t *pool_back; /* of all thread pools */

pthread_mutex_t pool_mutex; /* protects the pool data */

pthread_cond_t pool_busycv; /* synchronization in pool_queue */

pthread_cond_t pool_workcv; /* synchronization with workers */

pthread_cond_t pool_waitcv; /* synchronization in pool_wait() */

active_t *pool_active; /* list of threads performing work */

job_t *pool_head; /* head of FIFO job queue */

job_t *pool_tail; /* tail of FIFO job queue */

pthread_attr_t pool_attr; /* attributes of the workers */

int pool_flags; /* see below */

uint_t pool_linger; /* seconds before idle workers exit */

int pool_minimum; /* minimum number of worker threads */

int pool_maximum; /* maximum number of worker threads */

int pool_nthreads; /* current number of worker threads */

int pool_idle; /* number of idle workers */

};

/* pool_flags */

#define POOL_WAIT 0x01 /* waiting in thr_pool_wait() */

#define POOL_DESTROY 0x02 /* pool is being destroyed */

/* the list of all created and not yet destroyed thread pools */

About the Thread Pool Example

Appendix A • Extended Example: A Thread Pool Implementation 239

EXAMPLE A–2 thr_pool.c (Continued)

static thr_pool_t *thr_pools = NULL;

/* protects thr_pools */

static pthread_mutex_t thr_pool_lock = PTHREAD_MUTEX_INITIALIZER;

/* set of all signals */

static sigset_t fillset;

static void *worker_thread(void *);

static int

create_worker(thr_pool_t *pool)

{

sigset_t oset;

int error;

(void) pthread_sigmask(SIG_SETMASK, &fillset, &oset);

error = pthread_create(NULL, &pool->pool_attr, worker_thread, pool);

(void) pthread_sigmask(SIG_SETMASK, &oset, NULL);

return (error);

}

/*

* Worker thread is terminating. Possible reasons:

* - excess idle thread is terminating because there is no work.

* - thread was cancelled (pool is being destroyed).

* - the job function called pthread_exit().

* In the last case, create another worker thread

* if necessary to keep the pool populated.

*/

static void

worker_cleanup(thr_pool_t *pool)

{

--pool->pool_nthreads;

if (pool->pool_flags & POOL_DESTROY) {

if (pool->pool_nthreads == 0)

(void) pthread_cond_broadcast(&pool->pool_busycv);

} else if (pool->pool_head != NULL &&

pool->pool_nthreads < pool->pool_maximum &&

create_worker(pool) == 0) {

pool->pool_nthreads++;

}

(void) pthread_mutex_unlock(&pool->pool_mutex);

}

static void

notify_waiters(thr_pool_t *pool)

{

if (pool->pool_head == NULL && pool->pool_active == NULL) {

pool->pool_flags &= ~POOL_WAIT;

(void) pthread_cond_broadcast(&pool->pool_waitcv);

}

}

/*

About the Thread Pool Example

Multithreaded Programming Guide • October 2012 (Beta)240

EXAMPLE A–2 thr_pool.c (Continued)

* Called by a worker thread on return from a job.

*/

static void

job_cleanup(thr_pool_t *pool)

{

pthread_t my_tid = pthread_self();

active_t *activep;

active_t **activepp;

(void) pthread_mutex_lock(&pool->pool_mutex);

for (activepp = &pool->pool_active;

(activep = *activepp) != NULL;

activepp = &activep->active_next) {

if (activep->active_tid == my_tid) {

*activepp = activep->active_next;

break;

}

}

if (pool->pool_flags & POOL_WAIT)

notify_waiters(pool);

}

static void *

worker_thread(void *arg)

{

thr_pool_t *pool = (thr_pool_t *)arg;

int timedout;

job_t *job;

void *(*func)(void *);

active_t active;

timestruc_t ts;

/*

* This is the worker’s main loop. It will only be left

* if a timeout occurs or if the pool is being destroyed.

*/

(void) pthread_mutex_lock(&pool->pool_mutex);

pthread_cleanup_push(worker_cleanup, pool);

active.active_tid = pthread_self();

for (;;) {

/*

* We don’t know what this thread was doing during

* its last job, so we reset its signal mask and

* cancellation state back to the initial values.

*/

(void) pthread_sigmask(SIG_SETMASK, &fillset, NULL);

(void) pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL);

(void) pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);

timedout = 0;

pool->pool_idle++;

if (pool->pool_flags & POOL_WAIT)

notify_waiters(pool);

while (pool->pool_head == NULL &&

!(pool->pool_flags & POOL_DESTROY)) {

About the Thread Pool Example

Appendix A • Extended Example: A Thread Pool Implementation 241

EXAMPLE A–2 thr_pool.c (Continued)

if (pool->pool_nthreads <= pool->pool_minimum) {

(void) pthread_cond_wait(&pool->pool_workcv,

&pool->pool_mutex);

} else {

(void) clock_gettime(CLOCK_REALTIME, &ts);

ts.tv_sec += pool->pool_linger;

if (pool->pool_linger == 0 ||

pthread_cond_timedwait(&pool->pool_workcv,

&pool->pool_mutex, &ts) == ETIMEDOUT) {

timedout = 1;

break;

}

}

}

pool->pool_idle--;

if (pool->pool_flags & POOL_DESTROY)

break;

if ((job = pool->pool_head) != NULL) {

timedout = 0;

func = job->job_func;

arg = job->job_arg;

pool->pool_head = job->job_next;

if (job == pool->pool_tail)

pool->pool_tail = NULL;

active.active_next = pool->pool_active;

pool->pool_active = &active;

(void) pthread_mutex_unlock(&pool->pool_mutex);

pthread_cleanup_push(job_cleanup, pool);

free(job);

/*

* Call the specified job function.

*/

(void) func(arg);

/*

* If the job function calls pthread_exit(), the thread

* calls job_cleanup(pool) and worker_cleanup(pool);

* the integrity of the pool is thereby maintained.

*/

pthread_cleanup_pop(1); /* job_cleanup(pool) */

}

if (timedout && pool->pool_nthreads > pool->pool_minimum) {

/*

* We timed out and there is no work to be done

* and the number of workers exceeds the minimum.

* Exit now to reduce the size of the pool.

*/

break;

}

}

pthread_cleanup_pop(1); /* worker_cleanup(pool) */

return (NULL);

}

static void

clone_attributes(pthread_attr_t *new_attr, pthread_attr_t *old_attr)

About the Thread Pool Example

Multithreaded Programming Guide • October 2012 (Beta)242

EXAMPLE A–2 thr_pool.c (Continued)

{

struct sched_param param;

void *addr;

size_t size;

int value;

(void) pthread_attr_init(new_attr);

if (old_attr != NULL) {

(void) pthread_attr_getstack(old_attr, &addr, &size);

/* don’t allow a non-NULL thread stack address */

(void) pthread_attr_setstack(new_attr, NULL, size);

(void) pthread_attr_getscope(old_attr, &value);

(void) pthread_attr_setscope(new_attr, value);

(void) pthread_attr_getinheritsched(old_attr, &value);

(void) pthread_attr_setinheritsched(new_attr, value);

(void) pthread_attr_getschedpolicy(old_attr, &value);

(void) pthread_attr_setschedpolicy(new_attr, value);

(void) pthread_attr_getschedparam(old_attr, ¶m);

(void) pthread_attr_setschedparam(new_attr, ¶m);

(void) pthread_attr_getguardsize(old_attr, &size);

(void) pthread_attr_setguardsize(new_attr, size);

}

/* make all pool threads be detached threads */

(void) pthread_attr_setdetachstate(new_attr, PTHREAD_CREATE_DETACHED);

}

thr_pool_t *

thr_pool_create(uint_t min_threads, uint_t max_threads, uint_t linger,

pthread_attr_t *attr)

{

thr_pool_t *pool;

(void) sigfillset(&fillset);

if (min_threads > max_threads || max_threads < 1) {

errno = EINVAL;

return (NULL);

}

if ((pool = malloc(sizeof (*pool))) == NULL) {

errno = ENOMEM;

return (NULL);

}

(void) pthread_mutex_init(&pool->pool_mutex, NULL);

(void) pthread_cond_init(&pool->pool_busycv, NULL);

(void) pthread_cond_init(&pool->pool_workcv, NULL);

(void) pthread_cond_init(&pool->pool_waitcv, NULL);

pool->pool_active = NULL;

About the Thread Pool Example

Appendix A • Extended Example: A Thread Pool Implementation 243

EXAMPLE A–2 thr_pool.c (Continued)

pool->pool_head = NULL;

pool->pool_tail = NULL;

pool->pool_flags = 0;

pool->pool_linger = linger;

pool->pool_minimum = min_threads;

pool->pool_maximum = max_threads;

pool->pool_nthreads = 0;

pool->pool_idle = 0;

/*

* We cannot just copy the attribute pointer.

