
Remote Administration Daemon Developer
Guide

Part No: E35864–01
October 2012

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions
d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est
interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que
prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes
d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel
ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est
destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel
dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures
nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à
d’autres propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des
marques déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro
Devices. UNIX est une marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services
émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En
aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à
des contenus, produits ou services tiers, ou à leur utilisation.

121010@25097

Contents

Preface ...7

1 Introduction ...9
Remote Administration Daemon ...9
Features Overview ... 10

2 Concepts ..13
Interface .. 13

Name ... 14
Derived Types ... 14
Features ... 14
Versioning .. 16

rad Namespace .. 18
Naming .. 19
Operations .. 20

Data Typing .. 21
Base Types ... 21
Derived Types ... 21
Optional Data ... 22

3 Abstract Data Representation ...23
ADR Interface Description Language ... 23

Overview ... 23
Enumeration Definitions .. 24
Structure Definitions ... 25
Union Definitions .. 25
Interface Definitions .. 26

3

Pragmas ... 28
Example ... 29

radadrgen .. 30
Code Generation .. 30

4 libadr ..31
Data Management ... 31

adr_type_t Type ... 31
adr_data_t Type ... 32
Allocating adr_data_t Values ... 33
Accessing Simple adr_data_t Values ... 37
Manipulating Derived Type adr_data_t .. 38
Validating adr_data_t Values ... 39

ADR Object Name Operations .. 41
adr_name_t Type ... 41
Creating adr_name_t Type ... 41
Inspecting adr_name_t Type .. 42
String Representation .. 43

API Management .. 44
radadrgen-Generated Definitions .. 44

Running radadrgen ... 44
Example radadrgen output .. 45

5 Client Libraries ...47
Java/JMX Client ... 47

Connecting to the rad Server .. 47
radadrgen Usage .. 50
Caveats .. 54

Python Client ... 54
Modules ... 54

6 Module Development ...57
API Definitions and Implementation ... 57

Entry Points and Generated Stubs ... 57

Contents

Remote Administration Daemon Developer Guide • October 20124

Global Variables ... 58
Module Registration .. 58
Instance Management ... 59
Container Interactions .. 59
Logging .. 60
Using Threads .. 60
Synchronization ... 61
Subprocesses ... 61
Utilities .. 63
Locales ... 63
Transactional Processing .. 63
Asynchronous Methods and Progress Reporting .. 63

rad Namespaces ... 64
Static Objects .. 64

rad Module Linkage .. 65

7 radBest Practices ..67
When To Use rad? ... 67
How To Use rad? ... 67

API Guidelines ... 67
Component Guidelines ... 69
Naming Guidelines .. 70

API Design Examples .. 73
User Management Example ... 73

A radBinary Protocol ...75
Overview ... 75
Common Data Formats .. 76

Operations .. 76
Errors ... 76
Time ... 77
Object Names ... 78
ADR Data .. 79
ADR types ... 81
Interface Definitions .. 85

Contents

5

Connection Initialization ... 88
Messages ... 89
Operations .. 90

INVOKE Operation .. 91
GETATTR Operation .. 91
SETATTR Operation .. 92
LOOKUP Operation .. 93
DEFINE Operation .. 93
LIST Operation ... 94
SUB and UNSUB Operations .. 95

Contents

Remote Administration Daemon Developer Guide • October 20126

Preface

The Oracle Solaris operating system can be administered or configured remotely. Applications
that allow you to remotely administer or configure a system, require programmatic access. This
guide provides information on how to use the remote administration daemon to provide
programmatic access to the administration and configuration functionality of the Oracle Solaris
OS.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Description Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

7

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

TABLE P–1 Typographic Conventions (Continued)
Typeface Description Example

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples
The following table shows UNIX system prompts and superuser prompts for shells that are
included in the Oracle Solaris OS. In command examples, the shell prompt indicates whether
the command should be executed by a regular user or a user with privileges.

TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

C shell for superuser machine_name#

Preface

Remote Administration Daemon Developer Guide • October 20128

Introduction

The Remote Administration Daemon, commonly referred to by its acronym and command
name, rad, is a standard system service that offers secure, remote administrative access to an
Oracle Solaris system. This book is intended for developers who want to use rad to create
administrative interfaces and for developers looking to consume interfaces published using rad
by others. It introduces rad and its core concepts, explains the process of developing rad
extensions and consumers, and includes a reference for the rad module API and client libraries.

Remote Administration Daemon
The Oracle Solaris operating system is a set of cooperating components, and correspondingly
administering Oracle Solaris is the act of manipulating those components in a variety of ways.
The traditional solution consisted of locally applying $EDITOR to text files. More modern
approaches include manipulating system components locally using a CLI or an interactive UI,
remotely with a browser or client, en masse with an enterprise-scale provisioning tool, or
automatically by policy logic employed by any of these methods. All of these methods require
programmatic access to configuration. The Remote Administration Daemon is the central
point where system developers can expose their components for configuration or
administration, and where the various programmatic consumers can go to perform those
activities.

To fully support consumers written in a variety of languages, consumers running without
privilege, and consumers running remotely, rad employs a client/server design. rad itself acts as
a server that services remote procedure calls. rad consumers are the clients. The protocol rad
speaks is efficient and easy to implement, which makes it simple to bring support for all
administrative tasks exposed via rad to a new language.

By providing a procedure call interface, rad enables non-privileged local consumers to perform
actions on behalf of their users that require elevated privilege, without needing to resort to a
CLI-based implementation. Finally, by establishing a stream protocol, these same benefits can
be extended to consumers on any machine or device over a variety of secure transport options.

1C H A P T E R 1

9

rad differs from traditional RPC in a number of ways:
■ Procedure calls are made against server objects in a browsable, structured namespace. This

process permits a more natural evolution of content than is afforded by the central
allocation of program numbers.

■ These procedure calls need not be synchronous. Subject to the protocol in use, a client may
have multiple simultaneous outstanding requests.

■ The interfaces exported by the server objects are fully inspectable. This facilitates interactive
use, rich debugging environments, and clients using dynamically-typed languages such as
Python.

■ In addition to defining procedure calls, rad objects can define properties and asynchronous
event sources. Though the former provides more of a semantic than a functional
improvement, the latter is a powerful tool for efficiently observing changes to the system
being managed.

Note –

■ rad supports alternate protocols without needing to update its content, which provides even
greater flexibility.

■ rad's native protocol fully supports asynchronous procedure calls once the client has
authenticated. An alternate protocol, e.g. one based on XML-RPC, might not support
asynchronous calls due to limitations of the underlying technology.

Features Overview
The main functionality offered by rad is as follows:
■ Essentials

■ Managed and configured by two SMF services, svc:/system/rad:local and
svc:/system/rad:remote

■ Structured, browsable namespace.
■ Inspectable, typed, versioned interfaces.
■ Asynchronous event sources.
■ XML-based IDL ADR supports formally defining APIs. The IDL compiler radadrgen

generates code and analyzes compatibility of API changes.
■ Security

■ Full PAM conversation support including use of pam_setcred(3PAM) to set the audit
context.

■ Implicit authentication using getpeerucred(3C) when possible.
■ No non-local network connectivity by default. Preconfigured to use TLS.

Features Overview

Remote Administration Daemon Developer Guide • October 201210

■ Most operations automatically delegated to lesser-privileged processes.
■ Defines two authorizations (solaris.smf.manage.rad and solaris.smf.value.rad)

and two Rights Profiles (rad Management and rad Configuration) to provide
fine-grained separation of powers for managing and configuring the rad SMF services.
rad authorizations
solaris.smf.manage.rad — Grants the authorization to enable, disable, or restart the
rad SMF services.
solaris.smf.value.rad — Grants the authorization to change rad SMF services'
property values.
rad rights profiles
rad Management — Includes the solaris.smf.manage.rad authorization.
rad Configuration — Includes the solaris.smf.value.rad authorization.

■ Generates AUE_rad_login, AUE_logout, AUE_role_login, AUE_role_logout, and
AUE_passwd audit events.

■ Connectivity
■ Local access via AF_UNIX sockets.
■ Remote access via TCP sockets.
■ Secure remote access via TLS sockets.
■ Captive execution with access through a pipe.
■ Connection points are completely configurable at the command line or via SMF.

■ Client support
■ A JMX connector exposes rad interfaces as Open MBeans to Java clients.
■ radadrgen can auto-generate MXBean interfaces for use by JMX consumers. Can also

generate basic concrete subclasses.
■ A plain Java client permits explicit access to server objects from non-JMX environments.
■ A native C library offers explicit access to server objects.

■ Extension
■ A public native C module interface supports addition of third-party content.
■ radadrgen can generate server-side type definitions and stubs from IDL input.
■ A native execution system can automatically run modules with authenticated user's

privilege and audit context, simplifying authentication and auditing.
■ Private module interfaces permit defining new transports.

Features Overview

Chapter 1 • Introduction 11

12

Concepts

The concepts that are fundamental to rad are interfaces, objects that implement those
interfaces, and the namespace in which those objects can be found and operated upon. This
chapter discusses the following concepts.

This chapter discusses the following concepts that are fundamental to rad.

■ “Interface” on page 13
■ “rad Namespace” on page 18
■ “Data Typing” on page 21

Interface
An interface defines how a rad client can interact with an object. An object implements an
interface, providing a concrete behavior to be invoked when a client makes a request.

The primary purpose of rad is to consistently expose the various pieces of the system for
administration. Not all subsystems are alike, however: each has a data and state model tuned to
the problems they are solving. Although there are major benefits to using a common model
across components when possible, uniformity comes with trade-offs. The increased inefficiency
and client complexity, and risk of decreased developer adoption, often warrant using an
interface designed for problem at hand.