* We need to initialize a new pthread_attr_t structure using

* the values from the caller-supplied attribute structure.

* If the attribute pointer is NULL, we need to initialize

* the new pthread_attr_t structure with default values.

*/

clone_attributes(&pool->pool_attr, attr);

/* insert into the global list of all thread pools */

(void) pthread_mutex_lock(&thr_pool_lock);

if (thr_pools == NULL) {

pool->pool_forw = pool;

pool->pool_back = pool;

thr_pools = pool;

} else {

thr_pools->pool_back->pool_forw = pool;

pool->pool_forw = thr_pools;

pool->pool_back = thr_pools->pool_back;

thr_pools->pool_back = pool;

}

(void) pthread_mutex_unlock(&thr_pool_lock);

return (pool);

}

int

thr_pool_queue(thr_pool_t *pool, void *(*func)(void *), void *arg)

{

job_t *job;

if ((job = malloc(sizeof (*job))) == NULL) {

errno = ENOMEM;

return (-1);

}

job->job_next = NULL;

job->job_func = func;

job->job_arg = arg;

(void) pthread_mutex_lock(&pool->pool_mutex);

if (pool->pool_head == NULL)

pool->pool_head = job;

else

pool->pool_tail->job_next = job;

pool->pool_tail = job;

About the Thread Pool Example

Multithreaded Programming Guide • October 2012 (Beta)244

EXAMPLE A–2 thr_pool.c (Continued)

if (pool->pool_idle > 0)

(void) pthread_cond_signal(&pool->pool_workcv);

else if (pool->pool_nthreads < pool->pool_maximum &&

create_worker(pool) == 0)

pool->pool_nthreads++;

(void) pthread_mutex_unlock(&pool->pool_mutex);

return (0);

}

void

thr_pool_wait(thr_pool_t *pool)

{

(void) pthread_mutex_lock(&pool->pool_mutex);

pthread_cleanup_push(pthread_mutex_unlock, &pool->pool_mutex);

while (pool->pool_head != NULL || pool->pool_active != NULL) {

pool->pool_flags |= POOL_WAIT;

(void) pthread_cond_wait(&pool->pool_waitcv, &pool->pool_mutex);

}

pthread_cleanup_pop(1); /* pthread_mutex_unlock(&pool->pool_mutex); */

}

void

thr_pool_destroy(thr_pool_t *pool)

{

active_t *activep;

job_t *job;

(void) pthread_mutex_lock(&pool->pool_mutex);

pthread_cleanup_push(pthread_mutex_unlock, &pool->pool_mutex);

/* mark the pool as being destroyed; wakeup idle workers */

pool->pool_flags |= POOL_DESTROY;

(void) pthread_cond_broadcast(&pool->pool_workcv);

/* cancel all active workers */

for (activep = pool->pool_active;

activep != NULL;

activep = activep->active_next)

(void) pthread_cancel(activep->active_tid);

/* wait for all active workers to finish */

while (pool->pool_active != NULL) {

pool->pool_flags |= POOL_WAIT;

(void) pthread_cond_wait(&pool->pool_waitcv, &pool->pool_mutex);

}

/* the last worker to terminate will wake us up */

while (pool->pool_nthreads != 0)

(void) pthread_cond_wait(&pool->pool_busycv, &pool->pool_mutex);

pthread_cleanup_pop(1); /* pthread_mutex_unlock(&pool->pool_mutex); */

/*

About the Thread Pool Example

Appendix A • Extended Example: A Thread Pool Implementation 245

EXAMPLE A–2 thr_pool.c (Continued)

* Unlink the pool from the global list of all pools.

*/

(void) pthread_mutex_lock(&thr_pool_lock);

if (thr_pools == pool)

thr_pools = pool->pool_forw;

if (thr_pools == pool)

thr_pools = NULL;

else {

pool->pool_back->pool_forw = pool->pool_forw;

pool->pool_forw->pool_back = pool->pool_back;

}

(void) pthread_mutex_unlock(&thr_pool_lock);

/*

* There should be no pending jobs, but just in case...

*/

for (job = pool->pool_head; job != NULL; job = pool->pool_head) {

pool->pool_head = job->job_next;

free(job);

}

(void) pthread_attr_destroy(&pool->pool_attr);

free(pool);

}

What the Thread Pool Example Shows
The example illustrates cancellation and unexpected thread termination, which is one of the
trickier aspects of programming with threads. A worker thread might exit by calling
pthread_exit() from within the task function passed to thr_pool_queue(), rather than just
returning from the task function as expected. The thread pool recovers from this by catching
the termination in a pthread_cleanup_push() function. The only harm done is that another
worker thread must then be created. Worker threads that are actively processing tasks are
cancelled in thr_pool_destroy(). A caller of thr_pool_wait() or thr_pool_destroy() may
be cancelled by the application while it is waiting. This is also dealt with by using
pthread_cleanup_push().

Although the example package is useful as it is, an application might require some features that
are missing here, such as:

■ fork() safety (with pthread_atfork()).
■ Ability to wait for completion of individual tasks.
■ Faster memory allocation (the sample code uses malloc()).

What the Thread Pool Example Shows

Multithreaded Programming Guide • October 2012 (Beta)246

Index

Numbers and Symbols
32-bit architectures, 72
64-bit environment

data type model, 24
/dev/kmem, 24
/dev/mem, 24
large file support, 25
large virtual address space, 24
libkvm, 24
libraries, 25
/proc restrictions, 25
registers, 25

A
accessing the signal mask, 43
Ada, 159
adding signals to mask, 44
aio_cancel(), 164
aio_error(), 163
aio_error() function, 163
aio_read() function, 163
aio_return(), 163
aio_return() function, 163
aio_suspend() function, 163
aio_waitn() function, 163
aio_write() function, 163
aiocbp, 163
alarms, 150
algorithms

faster with MT, 20

algorithms (Continued)
parallel, 234
sequential, 234

allocating storage from heap, malloc, 31
application-level threads, 18
architecture

multiprocessor, 230–234
SPARC, 72, 230, 232

assert statement, 117, 118, 225
Async-Signal-Safe

signal handlers, 159
functions

POSIX, 160
Solaris, 208

threads, 157
asynchronous

event notification, 121
I/O, 162
semaphore use, 121
signals, 154, 157

asynchronous I/O
operations, 163

waiting for, 163
atomic, defined, 72
automatic, stack allocation, 65

B
barrier synchronization, 137–141, 233
binary semaphores, 119

247

binding
threads to LWPs, 181
values to key, 187

bottlenecks, 227
bound threads, 18

defined, 18

C
cache, defined, 230
caching, threads data structure, 229
cancellation of thread, 23
cancelling threads, 46