An interface is a formal definition of how a client may interact with a rad server object. An
interface may be shared amongst several objects, for example, when maintaining a degree of
uniformity is possible and useful, or may be implemented by only one. A rad interface is
analogous to an interface or pure abstract class in an object oriented programming language. In
the case of rad, an interface consists of a name, the set of features a client may interact with,
optionally a set of derived types referenced by the features, and a version. The features
supported include:

■ Methods, which are procedure calls made in the context of a specific object

2C H A P T E R 2

13

■ Properties, which are functionally equivalent to methods but bear different semantics
■ Asynchronous event sources

Name
Each interface has a name. This name is used by the toolchain to construct identifier names
when generating code, and is returned by the server along with the rest of the interface
definition when an object is examined by a client. There is no global namespace for interfaces,
however. A client is expected either to know which objects implement which interfaces (typical
consumer) or to query rad for the object's full interface definition (debugger or interactive
tools).

Derived Types
Three classes of derived types may be defined for use by features: structures, unions, and
enumerations. Each type defined must be uniquely named. As with interfaces, there is no global
type namespace. The types defined in an API are available only to the features defined in that
API.

Features
The only thing all three feature types — methods, attributes, and events — have in common is
that they are named. All three feature types' names exist in the same namespace and must
therefore be unique. You can not have both a method and an attribute called “foo.” This
exclusion avoids the majority of conflicts that could arise when trying to naturally map these
interface features to a client environment.

Note – Enforcing a common namespace for interface features isn't always enough. Some
language environments place additional constraints on naming. For instance, a JMX client
using MXBean proxies will see an interface with synthetic methods of the form getXXX() or
setXXX() for accessing attribute XXX that must coexist with other method names. Explicitly
defining methods with those names will cause a conflict.

Methods
A method is a procedure call made in the context of the object it is called on. In addition to a
name, a method may define a return type, can define zero or more arguments, and may declare
that it returns an error, optionally with an error return type.

If a method does not define a return type, it returns no value. It is effectively of type void. If a
method defines a return type and that type is permitted to be nullable, the return value may be
defined to be nullable.

Interface

Remote Administration Daemon Developer Guide • October 201214

Each method argument has a name and a type. If any argument's type is permitted to be
nullable, that argument may be defined to be nullable.

If a method does not declare that it returns an error, it theoretically cannot fail. However,
because the connection to rad could be broken either due to a network problem or a
catastrophic failure in rad itself, all method calls can fail with an I/O error. If a method declares
that it returns an error but does not specify a type, the method may fail due to API-specific
reasons. Clients will be able to distinguish this failure type from I/O failures.

Finally, if a method also defines an error return type, data of that type may be provided to the
client in the case where the API-specific failure occurs. Error payloads are implicitly optional,
and must therefore be of a type that is permitted to be nullable.

Note – Methods names may not be overloaded.

Attributes
An attribute is metaphorically a property of the object. Attributes have the following
characteristics:

■ A name
■ A type
■ A definition as read-only, read-write, or write-only
■ Like a method may declare that accessing the attribute returns an error, optionally with an a

error return type

Reading a read-only or read-write attribute returns the value of that attribute. Writing a
write-only or read-write attribute sets the value of that attribute. Reading a write-only attribute
or writing a read-only attribute is invalid. Clients may treat attempts to write to a read-only
attribute as a write to an attribute that does not exist. Likewise, attempts to read from a
write-only attribute may be treated as an attempt to read from an attribute that does not exist.

If an attribute's type is permitted to be nullable, its value may be defined to be nullable.

An attribute may optionally declare that it returns an error, with the same semantics as
declaring (or not declaring) an error for a method. Unlike a method, an attribute may have
different error declarations for reading the attribute and writing the attribute.

Attribute names may not be overloaded. Defining a read-only attribute and a write-only
attribute with the same name is not valid.

Given methods, attributes are arguably a superfluous interface feature. Writing an attribute of
type X can be implemented with a method that takes one argument of type X and returns
nothing, and reading an attribute of type X can be implemented with a method that takes no
arguments and returns a value of type X. Attributes are included because they have slightly
different semantics.

Interface

Chapter 2 • Concepts 15

In particular, an explicit attribute mechanism has the following characteristics:

■ Enforces symmetric access for reading and writing read-write attributes.
■ Can be easily and automatically translated to a form natural to the client

language-environment.
■ Communicates more about the nature of the interaction. Reading an attribute ideally should

not affect system state. The value written to a read-write attribute should be the value
returned on subsequent reads unless an intervening change to the system effectively “writes”
a new value.

Events
An event is an asynchronous notification generated by rad and consumed by clients. A client
may subscribe to events by name to register interest in them. The subscription is performed on
an object which implements an interface. In addition to a name, each event has a type.

Events have the following characteristics:

■ Sequential.
■ Volatile
■ Guaranteed

A client can rely on sequential delivery of events from a server as long as the connection to the
server is maintained. If the connection fails, then events will be lost. On reconnection, a client
must resubscribe to resume the flow of events.

Once a client has subscribed to an event, event notifications will be received until the client
unsubscribes from the event.

On receipt of a subscribed event, a client receives a payload of the defined type.

Versioning
rad interfaces are versioned for the following reasons:

■ APIs change over time.
■ A change to an API might be incompatible with existing consumers.
■ A change might be compatible with existing consumers but new consumers might not be

able to use the API that was in place before the change occurred.
■ Some features represent committed interfaces whose compatibility is paramount, but others

are private interfaces that are changed only in lockstep with the software that uses them.

Interface

Remote Administration Daemon Developer Guide • October 201216

Numbering
The first issue is measuring the compatibility of a change. rad uses a simple major.minor
versioning scheme. When a compatible change to an interface is made, its minor version
number is incremented. When an incompatible change is made, its major version number is
incremented and its minor version number is reset to 0.

In other words, an implementation of an interface that claims to be version X.Y (where X is the
major version and Y is the minor version) must support any client expecting version X.Z, where
Z <= Y.

The following interface changes are considered compatible:

■ Adding a new event
■ Adding a new method
■ Adding a new attribute
■ Expanding the access supported by an attribute, for example, from read-only to read-write
■ A change from nullable to non-nullable for a method return value or readable property, that

is, decreasing the range of a feature
■ A change from non-nullable to nullable for a method argument or writable property, that is,

increasing the domain of a feature

The following interface changes are considered incompatible:

■ Removing an event
■ Removing a method
■ Removing an attribute
■ Changing the type of an attribute, method, or event
■ Changing a type definition referenced by an attribute, method, or event
■ Decreasing the access supported by an attribute, for example, from read-write to read-only
■ Adding or removing method arguments
■ A change from non-nullable to nullable for a method return value or readable property, that

is, increasing the range of a feature
■ A change from nullable to non-nullable for a method argument or writable property, that is,

decreasing the domain of a feature

Note – An interface is more than just a set of methods, attributes, and events. Associated with
those features are well-defined behaviors. If those behaviors change, even if the structure of the
interface remains the same, a change to the version number might be required.

Interface

Chapter 2 • Concepts 17

Commitment
To solve the problem of different features being intended for different consumers, rad defines
three commitment levels: private, uncommitted, and committed. Each method, attribute, and
event in an interface defines its commitment level independently. The interface is assigned a
separate version number, per commitment level.

Each commitment level is considered a superset of the next more-committed level. For
example, “private” is a superset of “uncommitted.” Therefore, when an uncommitted (or
committed) interface changes, the private version number needs to be changed as well. By
having separate version numbers instead of just adding more dots to the existing one,
private/uncommitted consumers are not broken by compatible changes to
uncommitted/committed interfaces.

When a feature changes commitment level, it is treated as if the feature was removed from the
old commitment level and added to the new one. If a feature becomes less committed, then that
implies an incompatible change for the every commitment level that no longer includes that
feature but no change for every commitment level that still includes the feature due to the
implicit nesting of commitment levels. If a feature becomes more committed, then that implies
a compatible change for each commitment level that gained the feature and no change for each
commitment level that had it before.

The simple case of an API containing interfaces of only a single commitment level reduces to
traditional commitment-agnostic major/minor versioning.

Clients and Versioning
A rad client can ask for interface version information if the protocol in use does not
automatically provide it. The client decides what to do with this information. It can expose that
information directly to interface consumers, or it can provide APIs that encapsulate verifying
that the version the client expects is the version the server is providing.

radNamespace
The namespace acts as rad's gatekeeper, associating a name with each object, dispatching
requests to the proper object, and providing meta-operations that enable the client make
queries about what objects are available and what interfaces they implement.

A rad server may provide access to several objects that in turn expose a variety of different
components of the system or even third-party software. A client merely knowing that interfaces
exist, or even that a specific interface exists, is not sufficient. A simple, special-purpose client
needs some way to identify the object implementing the correct interface with the correct
behavior, and an adaptive or general-purpose client needs some way to determine what
functionality the rad server has made available to it.

radNamespace

Remote Administration Daemon Developer Guide • October 201218

rad organizes the server objects it exposes in a namespace. Much like files in a file system,
objects in the rad namespace have names that enable clients to identify them, can be acted upon
or inspected using that name, and can be discovered by browsing the namespace. Depending on
the point of view, the namespace either is the place one goes to find objects or the intermediary
that sits between the client and the objects it accesses. Either way, it is central to interactions
between a client and the rad server.

Naming
Unlike a file system, which is a hierarchical arrangement of simple filenames, rad adopts the
model used by JMX and maintains a flat namespace of structured names. An object's name
consists of a mandatory reverse-dotted domain combined with a non-empty set of key-value
pairs. There aren't any restrictions on what a key or value can contain, which can make
representing them as a string difficult. For the sake of simplicity, this document does not
attempt to establish a canonical form, but uses a form similar to the serialized form of JMX
ObjectNames:

domain:key1=value1[,key2=value2[,...]]

See “Naming Guidelines” on page 70 for guidance on object naming. For more information
about JMX, see the Java Management Extensions (JMX) technology home page
(http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html)
.

Equality
Two names are considered equal if they have the same domain and the same set of keys, and
each key has been assigned the same value.