cancellation points, 46
changing the signal mask, 43, 184
circularly-linked list, example, 97
coarse-grained locking, 225
code lock, 224, 225
code monitor, 224, 226
compare thread identifiers, 39
compiling a multithreaded application, 211
completion semantics, 158
cond_broadcast

return values, 198
syntax, 198

cond_destroy

return values, 195
syntax, 195

cond_init, 202
return values, 195
syntax, 194–195
USYNC_THREAD, 202

cond_reltimedwait

return values, 197
syntax, 197

cond_signal

return values, 198
syntax, 198

cond_timedwait

return values, 197
syntax, 196–197

cond_wait

return values, 196
syntax, 196

condition variables, 72, 102–107, 118
blocking for specified time, 113
blocking on, 109
blocking until specified time, 111
destroying state, 115
getting clock selection, 106
getting scope, 105
initializing, 108
intializing attributes, 103
removing attribute, 104
setting clock selection, 106
setting scope, 104
unblocking one thread, 110
unblocking threads, 114

condition wait, POSIX threads, 161
contention, 227
continuing execution, 173
counting semaphores, 18, 119
creating

stacks, 66, 68, 180, 183
threads, 229

creating a default thread, 28
critical section, 232
custom stack, 66, 182

D
daemon threads, 181
data

lock, 224, 225
races, 205
shared, 23, 232
thread-specific, 33

data race, 214
data races, 216
dbx, 182
dbx(1), 216–218
deadlock

defined, 226
detecting, 216
recursive, 226
scheduling, 227

debugging, 214
asynchronous signals, 215

Index

Multithreaded Programming Guide • October 2012 (Beta)248

debugging (Continued)
dbx, 182
dbx(1), 216–218
deadlocks, 215
dtrace, 215
hidden gap in synchronization, 215
inadequate stack size, 215
large automatic arrays, 215
long-jumping without releasing mutex lock, 215
mdb(1), 218
no synchronization of global memory, 214
passing pointer to caller's stack, 214
recursive deadlock, 215
reevaluate conditions after return from condition

wait, 215
deleting signals from mask, 44
destroying an existing thread-specific data key, 34
detached threads, 55, 181
Dijkstra, E. W., 119
dispatch priority, calculation, 152
dispatching priority, 151
DTrace, 215

E
errno, 37, 222

global variables, 221
event notification, 121
examining the signal mask, 43, 184
example, thread pool, 235
exec, 146, 148, 149
exit, 149, 181

F
fair share scheduler (FSS) scheduling class, 153
finding thread priority, 190
fine-grained locking, 225
fixed priority scheduling class (FX), 153
flags to thr_create, 181
flockfile, 165
fork, 148
fork1, 147, 148

funlockfile, 165

G
getc, 165
getc_unlocked, 165
gethostbyname, 222
gethostbyname_r, 223
getrusage, 151
getting thread-specific key binding, 36
global

data, 224
side effects, 228
state, 224
variables, 36, 221–222

I
I/O

asynchronous, 162
nonsequential, 164
standard, 164
synchronous, 162

inheriting priority, 180
initializing the mutex, 86
interrupt, 154
invariants, 118, 225

J
joining threads, 30, 45, 55, 185

K
key, binding value to key, 187
keys, storing value of, 188
kill(), 154, 156

Index

249

L
libc, 209
libC, 209
libCrun, 209
libCstd, 209
libiostream, 209
libm, 209
libmalloc, 209
libmapmalloc, 209
libnsl, 209
libpthread, 19
libraries, MT-Safe, 209
library, C routines, 221
libresolv, 209
libsocket, 209
libthread, 19
libX11, 209
lightweight processes

debugging, 218
defined, 18
scheduling classes, 151

limits, resources, 151
local variable, 223
lock hierarchy, 226
locking, 224

coarse grained, 225, 227
code, 224
conditional, 95
data, 224–225
fine-grained, 225, 227
guidelines, 227
invariants, 225

locks, 72
mutual exclusion, 72, 97
read-write, 178
readers/writer, 72

longjmp, 150, 159
lost wake-up, 115
-lposix4 library, POSIX 1003.1 semaphore, 214
lseek(2), 164
LWP, defined, 18

M
malloc, 31
MAP_NORESERVE, 65
MAP_SHARED, 148
mdb(1), 218
memory

consistency, 229
ordering, relaxed, 232
strongly ordered, 231

mmap, 148
mmap(2), 65
monitor, 226
monitor, code, 224
mprotect, 183
MT-Safe libraries

alternative mmap(2)-based memory allocation
library, 209

C ++ runtime shared objects
for C++ 4.0 compiler, 209

C++ runtime shared objects
for C++ 5.0 compiler, 209

C++ standard library
for Oracle C++ 5.x compilers, 209

classic iostreams
for C++, 209

math library, 209
network interfaces of the form getXXbyYY_r, 209
socket library for making network connections, 209
space-efficient memory allocation, 209
thread-safe form of unsafe interfaces, 209
thread-specific errno support, 209
X11 Windows routines, 209

multiple-readers, single-writer locks, 178
multiprocessors, 229–234
multithreading, defined, 18
mutex, defined, 18
mutex, mutual exclusion locks, 226
mutex_destroy

return values, 192
syntax, 192

mutex_init, 202
return values, 191
syntax, 190–191
USYNC_THREAD, 202

Index

Multithreaded Programming Guide • October 2012 (Beta)250

mutex_lock

return values, 193
syntax, 192

mutex scope, 75
mutex_trylock

return values, 194
syntax, 193

mutex type
PTHREAD_MUTEX_ERRORCHECK, 88
PTHREAD_MUTEX_NORMAL, 88
PTHREAD_MUTEX_RECUSIVE, 88

mutex_unlock, 193
return values, 193

mutual exclusion locks, 72, 97
attributes, 73
deadlock, 94
default attributes, 72
destroying mutex, 75
destroying mutex state, 93
getting mutex robust attribute, 84
getting mutex scope, 76
getting priority ceiling of mutex, 82
getting priority ceiling of mutex attribute, 81
getting protocol of mutex attribute, 80
initializing, 86
locking, 88
making consistent, 87
nonblock locking, 90
setting mutex robust attribute, 83
setting priority ceiling of mutex, 82
setting priority ceiling of mutex attribute, 80
setting protocol of mutex attribute, 78
setting type attribute, 77
unlocking, 89

N
NDEBUG, 117
netdir, 209
netselect, 209
nice value and class priority, 152
nonsequential I/O, 164
null

threads, 66, 182

null threads, 182

P
parallel, algorithms, 234
PC, program counter, 22
PC_GETCID, 151
PC_GETCLINFO, 151
PC_GETPARMS, 151
PC_SETPARMS, 151
Performance Analyzer, 216
Peterson's Algorithm, 232
PL/1 language, 155
portability, 72
pread, 164
printf, 160

problem, 223
priocntl(), 152
priocntl, 151

PC_GETCID, 151
PC_GETCLINFO, 151
PC_SETPARMS, 151

priocntl(2), PC_GETPARMS, 151
priority, 22

and scheduling, 152, 189
inheritance, 180, 190
range, 189
setting for a thread, 189

priority inversion, 79
producer and consumer problem, 125, 142, 230
producer/consumer problem, 202
profiling, 216

multithreaded programs, 150
programmer-allocated stack, 66, 182, 183
prolagen, decrease semaphore, P operation, 119
pthread_atfork, 148