Patterns
Some situations call for referring to groups of objects. In these contexts, a name can be used as a
pattern. Another object name matches a pattern if all components present in the pattern are
present and equal in the name. In these contexts, name used as patterns are permitted to have an
unspecified domain or an empty set of key-value pairs. For example, the pattern :product=fruit
(that is, no domain, and only the key “product” with the value “fruit” specified) would match
the names grocery.bob:product=fruit,type=banana and
grocery.jim:product=fruit,type=apple, but not
grocery.bob:product=animal,type=fish or grocery.bob:person=shelver.

radNamespace

Chapter 2 • Concepts 19

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

Operations
Just as names are essential to a client's interaction with the rad server, so are the actions the
client performs. While the exact nature of the requests a client performs are a function of the
protocol used and might be hidden from the developer by the client implementation itself,
defining the set of abstract operations supported by the rad namespace is still useful.

LIST Requests that the objects of the namespace be enumerated. Returns a list of object names.

DESCRIBE Requests a description of a specific object by name. Returns an interface description.

INVOKE Invokes a method on the specified object with the specified arguments. Returns the result of
that method invocation, if any.

GET Reads the value of an attribute of the specified object.

SET Writes a value to an attribute of the specified object.

SUBSCRIBE Subscribes to the specified event source of the specified object.

UNSUBSCRIBE Unsubscribes from the specified event source of the specified object.

LIST and DESCRIBE are analogous to the VFS operations READDIR and LOOKUP, respectively. As is
the case with VFS, it might be possible to call DESCRIBE on objects that are not enumerated by
LIST. The usual reason for this arrangement applies here as well: enumerating the available
objects might be prohibitively expensive, either for algorithmic reasons or due to their sheer
quantity. The bandwidth required for a large response (and the corresponding latency induced
in every client application) can also be a consideration. Additionally, the server objects that rad
provides might represent underlying objects that themselves subject their consumers (of which
rad is one) to such a restriction.

This type of arrangement also enables renaming of objects. The server can respond to requests
against an old name to maintain compatibility with legacy clients without needing to broadcast
the existence of those old names.

Note – These operations represent the most basic set of operations related to discussing
communication with a rad server. For efficiency, the rad protocol further divides DESCRIBE into
separate LOOKUP and DEFINE operations.

radNamespace

Remote Administration Daemon Developer Guide • October 201220

Data Typing
All data returned submitted to or obtained from rad APIs adheres to a strong typing system
similar to that defined by XDR. For more information about XDR, see the XDR
(http://tools.ietf.org/rfc/rfc4506.txt) standard. This makes it simpler to define
interfaces that have precise semantics, and makes server extensions (which are written in C)
easier to develop. Of course, the rigidity of the typing exposed to an API's consumer is primarily
a function of the client language and implementation.

Base Types
rad supports the following base types:

boolean A boolean value (true or false).

integer A 32-bit signed integer value.

uinteger A 32-bit unsigned integer value.

long A 64-bit signed integer value.

ulong A 64-bit unsigned integer value.

float A 32-bit floating-point value.

double A 64-bit floating-point value.

string A UTF-8 string.

opaque Raw binary data.

secret An 8-bit clean “character” array. The encoding is defined by the interface using
the type. Client/server implementations may take additional steps, for example,
zeroing buffers after use, to protect the contents of secret data.

time An absolute UTC time value.

name The name of an object in the rad namespace.

Derived Types
In addition to the base types, rad supports several derived types.

An enumeration is a set of user-defined tokens. Like C enumerations, rad enumerations may
have specific integer values associated with them. Unlike C enumerations, rad enumerations
and integers are not interchangeable. Among other things, this aspect means that an

Data Typing

Chapter 2 • Concepts 21

http://tools.ietf.org/rfc/rfc4506.txt
http://tools.ietf.org/rfc/rfc4506.txt

enumeration data value may not take on values outside those defined by the enumeration,
which precludes the common but questionable practice of using enumerated types for bitfield
values.

rad enumerations support designating an optional “fallback” value. A fallback value enables an
enumeration to change without breaking compatibility between consumers and implementors
of an API using different versions of the enumeration. When supported by the programming
environment in use, the connection between the consumer and the implementor will
automatically map unrecognized enumeration data values to the fallback value.

Caution – Fallback values are indispensible in cases where the set of possible enumeration must
change over time. However, any change to an enumeration with a fallback value is considered to
be a compatible change, forfeiting some of the benefits offered by rad's versioning scheme.
Excessive use of fallback values will unnecessarily complicate the use and maintenance of a rad
API.

A discriminated union is a data type that can be used to store polymorphic data, with typesafe
access to the data. Like XDR, discriminated union's are composed of a set of “arms” and a
“discriminant” that selects an “arm.” The discriminant may be a boolean or an enumeration
type. A default arm may be specified for unions with an enumerated discriminator. When no
arm is defined for a specific discriminant value and no default arm is defined, the arm for that
value is void.

An array is an ordered list of data items of a fixed type. Arrays do not have a predefined size.

A structure is a record consisting of a fixed set of typed, uniquely named fields. A field's type
may be a base type or derived type, or even another structure type.

Derived types offer almost unlimited flexibility. However, one important constraint imposed on
derived types is that recursive type references are prohibited. Thus, complex self-referencing
data types, for example, linked lists or trees, must be communicated after being mapped into
simpler forms.

Optional Data
In some situations, data may be declared as nullable. Nullable data can take on a “non-value”,
for example, NULL in C, or null in Java. Inversely, non-nullable data cannot be NULL. Only data of
type opaque, string, secret, array, union or structure may be declared nullable. Additionally,
only structure fields and certain API types can be nullable. Specifically, array data cannot be
nullable because the array type is actually more like a list than an array.

Data Typing

Remote Administration Daemon Developer Guide • October 201222

Abstract Data Representation

The data model used by rad is known as the Abstract Data Representation (ADR). ADR defines
a formal IDL for describing types and interfaces supplies a toolchain for operating on that
IDLand provides libraries used by rad, its extension modules, and its clients.

ADR Interface Description Language
The APIs used by rad are defined using an XML-based IDL. The normative schema for this
language can be found in /usr/share/lib/xml/rng/adr.rng.1. The namespace name is
http://xmlns.oracle.com/radadr.

Overview
The top-level element in an ADR definition document is an api. The api element has one
attribute, name, which is used to name the output files. The element contains one or more
derived type or interface definitions. Because there is no requirement that an interface use
derived types, there is no requirement that any derived types be specified in an API document.
To enable consumers to use the data typing defined by ADR for non-interface purposes, there is
no requirement that an interface is defined either. However, note that either a derived type or an
interface must be defined.

Three derived types are available for definition and use by interfaces: a structured type that can
be defined with a struct element, an enumeration type that can be defined with an enum

element, and a union type that can be defined with a union element. Interfaces are defined using
interface elements. The derived types defined in an API document are available for use by all
interfaces defined in that document.

EXAMPLE 3–1 Skeleton API document

<api xmlns="http://xmlns.oracle.com/radadr" name="example">
<struct>...</struct>

<struct>...</struct>

3C H A P T E R 3

23

EXAMPLE 3–1 Skeleton API document (Continued)

<enum>...</enum>

<union>...</union>

<interface>...</interface>

<interface>...</interface>

</api>

Enumeration Definitions
The enum element has a single mandatory attribute, name. The name is used when referring to the
enumeration from other derived type or interface definitions. An enum contains one or more
value elements, one for each user-defined enumerated value. A value element has a mandatory
name attribute that gives the enumerated value a symbolic name. The symbolic name isn't used
elsewhere in the API definition, only in the server and various client environments. How the
symbolic name is exposed in those environments is environment-dependent. An environment
offering an explicit interface to rad should provide an interface that accepts the exact string
values defined by the value elements' name attributes.

An enum also contains zero or one fallback elements, indicating that the enumeration has a
fallback value. The fallback element must appear after all value elements when present. Like
value elements, a fallback element has a name attribute.

Some language environments support associating scalar values with enumerated type values,
for example C. To provide richer support for these environments, ADR supports this concept as
well. By default, an enumerated value has an associated scalar value 1 greater than the preceding
enumerated value's associated scalar value. The first enumerated value is assigned a scalar value
of 0. Any enumerated value element may override this policy by defining a value with the
desired value. A value attribute must not specify a scalar value already assigned, implicitly or
explicitly, to an earlier value in the enumeration.

value elements contain no other elements.

EXAMPLE 3–2 Enumeration Definition

<enum name="Colors">
<value name="RED" /> <!-- scalar value: 0 -->

<value name="ORANGE" /> <!-- scalar value: 1 -->

<value name="YELLOW" /> <!-- scalar value: 2 -->

<value name="GREEN" /> <!-- scalar value: 3 -->

<value name="BLUE" /> <!-- scalar value: 4 -->

<value name="VIOLET" value="6" /> <!-- indigo was EOLed -->

<fallback name="UNKNOWN" /> <!-- for compatibility -->

</enum>

ADR Interface Description Language

Remote Administration Daemon Developer Guide • October 201224

Structure Definitions
Like the enum element, the struct element has a single mandatory attribute, name. The name is
used when referring to the structure from other derived type or interface definitions. A struct

contains one or more field elements, one for each field of the structure. A field element has a
mandatory name attribute that gives the field a symbolic name. The symbolic name isn't used
elsewhere in the API definition, only in the server and various client environments. In addition
to a name, each field must specify a type.

You can define the type of a field in multiple ways. If a field is a plain base type, that type is
defined with a type attribute. If a field is a derived type defined elsewhere in the API document,
that type is defined with a typeref attribute. If a field is an array of some type (base or derived),
that type is defined with a nested list element. The type of the array is defined in the same
fashion as the type of the field: either with a type attribute, a typeref attribute, or another
nested list element.

A field's value may be declared nullable by setting the field element's nullable attribute to
true.

Note – Structure fields, methods return values, method arguments, attributes, error return
values, and events all have types, and in the IDL, use identical mechanisms for defining those
types.

EXAMPLE 3–3 struct Definition

<struct name="Name">
<field name="familyName" type="string" />

<field name="givenNames">
<list type="string" />

</field>

</struct>

<struct name="Person">
<field name="name" typeref="Name" />

<field name="title" type="string" nullable="true" />

<field name="shoeSize" type="int" />

</struct>

Union Definitions
The union element has the structure shown in the following example:

EXAMPLE 3–4 union Definition

<!-- For booleans -->

<union name="boolunion" type="boolean">
<arm value="true" type="int" />

ADR Interface Description Language

Chapter 3 • Abstract Data Representation 25

EXAMPLE 3–4 union Definition (Continued)

<arm value="false" typeref="banana" />

</union>

<!-- For enumerations -->

<enum name="enumname">
<value name="eval1" />

<value name="eval2" />

...

</enum>

<union name="enumunion" typeref="enumname">
<arm value="eval1">

<list type="string" />

<arm value="eval2" typeref="boolunion">
<default type="int" />

</union>

The type of the union discriminator is designated by the type attribute, or typeref attribute,
and may only be a boolean or enumerated type. The names of unions are in the same
namespace as enumerated types and structures, and must be unique. arms are identified with
their associated value's name. One default arm may be specified for unions with an enumerated
discriminator. When no arm is defined for a value and no default arm is defined, the arm for that
value is void. The default arm is optional.

Interface Definitions
An interface definition has a name, zero or more version specifications, and one or more
attributes, methods, or events. An interface's name is defined with the interface element's
mandatory name attribute. This name is used when referring to the inherited interface from
other interface definitions, as well as in the server and various client environments. The other
characteristics of an interface are defined using child elements of the interface element.

Version
An interface may define one version for each commitment level. You do not have to define a
version for every commitment level, but one should be specified for every commitment level
assigned to the features defined in the interface, that is, the features defined in the enclosing
interface element.

A version is defined using a version element. The commitment level being versioned is defined
by the mandatory stability attribute, which takes a value of committed, uncommitted, or
private. The major and minor version numbers are non-negative integers, defined separately by
the mandatory major and mandatory minor attributes.

ADR Interface Description Language

Remote Administration Daemon Developer Guide • October 201226

EXAMPLE 3–5 Version Definition

<version stability="committed" major="2" minor="1" />

Methods
Each method in an interface is defined by a method element. The name of a method is defined by
this element's mandatory name attribute. The other properties of a method are defined by child
elements of the method.

If a method has a return value, it is defined using a single result element. The type of the return
value is specified in the same way the type is specified for a structure field. If no result element
is present, the method has no return value.

If a method can fail for an API-specific reason, it is defined using a single error element. The
type of an error is specified the same way the type is specified for a structure field. Unlike a
structure field, an error need not specify a type — such a situation is indicated by an error

element with no attributes or child elements. If no error element is present, the method will
only fail if there is a connectivity problem between the client and the server.

A method's arguments are defined, in order, with zero or more argument elements. Each
argument element has a mandatory name attribute. The type of an argument is specified in the
same way the type is specified for a structure field.

EXAMPLE 3–6 Method Definition

<struct name="Meal">...</struct>
<struct name="Ingredient">...</struct>

<method name="cook">
<result typeref="Meal" />

<error />

<argument type="string" name="name" nullable="true" />

<argument name="ingredients">
<list typeref="Ingredient" />

</argument>

</method>

Attributes
Each attribute in an interface is defined by a property element. The name of an attribute is
defined by this element's mandatory name attribute. The types of access permitted are defined by
the mandatory access attribute, which takes a value of ro, wo, or rw, corresponding to
read-only access, write-only access, or read-write access, respectively.

The type of an attribute is specified in the same way the type is specified for a structure field.

If access to an attribute can fail for an API-specific reason, it is defined using one or more error
elements. An error element in a property may specify a for attribute, which takes a value of
ro, wo, or rw, corresponding to the types of access the error return definition applies to. An

ADR Interface Description Language

Chapter 3 • Abstract Data Representation 27

error element with no for attribute is equivalent to one with a for attribute set to the access
level defined on the property. Two error elements may not specify overlapping access types.
For example, on a read-write property it is invalid for one error to have no for attribute
(implying rw) and one to have a for attribute of wo — they both specify an error for writing.

The type of an error is specified the same way the type is specified for a method. It is identical to
defining the type of a structure, with the exception that a type need not be defined.

EXAMPLE 3–7 Attribute Definition

<struct name="PrivilegeError">...</struct>

<property name="VIPList" access="rw">
<list type="string" />

<error for="wo" typeref="PrivilegeError" />

<!-- Reads cannot fail -->

</property>

Events
Each event in an interface is defined by a event element. The name of an event is defined by this
element's mandatory name attribute. The type of an event is specified in the same way the type is
specified for a structure field.

EXAMPLE 3–8 Event Definition

<struct name="TremorInfo">...</struct>

<event name="earthquakes" typeref="TremorInfo" />

Pragmas
Occasionally you need to provide auxiliary information to a specific ADR consumer. The ADR
IDL pragma mechanism lets an API creator specify that information in-line.

A pragma is specified with a pragma child element of the api. A pragma has no child elements,
and three mandatory attributes. The domain attribute indicates which consumer the pragma is
intended for, and a name and a value specify a consumer-specific name/value pair.

The only supported pragma specifies a package for generated Java classes. The domain of this
pragma is java and its name is package.

EXAMPLE 3–9 Pragma Definition

<pragma domain="java" name="package" value="com.example" />

ADR Interface Description Language

Remote Administration Daemon Developer Guide • October 201228

Example

EXAMPLE 3–10 Complete API Example

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<api xmlns="http://xmlns.oracle.com/radadr" name="example">

<pragma domain="java" name="package" value="com.example" />

<struct name="StringInfo">
<field type="integer" name="length" />

<field name="substrings">
<list type="string" />

</field>

</struct>

<struct name="SqrtError">
<field type="float" name="real" />

<field type="float" name="imaginary" />

</struct>

<enum name="Mood">
<value name="IRREVERENT" />

<value name="MAUDLIN" />

</enum>

<struct name="MoodStatus">
<field typeref="Mood" name="mood" />

<field type="boolean" name="changed" />

</struct>

<interface name="GrabBag">
<version major="1" minor="2" stability="private" />

<method name="sqrt">
<result type="integer" />

<error typeref="SqrtError" />

<argument type="integer" name="x" />

</method>

<method name="parseString">
<result typeref="StringInfo" nullable="true" />

<argument type="string" name="str" nullable="true" />

</method>

<property typeref="Mood" name="mood" access="rw">
<error for="wo" />

</property>

<event typeref="MoodStatus" name="moodswings" />

</interface>

</api>

ADR Interface Description Language

Chapter 3 • Abstract Data Representation 29

radadrgen
radadrgen is the ADR IDL processing tool. Its primary purpose is to generate API-specific
language bindings for the rad server and various client environments. It can also generate
documentation, and can audit changes to interfaces for consistency with their versions. See the
radadrgen(1) man page for details on all its options.

Code Generation
Generated code has advantages and disadvantages. On the one hand, it can provide an interface
to a foreign system that acts like a natural part of the consumer's programming environment.
On the other, it can introduce a complex maintenance burden if the generated code is flawed,
constrains how its consumers are implemented (for example, if the generated code is unsafe to
use in a threaded environment), or otherwise needs modifications before it can be used in the
consumer's environment.

Because the rad server has complete knowledge of the interfaces and data types used, and that
knowledge is explicitly shared with clients, any client can be written to manipulate those data
types and communicate with the server without the need for generated code. However, the
convenience of language-native interfaces increases developer productivity, their nature
improves interoperability, and the ability for the compiler to perform additional type checking
makes the resulting product more robust. For these reasons, rad supports generating code for
the C and Java environments.

radadrgen needs to generate code for two contexts. The first is a generic, definitions-only
“client” context where only the code needed to manipulate data types and interfaces is created.
The second is a rad-specific context that, in addition to the definitions generated in the generic
context, generates server definitions that include references to functions that form the
implementation of the interfaces.

radadrgen

Remote Administration Daemon Developer Guide • October 201230

libadr

The library libadr provides structure definitions and subroutines essential to C programs
using ADR. Code generated by radadrgen requires this library, and rad itself is based on it.
libadr contains three major areas of functionality: data management, API management, and
object name operations.

libadr is delivered in the system/management/rad package. C programs can link with it by
specifying -ladr on the compile or link line.

Data Management
Consumers of the ADR data management routines should include the rad/adr.h header file:

#include <rad/adr.h>

This file contains definitions for the two fundamental data management types, adr_type_t and
adr_data_t, as well as prototypes for data allocation, access, and validation routines.

adr_type_t Type
Each data type is represented by a adr_type_t type, whether it is just a base type or a complex of
nested structures and arrays. The adr_type_t contains all the information necessary to
understand the structure of the type. libadr provides statically-allocated singleton of
adr_type_t type for the base types. These singleton types are more than a convenience: they
must be used when referencing the base types.

The base types and their corresponding array types are listed in the following table.

4C H A P T E R 4

31

TABLE 4–1 Base and Array Types

ADR type C adr_type_t C array adr_type_t

string adr_t_string adr_t_array_string

integer adr_t_integer adr_t_array_integer

uinteger adr_t_uinteger adr_t_array_uinteger

long adr_t_long adr_t_array_long

ulong adr_t_ulong adr_t_array_ulong

time adr_t_time adr_t_array_time

name adr_t_name adr_t_array_name

boolean adr_t_boolean adr_t_array_boolean

opaque adr_t_opaque adr_t_array_opaque

secret adr_t_secret adr_t_array_secret

float adr_t_float adr_t_array_float

double adr_t_double adr_t_array_double

The adr_type_t for a derived type should also be unique, but obviously they cannot be defined
by libadr. Although technically adr_type_t could be dynamically allocated, at the moment, the
only supported way of defining a adr_type_t is to generate a definition using the ADR IDL and
radadrgen.

adr_data_t Type
The most frequently used type defined by rad/adr.h is adr_data_t. A adr_data_t object
represents a unit of typed data. It could be of a base type, such as an integer (“1”) or string
(“banana”), or of a derived type like a structure or an array. Each adr_data_t maintains a
pointer to its adr_type_t.

A few common traits simplify access to adr_data_t objects. The first is that, except for the
structure and array derived types (not enumerations), all adr_data_t values are immutable.
They are assigned a value when they are created, and may not be changed thereafter.