syntax, 44, 148
pthread_attr_destroy

return values, 54
syntax, 54

pthread_attr_getdetachstate

return values, 56
syntax, 56

Index

251

pthread_attr_getguardsize

return values, 57
syntax, 57

pthread_attr_getinheritsched

return values, 63
syntax, 62

pthread_attr_getschedparam

return values, 65
syntax, 64–65

pthread_attr_getschedpolicy

return values, 61
syntax, 61

pthread_attr_getscope

return values, 59
syntax, 58–59

pthread_attr_getstack

return values, 69
syntax, 69

pthread_attr_getstacksize

return values, 68
syntax, 67

pthread_attr_init

attribute values, 53
return values, 53
syntax, 52–53

pthread_attr_setdetachstate

return values, 55
syntax, 54–55

pthread_attr_setguardsize

return values, 57
syntax, 56–57

pthread_attr_setinheritsched

return values, 62
syntax, 62

pthread_attr_setschedparam

return values, 63
syntax, 63

pthread_attr_setschedpolicy

return values, 61
syntax, 60–61

pthread_attr_setscope

return values, 58
syntax, 58

pthread_attr_setstack

return values, 68
syntax, 68

pthread_attr_setstacksize

return values, 67
syntax, 66–67

pthread_barrier_destroy

return values, 139
syntax, 139

pthread_barrier_init

return values, 137–138
syntax, 137

pthread_barrier_wait

return values, 138
syntax, 138

pthread_barrierattr_destroy

return values, 141
syntax, 141

pthread_barrierattr_getpshared, return
values, 141

pthread_barrierattr_init

return values, 140
syntax, 139

pthread_barrierattr_setpshared, return
values, 140

pthread_cancel

return values, 47
syntax, 47

pthread_cleanup_pop, syntax, 50
pthread_cleanup_push, syntax, 50
pthread_cond_broadcast, 109, 115, 154

example, 114
return values, 115
syntax, 114–115

pthread_cond_destroy

return values, 115
syntax, 115

pthread_cond_init

return values, 108
syntax, 108

pthread_cond_reltimedwait_np

return values, 113
syntax, 113

pthread_cond_signal, 109, 115, 117, 154

Index

Multithreaded Programming Guide • October 2012 (Beta)252

pthread_cond_signal (Continued)
example, 111
return values, 111
syntax, 110–111

pthread_cond_timedwait

example, 112
return values, 112
syntax, 111–112

pthread_cond_wait, 116, 154
example, 111
return values, 110
syntax, 109–110

pthread_condattr_destroy

return values, 104
syntax, 104

pthread_condattr_getclock, return values, 107
pthread_condattr_getpshared

return values, 106
syntax, 105

pthread_condattr_init

return values, 104
syntax, 103

pthread_condattr_setclock

return values, 106
syntax, 106

pthread_condattr_setpshared

return values, 105
syntax, 104–105

pthread_create

return values, 29
syntax, 29

pthread_detach

return values, 32
syntax, 32

pthread_equal

return values, 39
syntax, 39

pthread_exit

return values, 45
syntax, 45

pthread_getconcurrency

return values, 60
syntax, 60

pthread_getschedparam

return values, 42
syntax, 41–42

pthread_getspecific, syntax, 36
pthread_join, 162

return values, 31
syntax, 30

pthread_join(3C), 65
pthread_key_create

example, 38
return values, 34
syntax, 33–34

pthread_key_delete

return values, 35
syntax, 34–35

pthread_kill(), 156
pthread_kill

return values, 43
syntax, 43

pthread_mutex_consistent_np

return values, 87
syntax, 87

pthread_mutex_destroy

return values, 93
syntax, 93

pthread_mutex_getprioceiling

return values, 83
syntax, 82

pthread_mutex_init

return values, 86
syntax, 86

pthread_mutex_lock

example, 93, 97
return values, 88
syntax, 88

pthread_mutex_setprioceiling

return values, 82
syntax, 82

pthread_mutex_timedlock

return values, 92
syntax, 91, 92

pthread_mutex_trylock, 96
return values, 90
syntax, 90

Index

253

pthread_mutex_trylock(3C), 227
pthread_mutex_unlock

example, 93, 97
return values, 90
syntax, 89–90

pthread_mutexattr_destroy

return values, 75
syntax, 75

pthread_mutexattr_getprioceiling

return values, 81
syntax, 81

pthread_mutexattr_getprotocol

return values, 80
syntax, 80

pthread_mutexattr_getpshared

return values, 76
syntax, 76

pthread_mutexattr_getrobust_np

return values, 85
syntax, 84

pthread_mutexattr_gettype

return values, 78
syntax, 77

pthread_mutexattr_init

return values, 74
syntax, 73–74

pthread_mutexattr_setprioceiling

return values, 81
syntax, 80

pthread_mutexattr_setprotocol

return values, 79
syntax, 78

pthread_mutexattr_setpshared

return values, 76
syntax, 75

pthread_mutexattr_setrobust_np

return value, 84
syntax, 83

pthread_mutexattr_settype

return values, 77
syntax, 76

pthread_once

return values, 40
syntax, 39–40

PTHREAD_PRIO_INHERIT, 79
PTHREAD_PRIO_NONE, 78
PTHREAD_PRIO_PROTECT, 79
pthread_rwlock_destroy

return values, 136
syntax, 136

pthread_rwlock_init

return values, 130
syntax, 130

pthread_rwlock_rdlock

return values, 131
syntax, 130–131

pthread_rwlock_timedrdlock

return values, 132
syntax, 131–132

pthread_rwlock_timedwrlock, syntax, 134
pthread_rwlock_tryrdlock

return values, 133
syntax, 132

pthread_rwlock_trywrlock

return values, 134
syntax, 134

pthread_rwlock_unlock

return values, 136
syntax, 135–136

pthread_rwlock_wrlock

return values, 133
syntax, 133

pthread_rwlockattr_destroy

return values, 128
syntax, 127

pthread_rwlockattr_getpshared

return values, 129
syntax, 129

pthread_rwlockattr_init

return values, 127
syntax, 127

pthread_rwlockattr_setpshared

return values, 128
syntax, 128

PTHREAD_SCOPE_PROCESS, 23
PTHREAD_SCOPE_SYSTEM, 23, 57
pthread_self

return values, 39

Index

Multithreaded Programming Guide • October 2012 (Beta)254

pthread_self (Continued)
syntax, 38–39

pthread_setcancelstate

return values, 48
syntax, 48

pthread_setcanceltype

return values, 49
syntax, 48–49

pthread_setconcurrency

return values, 59
syntax, 59

pthread_setschedparam

return values, 41
syntax, 40–41

pthread_setschedprio

return values, 42
syntax, 42

pthread_setspecific

example, 38
return values, 35
syntax, 35

pthread_sigmask(), 156
pthread_sigmask

return values, 44
syntax, 43–44

pthread_spin_destroy()

syntax, 101–102, 102
pthread_spin_init, syntax, 99
pthread_spin_lock

return values, 100
syntax, 100

pthread_spin_trylock

return values, 101
syntax, 100

pthread_spin_unlock

return values, 101
syntax, 101

PTHREAD_STACK_MIN, 66
pthread_testcancel, syntax, 49
putc, 165
putc_unlocked, 165
pwrite, 164

R
_r, 223
read, 164
read-write locks, 178

acquiring read lock, 130
acquiring write lock, 133
attributes, 126
destroying, 136
destroying lock attribute, 127
getting lock attribute, 128
initializing lock, 127, 129
locking read lock, 132
locking write lock, 134
releasing read lock, 135
setting lock attribute, 128

readers/writer locks, 72
realtime, scheduling, 152
red zone, 65, 183
reentrant, 224

described, 224–226
functions, 207
strategies for making, 224

register state, 22
relaxed memory ordering, 232
remote procedure call RPC, 21
replacing signal mask, 44
resuming execution, 173
RPC, 21, 209, 229
RT,, See realtime
rw_rdlock

return values, 175
syntax, 175

rw_tryrdlock

return values, 176
syntax, 176

rw_trywrlock

return values, 177
syntax, 177

rw_unlock

return values, 178
syntax, 178

rw_wrlock

return values, 177
syntax, 176–177

Index

255

rwlock_destroy

return values, 179
syntax, 178–179

rwlock_init

return values, 175
syntax, 174–175
USYNC_THREAD, 202

S
SA_RESTART, 161
safety, threads interfaces, 205–209, 209
sched_yield, 227

return values, 40
syntax, 40

scheduling
classes, 23
policies, 23
scopes, 23
system class, 151

scheduling class
fair share scheduler (FSS), 153
fixed priority scheduler (FX), 153
priority, 151
realtime, 152
timeshare, 152

scope, state, 23
sem_destroy

return values, 125
syntax, 124–125

sem_init

example, 125
return values, 122

sem_post, 119
example, 125
return values, 123
syntax, 123

sem_trywait, 119
return values, 124
syntax, 124

sem_wait, 119
example, 125
return values, 123
syntax, 123

sema_destroy

return values, 202
syntax, 202

sema_init

return values, 200
syntax, 121–122, 199–200
USYNC_THREAD, 202

sema_post, 208
return values, 200
syntax, 200

sema_trywait

return values, 201
syntax, 201

sema_wait

return values, 201
syntax, 201

semaphores, 72, 119–126, 143
binary, 119
blocking calling thread, 123
counting, 119
counting, defined, 18
decrement semaphore value, 119
decrementing count, 124
destroying state, 124
increment semaphore value, 119
incrementing, 122
initializing, 121
interprocess, 122
intraprocess, 122
named, 120
unnamed, 120

sending signal to thread, 43
sequential algorithms, 233
setjmp, 150, 158, 159
setting thread-specific key binding, 35
shared data, 23, 224
shared-memory multiprocessor, 231
SIG_DFL, 153
SIG_IGN, 153
SIG_SETMASK, 44
sigaction(), 153
SIGFPE, 154, 159
SIGILL, 154
SIGINT, 154, 158

Index

Multithreaded Programming Guide • October 2012 (Beta)256

SIGIO, 154
siglongjmp, 159
signal(), 153
signal

handler, 153, 157
signal.h, 184
signals

access mask, 184
adding to mask, 44
asynchronous, 154, 157
deleting from mask, 44
inheritance, 180
masks, 22
pending, 173, 180
replacing current mask, 44
sending to a thread, 156
sending to thread, 43, 184
SIG_BLOCK, 44
SIG_SETMASK, 44
SIG_UNBLOCK, 44
SIGSEGV, 65
synchronous, 154
unmasked and caught, 161

sigprocmask(), 156
sigqueue(), 154
SIGSEGV, 65, 154
sigsend(), 154
sigsetjmp, 159
sigtimedwait(), 157
sigwait(), 156–157, 157
sigwait, 159
single-threaded

assumptions, 221
code, 72
defined, 18
processes, 149

singly-linked list, example, 97
singly-linked list with nested locking, example, 97
size of stack, 66, 180, 182
spin locks, defined, 98–102
spurious wakeup, 161
stack, 229

address, 68, 180
boundaries, 65

stack (Continued)
creation, 68, 180
custom, 182
deallocation, 183
minimum size, 66
overflows, 65
pointer, 22
programmer-allocated, 66, 182, 183
red zone, 65, 183
returning a pointer to, 207
size, 66, 180

stack_base, 68, 180
stack_size, 66, 180
stack size

finding minimum, 182
minimum, 182

standard I/O, 164
standards, UNIX, 19
start_routine(), 181
static storage, 221
store buffer, 232
storing thread key value, 188
streaming a tape drive, 162
strongly ordered memory, 231
suspending a new thread, 181
swap space, 65
synchronization objects

condition variables, 72, 102–107, 118
mutex locks, 72, 97
read-write locks, 178
semaphores, 72, 119–126, 199, 203

synchronous I/O, 162
synchronous I/O, 162
synchronous signals, 154
system calls, handling errors, 221
system scheduling class, 151

T
tape drive, streaming, 162
THR_BOUND, 181
thr_continue, 181

return values, 173
syntax, 173

Index

257

thr_create, 182
return values, 182
syntax, 180–182

THR_DAEMON, 181
THR_DETACHED, 181
thr_exit, 181

return values, 185
syntax, 185

thr_getprio

return values, 190
syntax, 190

thr_getspecific

return values, 188
syntax, 188

thr_join

return values, 186
syntax, 185

thr_keycreate

return values, 187
syntax, 187

thr_kill, 208
return values, 184
syntax, 184

thr_min_stack, 180, 182
thr_self, syntax, 183
thr_setprio

return values, 189
syntax, 189

thr_setspecific

return values, 188
syntax, 188

thr_sigsetmask, 208
return values, 185
syntax, 184–185

thr_suspend

return values, 172
syntax, 172

thr_yield, syntax, 183
Thread Analyzer, 216
thread create, exit status, 29
thread-directed signal, 157
thread identifier, 38–39
thread lifecycle, 27
thread local storage, 33

thread pool, defined, 235
thread-private storage, 22
thread-specific data, 33

example, 36–38
getting, 188
global into private, 37
new storage class, 222
setting, 187

thread-specific keys
creating, 33–34, 187

thread synchronization
condition variables, 24
mutex locks, 24
mutual exclusion locks, 72
read-write locks, 126
read/write locks, 24
semaphores, 24, 119–126

threads
acquiring identifiers, 183
cancelling, 46, 47
creating, 180, 182, 229
daemon, 181
detached, 55, 181
identifiers, 181
joining, 185
key, 187
null, 66, 182
priority, 180
safety, 205, 209
sending signal to, 184
signals, 161
stack, 207
suspended, 173
suspending, 181
synchronization models, 24
synchronizing, 72, 143
terminating, 45, 185
thread-specific data, 222
user-level, 18, 22
yielding execution, 183

threads defined, 17
time-out, example, 113
timer, per LWP, 149
timeshare scheduling class, 152

Index

Multithreaded Programming Guide • October 2012 (Beta)258

TLI, 209
tools

dbx, 182
dbx(1), 216–218
Dtrace, 215
mdb(1), 218
Performance Analyzer, 216
Thread Analyzer, 216

total store order, 233
trap, 154

default action, 154
handled by thread, 154

TS, See timeshare scheduling class

U
unbound threads

caching, 229
defined, 18

user-level threads, 18, 22
/usr/include/errno.h, 212
/usr/include/limits.h, 212
/usr/include/pthread.h, 211
/usr/include/signal.h, 212
/usr/include/thread.h, 211
/usr/include/unistd.h, 212
/usr/lib, 32–bit threads library, Solaris 9, 214
/usr/lib/lwp, 32-bit threads library, Solaris 8, 214
/usr/lib/lwp/64, 64-bit threads library, Solaris 8, 214
USYNC_PROCESS, 202

condition variable, 194
mutex, 190
read-write lock, 174
semaphore, 199

USYNC_PROCESS_ROBUST, mutex, 190
USYNC_THREAD

condition variable, 194
mutex, 190
read-write lock, 174
semaphore, 199

V
variables

condition, 72, 102–107, 118, 143
global, 221–222
primitive, 72

verhogen, increase semaphore, V operation, 119
vfork, 147

W
write(2), 164

X
XDR, 209

Index

259

260

	Multithreaded Programming Guide
	Preface
	Who Should Use This Book
	How This Guide Is Organized
	Access to Oracle Support
	Related Books
	Typographic Conventions
	Shell Prompts in Command Examples

	Covering Multithreading Basics
	Multithreading Terms
	Oracle Solaris Multithreading Libraries and Standards
	Benefiting From Multithreading
	Improving Application Responsiveness
	Using Multiprocessors Efficiently
	Improving Program Structure
	Using Fewer System Resources
	Combining Threads and RPC

	Multithreading Concepts
	Concurrency and Parallelism
	Multithreading Structure
	User-Level Threads
	User-Level Threads State