Another is that all adr_data_t values are reference counted. Sometimes data structures need to
be used by multiple consumers simultaneously, or simply retained for subsequent use.
Reference counting is a cheap way to cut down on the cost of copying large data structures and
the complexity of handling allocation failures. Though the reference counting is thread-safe,
there is no other locking, which is not a problem for an immutable adr_data_t. Though the

Data Management

Remote Administration Daemon Developer Guide • October 201232

value of a non-immutable adr_data_t may be modified post-creation, the convention used
throughout rad and its associated libraries is that once visibility of a adr_data_t has spread past
its creator, it may no longer be modified. This eliminates the need for additional
synchronization.

adr_data_t *adr_data_ref(adr_data_t *data);

void adr_data_free(adr_data_t *data);

The reference count on the adr_data_t data is incremented with adr_data_ref. For
convenience, adr_data_ref returns data. Symmetrically, the reference count on the
adr_data_t data is decremented with adr_data_free. As the name implies, this may result in
data being freed; after calling adr_data_free the caller must not access data in any way. Neither
adr_data_ref nor adr_data_free can fail.

A third trait is that interfaces that accept adr_data_t values take ownership of the caller's
reference on the adr_data_t. If the caller needs to refer to the adr_data_t after passing a
pointer to it to a libadr interface, it must first secure an additional reference with
adr_data_ref. Interfaces that return adr_data_t that are referenced by other adr_data_t do
not increase the reference count on the returned adr_data_t. The returned value is guaranteed
to persist only as long as the caller retains a reference on the referring adr_data_t, or if the
caller uses adr_data_ref to acquire its own reference on the returned adr_data_t. The net
result is that in the common case where a adr_data_t does not have multiple simultaneous
consumers, libadr consumers need not perform any explicit reference counting at all. They
can naively allocate and free adr_data_t values as if they were any other data structure. Note
also that the adr_data_t implementation can therefore optimize for the case where the
reference count is 1.

Lastly, many adr_data_t management routines rely on dynamic memory allocation, which
means that proper error handling is essential. To increase the clarity and maintainability of
adr_data_t consumers, and reduce the likelihood of mishandling errors, libadr interfaces
explicitly accept NULL adr_data_t inputs and fail in sympathy. This means that a libadr
consumer can perform a large number of operations on the instances of adr_data_t, checking
only the final result for failure. Additionally, if a libadr routine is going to fail for any reason,
references to a non-NULL adr_data_t passed to the routine is released. In other words, no
special clean-up is needed when a libadr routine fails.

Allocating adr_data_t Values
The first phase in the lifecycle of a adr_data_t is allocation. For each ADR type, there is at least
one allocation routine. The arguments to an allocation routine depend on the type. In the case
of mandatorily immutable types, allocation implies initialization, and their allocation routines
take as arguments the value the adr_data_t is to have. Structures and arrays each have a single
generic allocation routine that takes a adr_type_t* specifying the type of the structure or array.
A adr_data_t is assigned values using a separate set of routines.

All allocation routines return a non-NULL adr_data_t * on success, or NULL on failure.

Data Management

Chapter 4 • libadr 33

Note – The allocation and initialization routines for immutable types may elect to return a
reference to a shared adr_data_t for a commonly used value, for example, boolean true or false.
This substitution should be undetectable by adr_data_t consumers who correctly manage
adr_data_t reference counts and respect the immutability of these types.

Allocating Strings
adr_data_t *adr_data_new_string(const char *s, lifetype_t lifetime);

Allocates a new string adr_data_t, initializing it to the NUL-terminated string pointed to by s.
If s is NULL, adr_data_new_string will fail.

The value of the lifetime determines how the string s is to be used.

LT_COPY adr_data_new_string must allocate and make a copy of the string pointed to by s.
This copy will be freed when the adr_data_t is freed.

LT_CONST The string pointed to by s is a constant that will never be changed or deallocated.
Therefore, adr_data_new_string need not copy the string; it can instead refer
directly to s indefinitely. This is the recommended lifetime value when passing a
string literal to adr_data_new_string.

LT_FREE The string pointed to by s was dynamically allocated using malloc and is no longer
needed by the caller. adr_data_new_string will ensure that the string is eventually
freed. It may choose to use the string directly instead of making a copy of it.
Obviously, this lifetime value should never be used with string literals.

If lifetime is LT_FREE and adr_data_new_string fails for any reason, s will automatically be
freed.

adr_data_t *adr_data_new_fstring (const char *format, ...);

Allocates a new string adr_data_t, initializing it to the string generated by calling sprintf on
format and any additional arguments provided.

adr_data_t *adr_data_new_nstring (const char *s, int count);

Allocates a new string adr_data_t, initializing it to the first count bytes of s.

Allocating boolean
adr_data_t *adr_data_new_boolean (boolean_t b);

Allocates a new boolean adr_data_t, initializing it to the boolean value specified by b.

Data Management

Remote Administration Daemon Developer Guide • October 201234

Allocating Numeric Types
adr_data_t *adr_data_new_integer (int i);

adr_data_t *adr_data_new_long (long long l);

adr_data_t *adr_data_new_uinteger (unsigned int ui);

adr_data_t *adr_data_new_ulong (unsigned long ul);

adr_data_t *adr_data_new_float (float f);

adr_data_t *adr_data_new_double (double d);

Allocates a new integer, (int), long, uinteger, ulong, float, or double adr_data_t,
respectively, initializing it to the value of the single argument provided.

Allocating Times
adr_data_t *adr_data_new_time (long long sec, int nano);

adr_data_t *data_new_time_ts (time_t t);

adr_data_t *adr_data_new_time_now (void);

Allocates a new time adr_data_t, initializing it to the argument, if any, provided.

Allocating Opaques
adr_data_t *adr_data_new_opaque (void *buffer, int length, lifetime_t lifetime);

Allocates a new opaque adr_data_t, initializing it to the length bytes found at buffer. How
adr_data_new_opaque uses buffer depends on lifetime, which takes on the same meanings as it
does when used with adr_data_new_string.

Allocating Secrets
adr_data_t *data_new_password (const char *p);

Allocates a new secret adr_data_t, initializing it to the contents of the NULL-terminated 8-bit
character array pointed to by p. The secret type is used to hold sensitive data such as passwords.
Client/server implementations may take additional steps to protect the content of password
data, for example, zeroing buffers after use.

Allocating Names
adr_data_t *adr_data_new_name (adr_name_t *name);

Allocates a new name adr_data_t, initializing it to the value of name. adr_name_t types are
reference counted; the reference on name held by the caller is transferred to the resulting
adr_data_t by the call to adr_data_new_name. A caller that needs to continue using name
should secure an additional reference to it before calling adr_data_new_name. If
adr_data_new_name fails for any reason, the caller's reference to name will be released.

Data Management

Chapter 4 • libadr 35

Allocating Enumerations
adr_data_t *adr_data_new_enum (adr_type_t *type, int value);

adr_data_t *adr_data_new_enum_byname (adr_type_t *type, const char * name);

The two ways to allocate an enumeration adr_data_t both require that the adr_type_t of the
enumeration be specified. The first form, adr_data_new_enum, takes a scalar value as an
argument and initializes the enumeration adr_data_t to the enumerated value that was
assigned (implicitly or explicitly) that scalar value. The second form,
adr_data_new_enum_byname, takes a pointer to a string as an argument and initializes the
enumeration adr_data_t to the enumerated value that has that name. If value does not
correspond to an assigned scalar value or name does not correspond to an enumerated value
name, the respective allocation routine fails.

The nature of an enumeration is that all possible values are known. Enumerated types generated
by radadrgen have singleton adr_data_t values that will be returned by adr_data_new_enum
and adr_data_new_enum_byname. For efficiency and to reduce the error handling that needs to
be performed at runtime, these values have defined symbols that may be referenced directly.

The value of type must be an enumeration data-type.

Allocating Unions
adr_data_t *adr_data_new_union (adr_type_t *uniontype,

adr_data_t *discriminator, adr_data_t *value);

Allocates a new union adr_data_t, initializing it with the discriminator and arm data value
provided.

Allocating Structures
adr_data_t *adr_data_new_struct (adr_type_t *type);

Allocates an uninitialized structure adr_data_t of type type. Any post-allocation initialization
that occurs must be consistent with type.

The value of type must be a structured type.

Allocating Arrays
adr_data_t *adr_data_new_array (adr_type_t *type, int size);

Allocates an empty array adr_data_t of type type. Arrays will automatically adjust their size to
fit the amount of data placed in them. size can be used to initialize the size of the array if it is
known beforehand.

The value of type must be an array type.

Data Management

Remote Administration Daemon Developer Guide • October 201236

Accessing Simple adr_data_t Values
rad/adr.h defines macros that behave like the following prototypes:

const char *adr_data_to_string(adr_data_t *data);

int adr_data_to_integer(adr_data_t *data);

unsigned int adr_data_to_uinteger(adr_data_t *data);

long long adr_data_to_longint(adr_data_t *data);

unsigned long long adr_data_to_ulongint(adr_data_t *data);

boolean_t adr_data_to_boolean(adr_data_t *data);

adr_name_t *adr_data_to_name(adr_data_t *data);

const char *adr_data_to_secret(adr_data_t *data);

float adr_data_to_float(adr_data_t *data);

double adr_data_to_double(adr_data_t *data);

const char * adr_data_to_opaque(adr_data_t *data);

long long adr_data_to_time_secs(adr_data_t *data);

int adr_data_to_time_nsecs(adr_data_t *data);

In all cases, pointer return values will point to data that is guaranteed to exist only as long as the
caller retains their reference to the data parameter.

Additionally, the following functions are provided for interpreting enumeration values:

const char *adr_enum_tostring(adr_data_t *data);

int adr_enum_tovalue(adr_data_t *data);

adr_enum_tostring maps data to the value's string name. adr_enum_tovalue maps data to its
scalar value.

The behavior is undefined if a macro or function is called on a adr_data_t of the wrong type.

The following functions are used to access union data:

adr_data_t *adr_union_get(adr_data_t *uniondata);

adr_data_t *adr_union_get_arm(adr_data_t *uniondata);

adr_union_get returns the data stored in the arm selected by the discriminator.
adr_union_get_arm returns the value of the discriminator.