	Thread Scheduling
	Thread Cancellation
	Thread Synchronization

	Using the 64-bit Architecture

	Basic Threads Programming
	Lifecycle of a Thread
	The Pthreads Library
	Creating a Default Thread
	pthread_create Syntax
	pthread_create Return Values

	Waiting for Thread Termination
	pthread_join Syntax
	pthread_join Return Values

	Simple Threads Example
	Detaching a Thread
	pthread_detach Syntax
	pthread_detach Return Values

	Creating a Key for Thread-Specific Data
	pthread_key_create Syntax
	pthread_key_create Return Values

	Deleting the Thread-Specific Data Key
	pthread_key_delete Syntax
	pthread_key_delete Return Values

	Setting Thread-Specific Data
	pthread_setspecific Syntax
	pthread_setspecific Return Values

	Getting Thread-Specific Data
	pthread_getspecific Syntax
	pthread_getspecific Return Values

	Global and Private Thread-Specific Data Example
	Getting the Thread Identifier
	pthread_self Syntax
	pthread_self Return Values

	Comparing Thread IDs
	pthread_equal Syntax
	pthread_equal Return Values

	Calling an Initialization Routine for a Thread
	pthread_once Syntax
	pthread_once Return Values

	Yielding Thread Execution
	sched_yield Syntax
	sched_yield Return Values

	Setting the Thread Policy and Scheduling Parameters
	pthread_setschedparam Syntax
	pthread_setschedparam Return Values

	Getting the Thread Policy and Scheduling Parameters
	pthread_getschedparam Syntax
	pthread_getschedparam Return Values

	Setting the Thread Priority
	pthread_setschedprio Syntax
	pthread_setschedprio Return Values

	Sending a Signal to a Thread
	pthread_kill Syntax
	pthread_kill Return Values

	Accessing the Signal Mask of the Calling Thread
	pthread_sigmask Syntax
	pthread_sigmask Return Values

	Forking Safely
	pthread_atfork Syntax
	pthread_atfork Return Values

	Terminating a Thread
	pthread_exit Syntax
	pthread_exit Return Values

	Finishing Up
	Cancel a Thread
	Cancellation Points
	Placing Cancellation Points

	Cancelling a Thread
	pthread_cancel Syntax
	pthread_cancel Return Values

	Enabling or Disabling Cancellation
	pthread_setcancelstate Syntax
	pthread_setcancelstate Return Values

	Setting Cancellation Type
	pthread_setcanceltype Syntax
	pthread_setcanceltype Return Values

	Creating a Cancellation Point
	pthread_testcancel Syntax
	pthread_testcancel Return Values

	Pushing a Handler Onto the Stack
	pthread_cleanup_push Syntax
	pthread_cleanup_push Return Values

	Pulling a Handler Off the Stack
	pthread_cleanup_pop Syntax
	pthread_cleanup_pop Return Values

	Thread Attributes
	Attribute Object
	Initializing Attributes
	pthread_attr_init Syntax
	pthread_attr_init Return Values

	Destroying Attributes
	pthread_attr_destroy Syntax
	pthread_attr_destroy Return Values

	Setting Detach State
	pthread_attr_setdetachstate(3C) Syntax
	pthread_attr_setdetachstate Return Values

	Getting the Detach State
	pthread_attr_getdetachstate Syntax
	pthread_attr_getdetachstate Return Values

	Setting the Stack Guard Size
	pthread_attr_setguardsize(3C) Syntax
	pthread_attr_setguardsize Return Values

	Getting the Stack Guard Size
	pthread_attr_getguardsize Syntax
	pthread_attr_getguardsize Return Values

	Setting the Scope
	pthread_attr_setscope Syntax
	pthread_attr_setscope Return Values

	Getting the Scope
	pthread_attr_getscope Syntax
	pthread_attr_getscope Return Values

	Setting the Thread Concurrency Level
	pthread_setconcurrency Syntax
	pthread_setconcurrency Return Values

	Getting the Thread Concurrency Level
	pthread_getconcurrency Syntax
	pthread_getconcurrency Return Values

	Setting the Scheduling Policy
	pthread_attr_setschedpolicy(3C) Syntax
	pthread_attr_setschedpolicy Return Values

	Getting the Scheduling Policy
	pthread_attr_getschedpolicy Syntax
	pthread_attr_getschedpolicy Return Values

	Setting the Inherited Scheduling Policy
	pthread_attr_setinheritsched Syntax
	pthread_attr_setinheritsched Return Values

	Getting the Inherited Scheduling Policy
	pthread_attr_getinheritsched Syntax
	pthread_attr_getinheritsched Return Values

	Setting the Scheduling Parameters
	pthread_attr_setschedparam Syntax
	pthread_attr_setschedparam Return Values

	Getting the Scheduling Parameters
	pthread_attr_getschedparam Syntax
	Creating a Thread With a Specified Priority
	Example of Creating a Prioritized Thread

	pthread_attr_getschedparam Return Values

	About Stacks
	Allocating Stack Space for Threads
	Building Your Own Stack

	Setting the Stack Size
	pthread_attr_setstacksize Syntax
	pthread_attr_setstacksize Return Values

	Getting the Stack Size
	pthread_attr_getstacksize Syntax
	pthread_attr_getstacksize Return Values

	Setting the Stack Address and Size
	pthread_attr_setstack(3C) Syntax
	pthread_attr_setstack(3C) Return Values

	Getting the Stack Address and Size
	pthread_attr_getstack Syntax
	pthread_attr_getstack Return Values

	Programming with Synchronization Objects
	Mutual Exclusion Lock Attributes
	Initializing a Mutex Attribute Object
	pthread_mutexattr_init Syntax
	pthread_mutexattr_init Return Values

	Destroying a Mutex Attribute Object
	pthread_mutexattr_destroy Syntax
	pthread_mutexattr_destroy Return Values

	Setting the Scope of a Mutex
	pthread_mutexattr_setpshared Syntax
	pthread_mutexattr_setpshared Return Values

	Getting the Scope of a Mutex
	pthread_mutexattr_getpshared Syntax
	pthread_mutexattr_getpshared Return Values

	Setting the Mutex Type Attribute
	pthread_mutexattr_settype Syntax
	pthread_mutexattr_settype Return Values

	Getting the Mutex Type Attribute
	pthread_mutexattr_gettype Syntax
	pthread_mutexattr_gettype Return Values

	Setting the Mutex Attribute's Protocol
	pthread_mutexattr_setprotocol Syntax
	pthread_mutexattr_setprotocol Return Values

	Getting the Mutex Attribute's Protocol
	pthread_mutexattr_getprotocol Syntax
	pthread_mutexattr_getprotocol Return Values

	Setting the Mutex Attribute's Priority Ceiling
	pthread_mutexattr_setprioceiling Syntax
	pthread_mutexattr_setprioceiling Return Values

	Getting the Mutex Attribute's Priority Ceiling
	pthread_mutexattr_getprioceiling Syntax
	pthread_mutexattr_getprioceiling Return Values

	Setting the Mutex's Priority Ceiling
	pthread_mutex_setprioceiling Syntax
	pthread_mutex_setprioceiling Return Values

	Getting the Mutex's Priority Ceiling
	pthread_mutex_getprioceiling Syntax
	pthread_mutex_getprioceiling Return Values

	Setting the Mutex's Robust Attribute
	pthread_mutexattr_setrobust_np Syntax
	pthread_mutexattr_setrobust_np Return Values

	Getting the Mutex's Robust Attribute
	pthread_mutexattr_getrobust_np Syntax
	pthread_mutexattr_getrobust_np Return Values

	Using Mutual Exclusion Locks
	Initializing a Mutex
	pthread_mutex_init Syntax
	pthread_mutex_init Return Values

	Making a Mutex Consistent
	pthread_mutex_consistent_np Syntax
	pthread_mutex_consistent_np Return Values

	Locking a Mutex
	pthread_mutex_lock Syntax
	pthread_mutex_lock Return Values

	Unlocking a Mutex
	pthread_mutex_unlock Syntax
	pthread_mutex_unlock Return Values

	Locking a Mutex Without Blocking
	pthread_mutex_trylock Syntax
	pthread_mutex_trylock Return Values

	Locking a Mutex Before a Specified Absolute Time
	pthread_mutex_timedlock() Syntax
	pthread_mutex_timedlock() Return Values

	Locking a Mutex Within a Specified Time Interval
	pthread_mutex_reltimedlock_np() Syntax
	pthread_mutex_reltimedlock_np() Return Values

	Destroying a Mutex
	pthread_mutex_destroy Syntax
	pthread_mutex_destroy Return Values

	Code Examples of Mutex Locking
	Examples of Using Lock Hierarchies
	Examples of Using Nested Locking With a Singly-Linked List
	Example of Nested Locking With a Circularly-Linked List

	Using Spin Locks
	Initializing a Spin Lock
	pthread_spin_init() Syntax
	pthread_spin_init() Return Values

	Acquiring a Spin Lock
	pthread_spin_lock() Syntax
	pthread_spin_lock() Return Values

	Acquiring a Non-Blocking Spin Lock
	pthread_spin_trylock() Syntax
	pthread_spin_trylock() Return Values

	Unlocking a Spin Lock
	pthread_spin_unlock() Syntax
	pthread_spin_unlock() Return Values

	Destroying a Spin Lock
	pthread_spin_destroy() Syntax
	pthread_spin_destroy() Return Values

	Condition Variable Attributes
	Initializing a Condition Variable Attribute
	pthread_condattr_init Syntax
	pthread_condattr_init Return Values

	Removing a Condition Variable Attribute
	pthread_condattr_destroy Syntax
	pthread_condattr_destroy Return Values

	Setting the Scope of a Condition Variable
	pthread_condattr_setpshared Syntax
	pthread_condattr_setpshared Return Values

	Getting the Scope of a Condition Variable
	pthread_condattr_getpshared Syntax
	pthread_condattr_getpshared Return Values

	Setting the Clock Selection Condition Variable
	pthread_condattr_setclock Syntax
	pthread_condattr_setclock Returns

	Getting the Clock Selection Condition Variable
	pthread_condattr_getclock Syntax
	pthread_condattr_getclock Returns

	Using Condition Variables
	Initializing a Condition Variable
	pthread_cond_init Syntax
	pthread_cond_init Return Values

	Blocking on a Condition Variable
	pthread_cond_wait Syntax
	pthread_cond_wait Return Values

	Unblocking One Thread
	pthread_cond_signal Syntax
	pthread_cond_signal Return Values

	Blocking Until a Specified Time
	pthread_cond_timedwait Syntax
	pthread_cond_timedwait Return Values

	Blocking For a Specified Interval
	pthread_cond_reltimedwait_np Syntax
	pthread_cond_reltimedwait_np Return Values

	Unblocking All Threads
	pthread_cond_broadcast Syntax
	pthread_cond_broadcast Return Values

	Destroying the Condition Variable State
	pthread_cond_destroy Syntax
	pthread_cond_destroy Return Values

	Lost Wake-Up Problem
	Producer and Consumer Problem

	Synchronization With Semaphores
	Named and Unnamed Semaphores
	Counting Semaphores Overview
	Initializing a Semaphore
	sem_init Syntax
	Initializing Semaphores With Intraprocess Scope
	Initializing Semaphores With Interprocess Scope

	sem_init Return Values

	Incrementing a Semaphore
	sem_post Syntax
	sem_post Return Values

	Blocking on a Semaphore Count
	sem_wait Syntax
	sem_wait Return Values

	Decrementing a Semaphore Count
	sem_trywait Syntax
	sem_trywait Return Values

	Destroying the Semaphore State
	sem_destroy Syntax
	sem_destroy Return Values

	Producer and Consumer Problem Using Semaphores

	Read-Write Lock Attributes
	Initializing a Read-Write Lock Attribute
	pthread_rwlockattr_init Syntax
	pthread_rwlockattr_init Return Values

	Destroying a Read-Write Lock Attribute
	pthread_rwlockattr_destroy Syntax
	pthread_rwlockattr_destroy Return Values

	Setting a Read-Write Lock Attribute
	pthread_rwlockattr_setpshared Syntax
	pthread_rwlockattr_setpshared Return Values

	Getting a Read-Write Lock Attribute
	pthread_rwlockattr_getpshared Syntax
	pthread_rwlockattr_getpshared Return Values

	Using Read-Write Locks
	Initializing a Read-Write Lock
	pthread_rwlock_init Syntax
	pthread_rwlock_init Return Values

	Acquiring the Read Lock on Read-Write Lock
	pthread_rwlock_rdlock Syntax
	pthread_rwlock_rdlock Return Values

	Acquiring a Read Lock on a Read-Write Lock Before a Specified Absolute Time
	pthread_rwlock_timedrdlock Syntax
	pthread_rwlock_timedrdlock Return Values

	Acquiring a Non-Blocking Read Lock on a Read-Write Lock
	pthread_rwlock_tryrdlock Syntax
	pthread_rwlock_tryrdlock Return Values

	Acquiring the Write Lock on a Read-Write Lock
	pthread_rwlock_wrlock Syntax
	pthread_rwlock_wrlock Return Values

	Acquiring a Non-blocking Write Lock on a Read-Write Lock
	pthread_rwlock_trywrlock Syntax
	pthread_rwlock_trywrlock Return Values

	Acquiring a Write Lock on a Read-Write Lock Before a Specified Absolute Time
	pthread_rwlock_timedwrlock Syntax
	pthread_rwlock_timedwrlock Returns

	Unlocking a Read-Write Lock
	pthread_rwlock_unlock Syntax
	pthread_rwlock_unlock Return Values

	Destroying a Read-Write Lock
	pthread_rwlock_destroy Syntax
	pthread_rwlock_destroy Return Values

	Using Barrier Synchronization
	Initializing a Synchronization Barrier
	pthread_barrier_init() Syntax
	pthread_barrier_init() Return Values

	Waiting for Threads to Synchronize at a Barrier
	pthread_barrier_wait() Syntax
	pthread_barrier_wait() Return Values

	Destroying a Synchronization Barrier
	pthread_barrier_destroy Syntax
	pthread_barrier_destroy Return Values

	Initializing a Barrier Attributes Object
	pthread_barrierattr_init() Syntax
	pthread_barrierattr_init() Return Values

	Setting a Barrier Process-Shared Attribute
	pthread_barrierattr_setpshared() Syntax
	pthread_barrierattr_setpshared() Return Values

	Getting a Barrier Process-Shared Attribute
	pthread_barrierattr_getpshared() Syntax
	pthread_barrierattr_getpshared() Return Values

	Destroying a Barrier Attributes Object
	pthread_barrierattr_destroy() Syntax
	pthread_barrierattr_destroy() Return Values

	Synchronization Across Process Boundaries
	Producer and Consumer Problem Example

	Comparing Primitives

	Programming With the Oracle Solaris Software
	Forking Issues in Process Creation
	Fork-One Model
	Fork-One Safety Problem and Solution
	Virtual Forks–vfork
	Solution: pthread_atfork

	Fork-All Model
	Choosing the Right Fork

	Process Creation: exec and exit Issues
	Timers, Alarms, and Profiling
	Timers
	Alarms
	Profiling a Multithreaded Program

	Nonlocal Goto: setjmp and longjmp
	Resource Limits
	LWPs and Scheduling Classes
	Timeshare Scheduling
	Realtime Scheduling
	Fair Share Scheduling
	Fixed Priority Scheduling