Data Management

Chapter 4 • libadr 37

Manipulating Derived Type adr_data_t
Structure and array derived types are assigned no value when they are allocated. As a best
practice, you should assign some value to them before use; in the case of structured types with
non-nullable fields, it is required. In either case, once a reference to a derived type is shared, it
may no longer be modified.

Manipulating Array adr_data_t Values
rad/adr.h defines array-access macros that behave like the following prototypes:

int adr_array_size(adr_data_t *array);

adr_data_t *adr_array_get(adr_data_t *array, int index);

adr_array_size returns the number of elements in array. adr_array_get returns the index
element of array. The adr_data_t returned by adr_array_get is valid as long as the caller
retains its reference to array; if it is needed longer, the caller should take a hold on the
adr_data_t (see “adr_data_t Type” on page 32). If the index element of array has not been set,
the behavior of adr_array_get is undefined.

The following functions modify arrays:

int adr_array_add(adr_data_t *array, adr_data_t * value);

adr_array_add adds value to the end of array. As described in “adr_data_t Type” on page 32,
the caller's reference to value is transferred to the array. adr_array_add might need to allocate
memory and can therefore fail. When adr_array_add succeeds, it returns 0. When
adr_array_add fails, it will return 1 and array will be marked invalid. For more information, see
“Validating adr_data_t Values” on page 39.

void adr_array_remove(adr_data_t *array, int index);

adr_array_remove removes the index element from array. The array's reference count on the
element at index is released, possibly resulting in its deallocation. All elements following index
in array are shifted to the next lower position in the array, for example, element index+1 is
moved to index. The behavior of adr_array_remove is undefined if index is greater than or
equal to the size of array as returned by adr_array_size.

int adr_array_vset(adr_data_t *array, int index, adr_data_t * value);

adr_array_vset sets the index element of array to value. If an element was previously at index,
the reference on that element held by the array is released. adr_array_vset may need to
allocate memory and can therefore fail. When adr_array_vset succeeds, it returns 0. When
adr_array_vset fails, it will return 1 and array will be marked invalid. For more information,
see “Validating adr_data_t Values” on page 39.

Data Management

Remote Administration Daemon Developer Guide • October 201238

Manipulating the Structure of a adr_data_t Type
The primary interface for accessing a adr_data_t structure is adr_struct_get:

adr_data_t *adr_struct_get(adr_data_t *struct, const char *field);

adr_struct_get returns the value of the field named field. If the field is nullable and has no
value or if the field hasn't been given a value (that is the structure was incompletely initialized),
adr_struct_get returns NULL. The adr_data_t returned by adr_struct_get is valid as long as
the caller retains its reference to struct. If it is needed longer the caller should take a hold on
the adr_data_t. If struct does not have a field named field, the behavior of adr_struct_get is
undefined.

The primary interface for writing to a adr_data_t structure is adr_struct_set:

void adr_struct_set(adr_data_t *struct, const char *field, adr_data_t *value);

adr_struct_set writes value to the field named field. It If field previously had a value, the
reference on that value held by the structure is released. If struct does not have a field named
field, or if the type of value does not match that of the specified field the behavior of
adr_struct_set is undefined.

Validating adr_data_t Values
libadr provides a rich environment for examining and manipulating typed data. However,
unlike C's native typing system, the compiler is unaware of libadr type relationships and is
therefore unable to perform static type-checking at compile time. All type checking must be
performed at runtime.

The most useful of the type-checking tools provided by libadr is adr_data_verify:

boolean_t adr_data_verify(adr_data_t *data, adr_type_t *type, boolean_t recursive);

adr_data_verify takes a adr_data_t to type-check and a adr_type_t to type-check against, H
can be instructed to check only the adr_data_t data or data and the transitive closure of every
adr_data_t it references. adr_data_verify returns B_TRUE if data matches type, and B_FALSE

if not. If type is NULL, data is tested against the type it claims to be. Although this method is not a
good idea for input validation, it can be useful for error handling.

In order for data to be verified as type type, the following must be true:

■ data must not be NULL.
■ data must claim to be of type type.
■ If type is an enumeration, data must be a value in that enumeration.
■ If data is an array, it must be not have been marked invalid by a failed adr_array_add or

adr_array_vset operation.

Data Management

Chapter 4 • libadr 39

■ If data is an array, it must have no NULL elements.
■ If data is an array and recursive is true, each element of the array must satisfy these criteria

given the array's element type.
■ If data is a structure, every non-nullable field must have a value, that is, be non-NULL.
■ If data is a structure and recursive is true, every non-NULL field value must satisfy these

criteria considering the field's type.

Obviously, adr_data_verify is useful when validating input from an untrusted source. A
second, less obvious application of adr_data_verify is as a powerful error-handling tool.
Suppose you are writing a function that needs to return a complex data value. A traditional way
of implementing it would be to check each call for failure individually, as shown in the following
example.

EXAMPLE 4–1 Traditional Error Handling

adr_data_t *tmp, *name, *result;

if ((name = adr_data_new_struct(name_type)) == NULL) {

/* handle failure */

}

if ((tmp = adr_data_new_string("Jack")) == NULL) {

/* handle failure */

}

adr_struct_set(name, "first", tmp);

if ((tmp = adr_data_new_string("O’Neill")) == NULL) {

/* handle failure */

}

adr_struct_set(name, "last", tmp);

if ((record = adr_data_new_struct(record_type)) == NULL) {

/* handle failure */

}

adr_struct_set(record, "name", name);

/* ...and so on */

This approach is difficult to implement and difficult to maintain. It is more likely to have a flaw
in it than the allocations it is testing are to fail. Instead, using adr_data_verify and the error
handling behaviors described in “adr_data_t Type” on page 32, the entire non-truncated
function can be reduced to the method shown in the following example.

EXAMPLE 4–2 Error Handling With adr_data_verify

adr_data_t *name = adr_data_new_struct(name_type);

adr_struct_set(name, "first", adr_data_new_string("Jack"));
adr_struct_set(name, "last", adr_data_new_string("O’Neill"));
adr_data_t *record = adr_data_new_struct(record_type);

adr_struct_set(record, "name", name);

adr_struct_set(record, "rank", adr_data_new_enum_byname("COLONEL"));
adr_struct_set(record, "l_count", adr_data_new_integer(2));

if (!adr_data_verify(record, NULL, B_TRUE)) { /* Recursive type check */

adr_data_free(record);

return (NULL); /* NULL means something failed */

}

Data Management

Remote Administration Daemon Developer Guide • October 201240

EXAMPLE 4–2 Error Handling With adr_data_verify (Continued)

return (record); /* Non-NULL means success */

An important limitation to this technique is the possibility for structure fields to be nullable,
and the NULL indicating that the field has no value is indistinguishable from the NULL that
indicates that the allocation of that field's value failed. In such cases, explicitly testing each
nullable value's allocation is necessary. Even with such explicit checks, however, the net savings
in complexity can be substantial.

ADR Object Name Operations
libadr supports ADR object names by providing a adr_name_t type and a suite of routines for
creating and inspecting them. Consumers needing to operate on object names should include
the rad/adr_name.h header file:

#include <rad/adr_name.h>

This file contains definitions for all the ADR-name related functionality provided by libadr.

adr_name_t Type
The adr_name_t type represents an object name. The internal structure of an adr_name_t is
private. All operations on a adr_name_t are performed using accessor functions provided by
libadr. Like adr_data_t values, adr_name_t values are immutable and reference counted. The
following functions are provided for handling adr_name_t reference counts:

adr_name_t *adr_name_hold(adr_data_t *name);

void adr_name_rele(adr_name_t *name);

The reference count on the adr_name_t name is incremented with adr_name_hold. For
convenience, adr_name_hold returns name. Symmetrically, the reference count on the
adr_name_t name is decremented with adr_name_rele. When then last reference on an
adr_name_t is released, the name is freed; after calling adr_name_rele the caller must not
access name in any way. Neither adr_name_hold nor adr_name_rele can fail.

Creating adr_name_t Type
ADR names are composed of a domain and a set of key/value pairs. Two functions are provided
that take exactly those arguments and return an adr_name_t:

adr_name_t *adr_name_create(const char *domain, int count,

const char * const *keys, const char * const *values);

adr_name_t *adr_name_vcreate(const char *domain, int count, ...);

ADR Object Name Operations

Chapter 4 • libadr 41

Both forms take a domain argument, which should be a reverse-dotted domain name, and the
number of key/value pairs as count. The two differ in how the key/value values are
communicated. In the first form, adr_name_create, two char * arrays are provided, one for
keys and the other for values, as shown in the following example.

EXAMPLE 4–3 adr_name_create

const char *keys[] = { "key1", "key2" };

const char *values[] = { "value1", "value2" };

name = adr_name_create("com.example", 2, keys, values);

In the second form, adr_name_vcreate, keys and values are provided as alternating varargs.
The previous example written using adr_name_vcreate would look like the following example.

EXAMPLE 4–4 adr_name_vcreate

name = adr_name_vcreate("com.example", 2, "key1", "value1", "key2", "value2");

If either routine fails to create the adr_name_t, it will return NULL. All data provided to
adr_name_create is copied and can subsequently be modified or freed without affecting
existing adr_name_t types.

Sometimes, it is convenient to start with an existing ADR name and append additional
key/value pairs to form the desired name. For this situation, libadr provides “compose”
analogues to the previously described creation routines:

adr_name_t *adr_name_compose(const adr_name_t *name, int count,

const char * const *keys, const char * const *values);

adr_name_t *adr_name_vcompose(const adr_name_t *name, int count, ...);

These two functions behave the same as their corresponding adr_create_* routine except that
they take an adr_name_t instead of a domain. The resulting adr_name_t has the domain from
name, and merges the key/value pairs found on name with those provided as arguments. The
key/value arguments to the compose operations must not specify keys already present on name.

The adr_name_t name passed to the compose operations is not referenced by their return
values. In many cases, it will be used as an argument to these functions again and again. Unlike
adr_data_t allocation routines, adr_name_compose and adr_name_vcompose do not consume
the caller's reference to the provided name.

Inspecting adr_name_t Type
adr_name_t types are immutable, so all operations on them are read-only. The two most
common operations one needs to perform on an adr_name_t are obtaining the name's domain
and obtaining the value associated with a particular key.

const char *adr_name_domain(const adr_name_t *name);

const char *adr_name_key(const adr_name_t *name, const char *key);

ADR Object Name Operations

Remote Administration Daemon Developer Guide • October 201242

adr_name_domain returns name's reverse-dotted domain as a string. The string returned is part
of name and therefore must not be modified or freed, and must not be accessed after the caller's
reference on name has been released. Likewise, adr_name_key returns the value associated with
key. The string returned by adr_name_key is subject to the same restrictions as the return value
of adr_name_domain.

The two functions for comparing adr_name_t types are:

int adr_name_cmp(const adr_name_t *name1, const adr_name_t *name2);

boolean_t adr_name_match(const adr_name_t *name, const adr_name_t *pattern);

adr_name_cmp compares two adr_name_t types, returning 0 if the name1 and name2 are equal
(that is, if the two names have the same names and the same keys, and each key has the same
value on both names). It returns an integer less than 0 if name1 is less than name2, or and integer
greater than 0 if name1 is greater than name2.

adr_name_match is a pattern-matching operation. The adr_name_t pattern is treated as a
collection of attributes against which name is compared. adr_name_match returns B_TRUE if and
only if the domains of name and pattern are equal, and every key present in pattern is present in
name and has the same value. While normally an adr_name_t must have a domain and at least
one key/value pair, pattern is permitted to have no key/value pairs and an empty domain. An
empty pattern domain is considered a wildcard that matches any name domain.

String Representation
It is sometimes necessary to represent, either in human-readable output or in persistent storage,
an ADR object name as a string. libadr provides routines for converting to and from a
canonical string form.

adr_name_t *adr_name_fromstr(const char *str);

char *adr_name_tostr(const adr_name_t *name);

adr_name_fromstr takes a string and returns the corresponding adr_name_t. It behaves like an
allocation routine, as described in “Creating adr_name_t Type” on page 41. If the string isn't a
valid name, adr_name_fromstr returns NULL.

adr_name_tostr takes an adr_name_t and formats it in string form. The return value is
allocated using malloc and should be freed when the caller is done with it. adr_name_tostr will
return NULL if it is unable to allocate memory for its return value.

ADR Object Name Operations

Chapter 4 • libadr 43

API Management
libadr provides support for defining APIs in rad/adr_object.h. Defining an API is a complex
task. The only supported way to define an API is to do so in the ADR IDL and to generate the
definition using radadrgen.

The important type defined in rad/adr_object.h is type adr_object_t. While the constituent
pieces of an API definition should be considered implementation details, the end product, the
API itself, is of prime interest to the developer. You will never need to create or define an
adr_object_t, but when you encounter routines that operate on them, understanding what the
type represents is important.

radadrgen-Generated Definitions
Whether you are using libadr in a C-based client or as part of writing a rad server module, you
will need to understand the data definitions generated by radadrgen. Fortunately, the
definitions are the same in both environments.

Running radadrgen
radadrgen is instructed to produce definitions for C/libadrconsumers by using its -c option,
as shown in the following example.

EXAMPLE 4–5 Invoking radadrgen

$ radadrgen -c output_dir example.xml

The -c option produces two files, api_APINAME.h and api_APINAME_impl.c in the output_dir,
where APINAME is the value of the name attribute of the API document's api element.
api_APINAME_impl.c contains the implementation of the interfaces and data types defined by
the API. It should be compiled and linked with the software needing those definitions.

api_APINAME.h externs the specific symbols defined by api_APINAME_impl.c that consumers
will need to reference, and should be #included by those consumers. api_APINAME.h contains
no data definitions itself and may be included in as many places as necessary. The definitions
api_APINAME_impl.c are 100% data and are statically initialized. There are no initialization
functions to be called. Neither file should be modified.

For each derived type TYPE, whether enumeration or structure, defined in the API, a
adr_type_t named t__TYPE (two underscores) representing that type is generated and
externed by the header file. If an array of that type is used anywhere in the API, a adr_type_t
named t_array__TYPE (one underscore, two underscores) representing that array type is
generated and externed. For each interface INTERFACE defined in the file, an adr_object_t

named interface_INTERFACE is defined and externed.

API Management

Remote Administration Daemon Developer Guide • October 201244

EXAMPLE 4–5 Invoking radadrgen (Continued)

For each value VALUE of an enumeration named TYPE , a adr_data_t named e__TYPE_VALUE is
defined and externed. These adr_data_t values are marked as constants and are not affected by
adr_data_ref or adr_data_free.

Example radadrgen output
When radadrgen is run on the Example 3–10 given in the ADR chapter two files result. One,
api_example_impl.c, holds the implementation of the GrabBag interface and data types it
depends on, and should be simply be compiled and linked with the GrabBag consumer. The
other, api_example.h, exposes only the relevant symbols defined by api_example_impl.c and
should be included by consumers of the GrabBag interface and its related types as shown in the
following example.

EXAMPLE 4–6 Sample radadrgen-Generated C Header File

#include <rad/adr.h>

#include <rad/adr_object.h>

extern adr_type_t t__Mood;

extern adr_data_t e__Mood_IRREVERENT;

extern adr_data_t e__Mood_MAUDLIN;

extern adr_type_t t__SqrtError;

extern adr_type_t t__StringInfo;

extern adr_type_t t__MoodStatus;

extern adr_object_t interface_GrabBag;

The function of api_GrabBag is discussed later in this document, but the purpose of the other
definitions in this file should be clear. A consumer needing to create a MoodStatus structure
indicating the mood is IRREVERENT and has changed would issue the instructions shown in
the following example.

EXAMPLE 4–7 Consuming radadrgen-Generated Definitions

status = adr_data_new_struct(&t__MoodStatus);

adr_struct_set(status, "mood", e__Mood_IRREVERENT);

/* adr_struct_set(status, "mood", adr_data_new_enum_byname(&t__Mood, "IRREVERENT")); */

adr_struct_set(status, "changed", adr_data_new_boolean(B_TRUE));

if (!adr_data_verify(status, NULL, B_TRUE)) {

...

In addition to showing how to use the type definitions, this example also illustrates the multiple
ways of referencing an enumerated value. Using the defined symbols is faster and can be
checked by the compiler. The commented-out line uses adr_data_new_enum_byname which
offers flexibility that could be useful in some situations but necessarily defers error checking

radadrgen-Generated Definitions

Chapter 4 • libadr 45

until runtime. For example, if the programmer mistyped the value “IRREVERENT”, it would
not be detected until the code was run. Obviously, using the enumerated value symbols when
possible is preferable.

radadrgen-Generated Definitions

Remote Administration Daemon Developer Guide • October 201246

Client Libraries

rad provides support for three client language environments: Java/JMX, Python, and C.

Java/JMX Client

Connecting to the rad Server
Connections to a rad server in Java are made through JMX. A JMX connection is established
with the following:
■ A javax.management.remote.JMXService URL that identifies the protocol to be used, and

a host, port, and path where appropriate
■ A Map<String, Object> of protocol-specific options where appropriate

Several protocols for connecting to a rad server are supported and are defined in the
com.oracle.solaris.rad.jmx class. Unless explicitly mentioned, a host, port, path, or options
is not applicable.

These protocols are:

RadConnector.PROTOCOL_UNIX
A local UNIX domain socket connection. The path is the fully qualified name of the socket.

EXAMPLE 5–1 RadConnector.PROTOCOL_UNIX

JMXServiceURL url = new JMXServiceURL(RadConnector.PROTOCOL_UNIX,

"", 0, "/system/volatile/rad/radsocket");
JMXConnector connector = JMXConnectorFactory.connect(url);

RadConnector.PROTOCOL_TCP
A local/remote TCP connection. A host and/or port may be specified.

5C H A P T E R 5

47

EXAMPLE 5–2 RadConnector.PROTOCOL_TCP

JMXServiceURL url = new JMXServiceURL(RadConnector.PROTOCOL_TCP,

"myhost", 0);

JMXConnector connector = JMXConnectorFactory.connect(url);

RadConnector.PROTOCOL_TLS
A local/remote TLS connection. A host and/or port may be specified.

Expected parameters:

RadConnector.KEY_TLS_TRUSTSTORE (required)
The full path to a local rad truststore file

RadConnector.KEY_TLS_TRUSTPASS (required)
The password for the local rad truststore

RadConnector.KEY_TLS_RADMANAGER (required)
An instance of com.oracle.solaris.rad.RadTrustManager for key management

EXAMPLE 5–3 RadConnector.PROTOCOL_TLS

Map<String, Object> env = new HashMap<String, Object>();

env.put(RadConnector.KEY_TLS_TRUSTSTORE, "/etc/myapp/truststore");
env.put(RadConnector.KEY_TLS_TRUSTPASS, "trustpass");

JMXServiceURL url = new JMXServiceURL(

RadConnector.PROTOCOL_TLS, host, 0);

JMXConnector connector = JMXConnectorFactory.newJMXConnector(url, null);

for (;;) {

RadTrustManager mtm = new RadTrustManager();

env.put(RadConnector.KEY_TLS_RADMANAGER, mtm);

try {

connector.connect(env);

break;

} catch (IOException e) {

X509Certificate[] chain = mtm.getBadChain();

if (chain == null) {

throw e;

}

}

}

RadConnector.PROTOCOL_PRIVATE
A local connection to a rad instance private to this process, spawned when the connection is
established. The resulting rad communicates through its stdin/stdout.