	Extending Traditional Signals
	Synchronous Signals
	Asynchronous Signals
	Continuation Semantics
	Operations on Signals
	Setting the Thread's Signal Mask
	Sending a Signal to a Specific Thread
	Waiting for a Specified Signal
	Waiting for Specified Signal Within a Given Time

	Thread-Directed Signals
	Completion Semantics
	Signal Handlers and Async-Signal Safety
	Interrupted Waits on Condition Variables

	I/O Issues
	I/O as a Remote Procedure Call
	Tamed Asynchrony
	Asynchronous I/O
	Asynchronous I/O Operations
	Waiting for I/O Operation to Complete

	Shared I/O and New I/O System Calls
	Alternatives to getc and putc
	New System Calls For Reliable Multithreaded Programming

	Programming With Oracle Solaris Threads
	Comparing APIs for Oracle Solaris Threads and POSIX Threads
	Major API Differences
	Function Comparison Table

	Unique Oracle Solaris Threads Functions
	Suspending Thread Execution
	thr_suspend Syntax
	thr_suspend Return Values

	Continuing a Suspended Thread
	thr_continue Syntax
	thr_continue Return Values

	Similar Synchronization Functions: Read-Write Locks
	Initialize a Read-Write Lock
	rwlock_init Syntax
	Initializing Read-Write Locks With Intraprocess Scope
	Initializing Read-Write Locks With Interprocess Scope

	rwlock_init Return Values

	Acquiring a Read Lock
	rw_rdlock Syntax
	rw_rdlock Return Values

	Trying to Acquire a Read Lock
	rw_tryrdlock Syntax
	rw_tryrdlock Return Values

	Acquiring a Write Lock
	rw_wrlock Syntax
	rw_wrlock Return Values

	Trying to Acquire a Write Lock
	rw_trywrlock Syntax
	rw_trywrlock Return Values

	Unlock a Read-Write Lock
	rw_unlock Syntax
	rw_unlock Return Values

	Destroying the Read-Write Lock State
	rwlock_destroy Syntax
	rwlock_destroy Return Values

	Similar Oracle Solaris Threads Functions
	Creating a Thread
	thr_create Syntax
	thr_create Return Values

	Getting the Minimal Stack Size
	thr_min_stack Syntax
	thr_min_stack Return Values

	Acquiring the Thread Identifier
	thr_self Syntax
	thr_self Return Values

	Yield Thread Execution
	thr_yield Syntax
	thr_yield Return Values

	Send a Signal to a Thread
	thr_kill Syntax
	thr_kill Return Values

	Access the Signal Mask of the Calling Thread
	thr_sigsetmask Syntax
	thr_sigsetmask Return Values

	Terminate a Thread
	thr_exit Syntax
	thr_exit Return Values

	Wait for Thread Termination
	thr_join Syntax
	thr_join, Join Specific
	thr_join, Join Any

	thr_join Return Values

	Creating a Thread-Specific Data Key
	thr_keycreate Syntax
	thr_keycreate Return Values

	Setting the Thread-Specific Data Value
	thr_setspecific Syntax
	thr_setspecific Return Values

	Getting the Thread-Specific Data Value
	thr_getspecific Syntax
	thr_getspecific Return Values

	Set the Thread Priority
	thr_setprio Syntax
	thr_setprio Return Values

	Get the Thread Priority
	thr_getprio Syntax
	thr_getprio Return Values

	Similar Synchronization Functions: Mutual Exclusion Locks
	Initialize a Mutex
	mutex_init(3C) Syntax
	Mutexes With Intraprocess Scope
	Mutexes With Interprocess Scope
	Mutexes With Interprocess Scope-Robust

	mutex_init Return Values

	Destroy a Mutex
	mutex_destroy Syntax
	mutex_destroy Return Values

	Acquiring a Mutex
	mutex_lock Syntax
	mutex_lock Return Values

	Releasing a Mutex
	mutex_unlock Syntax
	mutex_unlock Return Values

	Trying to Acquire a Mutex
	mutex_trylock Syntax
	mutex_trylock Return Values

	Similar Synchronization Functions: Condition Variables
	Initialize a Condition Variable
	cond_init Syntax
	Condition Variables With Intraprocess Scope
	Condition Variables With Interprocess Scope

	cond_init Return Values

	Destroying a Condition Variable
	cond_destroy Syntax
	cond_destroy Return Values

	Waiting for a Condition
	cond_wait Syntax
	cond_wait Return Values

	Wait for an Absolute Time
	cond_timedwait Syntax
	cond_timedwait Return Values

	Waiting for a Time Interval
	cond_reltimedwait Syntax
	cond_reltimedwait Return Values

	Unblock One Thread
	cond_signal Syntax
	cond_signal Return Values

	Unblock All Threads
	cond_broadcast Syntax
	cond_broadcast Return Values

	Similar Synchronization Functions: Semaphores
	Initialize a Semaphore
	sema_init Syntax
	Semaphores With Intraprocess Scope
	Semaphores With Interprocess Scope

	sema_init Return Values

	Increment a Semaphore
	sema_post Syntax
	sema_post Return Values

	Block on a Semaphore Count
	sema_wait Syntax
	sema_wait Return Values

	Decrement a Semaphore Count
	sema_trywait Syntax
	sema_trywait Return Values

	Destroy the Semaphore State
	sema_destroy(3C) Syntax
	sema_destroy(3C) Return Values

	Synchronizing Across Process Boundaries
	Example of Producer and Consumer Problem

	Special Issues for fork() and Oracle Solaris Threads

	Safe and Unsafe Interfaces
	Thread Safety
	MT Interface Safety Levels
	Reentrant Functions for Unsafe Interfaces

	Async-Signal-Safe Functions in Oracle Solaris Threads
	MT Safety Levels for Libraries
	Unsafe Libraries

	Compiling and Debugging
	Setting Up the Oracle Solaris Environment for Developing Multithreaded Applications
	Compiling a Multithreaded Application
	Preparing for Compilation
	Choosing Oracle Solaris or POSIX Threads
	Including <thread.h> or <pthread.h>
	Compiling and Linking a Multithreaded Program
	Compiling and Linking in the POSIX Threads Environment
	Compiling and Linking in the Oracle Solaris Threads Environment
	Compiling and Linking in a Mixed Threads Environment

	Linking With -lrt for POSIX Semaphores

	Alternate Threads Library
	Debugging a Multithreaded Program
	Common Oversights in Multithreaded Programs
	Tracing and Debugging with DTrace
	Profiling with Performance Analyzer
	Detecting Data Races and Deadlocks Using Thread Analyzer
	Using dbx
	Tracing and Debugging With the TNF Utilities
	Using truss
	Using mdb

	Programming Guidelines
	Rethinking Global Variables
	Providing for Static Local Variables
	Synchronizing Threads
	Single-Threaded Strategy
	Reentrant Function
	Code Locking
	Data Locking
	Invariants and Locks

	Avoiding Deadlock
	Deadlocks Related to Scheduling
	Locking Guidelines
	Finding Deadlocks

	Some Basic Guidelines for Threaded Code
	Creating and Using Threads
	Working With Multiprocessors
	Underlying Architecture
	Shared-Memory Multiprocessors
	Peterson's Algorithm
	Parallelizing a Loop on a Shared-Memory Parallel Computer

	Examples of Threads Programs
	Further Reading

	Extended Example: A Thread Pool Implementation
	What is a Thread Pool?
	About the Thread Pool Example
	Thread Pool Functions
	thr_pool_create()
	thr_pool_queue()
	thr_pool_wait()
	thr_pool_destroy()

	Thread Pool Code Examples
	thr_pool.h File
	thr_pool.c File

	What the Thread Pool Example Shows

	Index