Expected parameters:

Java/JMX Client

Remote Administration Daemon Developer Guide • October 201248

RadConnector.PRIVATE_ROOT (String, optional)
A full path to prefix the to each relatively named module in the
RadConnector.PRIVATE_MODULES parameter, if specified

RadConnector.PRIVATE_MODULES (String[], optional)
A list of modules to load, as with /usr/lib/rad/rad -M module

RadConnector.PRIVATE_AUXARGS (String[], optional)
Additional arguments to pass to the spawned rad instance

EXAMPLE 5–4 RadConnector.PROTOCOL_PRIVATE

Map<String, Object> env = new HashMap<String, Object>();

String[] auxargs = { "-d", "-e", "30" };

String[] modules = { "mod_usermgmt.so", "mod_nameservice.so" };

env.put(RadConnector.PRIVATE_AUXARGS, auxargs);

env.put(RadConnector.PRIVATE_MODULES, modules);

env.put(RadConnector.PRIVATE_ROOT, "/usr/share/modules");

JMXServiceURL url = new JMXServiceURL(

RadConnector.PROTOCOL_PRIVATE, "", 0);

JMXConnector connector = JMXConnectorFactory.newJMXConnector(url, env);

RadConnector.PROTOCOL_ZONESBRIDGE
A connection to a non-global zone's local UNIX rad instance, through an existing local or
remote rad connection to its global zone. The name of the non-global zone is specified as the
host. The non-global zone user is specified as the path.

Expected parameters:

RadConnector.KEY_ZONESBRIDGE_MXBEAN

(com.oracle.solaris.rad.zonesbridge.IOMXBean, required)

An IOMXBean from an existing rad connection to the global zone, retrieved with a domain
"com.oracle.solaris.rad.zonesbridge" and a "type=IO" key/value pair.

EXAMPLE 5–5 RadConnector.PROTOCOL_ZONESBRIDGE

// Create a connection to some host

MBeanServerConnection mbsc = ...

ObjectName zioName = new ObjectName(

"com.oracle.solaris.rad.zonesbridge", "type", "IO");
IOMXBean zio = JMX.newMXBeanProxy(mbsc, zioName, IOMXBean.class);

// The zone to connect to

String zone = "nerd-vpn";

// The non-global-zone user, or "" to connect as root

String zoneUser = "talley";

Java/JMX Client

Chapter 5 • Client Libraries 49

EXAMPLE 5–5 RadConnector.PROTOCOL_ZONESBRIDGE (Continued)

// Create a connection to the non-global zone on the connected host

JMXServiceURL zUrl = new JMXServiceURL(

RadConnector.PROTOCOL_ZONESBRIDGE, zone, 0, "/" + zoneUser);

Map<String, Object> env = new HashMap<String, Object>();

env.put(RadConnector.KEY_ZONESBRIDGE_MXBEAN, zio);

JMXConnector connector = JMXConnectorFactory.connect(zUrl, env);

radadrgen Usage
In the Java/JMX environment, elements declared in the module specification are translated to
Java classes and interfaces. The tool that does this translation is /usr/bin/radadrgen:

/usr/bin/radadrgen [-N] -j dir [-i] spec.xml

The Java classes and interfaces generated by radadrgen are as follows, where package is
determined from the <api> name or a supplied pragma:

Element radadrgen-Generated Class Description

<interface> package.interfaceMXBean MXBean interface, implemented by object returned by the
rad server

<struct> package.struct struct interface

package.structImpl struct implementation (if -i is used)

<union> package.union union interface

package.unionImpl union implementation

<enum> package.enum enum class

See the section on object naming for details.

Enums
For example, suppose you have the rad module specification example.xml:

<api xmlns="http://xmlns.oracle.com/radadr"
name="com.example.foo">

<enum name="Color">
<value name="Red" />

<value name="Green" />

Java/JMX Client

Remote Administration Daemon Developer Guide • October 201250

<value name="Blue" />

</enum>

...

</api>

Calling /usr/bin/radadrgen -j dir example.xml generates a native Java enum class:

package com.example.foo;

public enum Color {

Red,

Green,

Blue,

}

Structured Types
Adding a <struct> to the module API produces a Java interface that models the structured
type. For example:

<struct name="Person">
<field type="string" name="name" />

<field type="integer" name="age" />

<field typeref="Color" name="favoriteColor" />

</struct>

resulting Java interface:

package com.example.foo;

public interface Person {

String getName();

int getAge();

Color getFavoriteColor();

}

If the -i is also passed to radadrgen, an implementation of the Person interface is also
generated:

package com.example.foo;

public class PersonImpl implements Person {

private String name_;

private int age_;

private Color favoriteColor_;

public PersonImpl() {

}

public PersonImpl(String name, int age, Color favoriteColor) {

name_ = name;

age_ = age;

favoriteColor_ = favoriteColor;

}

Java/JMX Client

Chapter 5 • Client Libraries 51

public String getName() {

return name_;

}

public int getAge() {

return age_;

}

public Color getFavoriteColor() {

return favoriteColor_;

}

public void setName(String arg) {

name_ = arg;

}

public void setAge(int arg) {

age_ = arg;

}

public void setFavoriteColor(Color arg) {

favoriteColor_ = arg;

}

}

This process can be useful in client code to quickly create and use a basic object that implements
a structured type's interface.

Unions
When adding a discriminated union to a module API, radadrgen produces a Java interface that
models the union. For example:

Discriminated Union:

<union name="ColorData" typeref="Color">
<arm value="Red" type="string" />

<arm value="Green" type="integer" />

<arm value="Blue" type="float" />

</union>

Resulting Java interface:

package com.example.foo;

public interface ColorData {

Color getArm();

String getData_Red();

Integer getData_Green();

Float getData_Blue();

...

}

Java/JMX Client

Remote Administration Daemon Developer Guide • October 201252

To use a union, the getArm() method is first called to determine which of the union arms is
active. Based on the return value of that method, the appropriate getData_*() method can be
called to get the data encapsulated in the union.

To create a union, the generated Java interface also includes several static convenience classes,
as shown in the following example.

public interface ColorData {

...

static class arm_Red extends ColorDataImpl {

private String armdata_;

public arm_Red(String armdata) {

super(Color.Red);

armdata_ = armdata;

}

@Override

public String getData_Red() { return armdata_; }

}

static class arm_Green extends ColorDataImpl {

...

}

static class arm_Blue extends ColorDataImpl {

...

}

}

These inner classes provide a quick way to quickly create and use a basic object that implements
the generated union interface for a given union arm.

Interfaces
Interfaces are the reason that modules exist. For an <interface> added to a module,
radadrgen produces a Java MXBean interface. For example:

Interface:

<interface name="Population">
<property name="groupName" access="rw" type="string"/>
<property name="people" access="ro">
<list typeref="Person" />

</property>

<method name="add">
<argument typeref="Person" name="person" />

</method>

</interface>

Resulting Java MXBean interface:

package com.example.foo;

Java/JMX Client

Chapter 5 • Client Libraries 53

public interface PopulationMXBean {

String getgroupName();

void setgroupName(String groupName);

java.util.List<Person> getpeople();

void add(Person person);

}

This MXBean is implemented by the objects returned by the rad server:

// Retrieve the Population object

ObjectName oName = new ObjectName("com.example.foo",
"type", "Population");

PopulationMXBean pop = JMX.newMXBeanProxy(mbsc,

oName, PopulationMXBean.class);

// Access a property

List<Person> people = pop.getpeople();

// Call a method

pop.add(new PersonImpl("talley", Color.GREEN));

Caveats
Note the following cautions:

Caution – To eliminate the ambiguity inherent to the JMX ObjectName quoting rules, all key
values returned by interfaces that return ObjectNames are quoted by the JMX client connector
before being passed to the caller. For compatibility, the JMX client connector will accept object
names with unquoted key values.

Python Client

Modules
The rad Python implementation provides the modules described in this section to facilitate
client implementation.

client
Provides classes and methods which fully implement the rad protocol in Python.

Python Client

Remote Administration Daemon Developer Guide • October 201254

util
Provides an Authentication class and utility methods for connecting a Python client to rad.

rad.util RadAuth

A class which fetches and caches a handle to an authentication object along with some
convenience methods for manipulating it.

The following methods can be used to connect to a rad instance using variety of transports.

RadConnection connect_unix (string path ,

string locale);

RadConnection connect_private (string list modules ,

boolean debug ,

string map env ,

string root ,

string list auxargs ,

string locale);

RadConnection connect_tls (string host ,

integer port ,

string locale);

RadConnection connect_zone(RadConnection rc ,

string zone ,

string user ,

string locale);

The resulting RadConnection can be used to:

■ Locate objects
■ Invoke object methods
■ Read or write object properties
■ Subscribe or unsubscribe to object events

EXAMPLE 5–6 Method Invocation

import rad.util

Connect to a local rad instance.

with rad.util.connect_unix() as rc:

Obtain a remote reference to the desired target.

obj= rc.get_object_s("com.example", [("type", "GrabBag")])

Invoke a method on the target.

res = obj.parseString("a test string")

Print the result.

print "length: " + str(res.length)

Python Client

Chapter 5 • Client Libraries 55

EXAMPLE 5–7 Attribute Access

import rad.util

Connect to a local rad instance.

with rad.util.connect_unix() as rc:

Obtain a remote reference to the desired target.

obj= rc.get_object_s("com.example", [("type", "GrabBag")])

Print the object attribute.

print "Mood: " + str(obj.mood)

EXAMPLE 5–8 Event Subscription

import rad.util

with rad.util.connect_unix() as rc:

Obtain a remote reference to the desired target.

obj= rc.get_object_s("com.example", [("type", "GrabBag")])

Subscribe to the "moodswings" event

rc.subscribe(obj, "moodswings")

while True:

Perform a (blocking) read of an event

ev_obj = obj.read_event()

print "Received Event:"
print "mood: " +str(ev_obj.mood)

print "changed: " +str(ev_obj.changed)

Python Client

Remote Administration Daemon Developer Guide • October 201256

Module Development

rad is modular in a variety of ways. Modules may deliver new protocols, new transports, or new
API definitions and implementations. This section focuses on new API definitions and
implementations.

API Definitions and Implementation
Although an API can be constructed manually, using radadrgen to generate the necessary type
definitions is much simpler . If requested, radadrgen can also generate stubs for the entry
points referenced by the generated types.

Entry Points and Generated Stubs
All entry points take a pointer to the object instance and a pointer to the internal structure for
the method or attribute. The object instance pointer is essential for distinguishing different
objects that implement the same interface. The internal structure pointer is theoretically useful
for sharing the same implementation across multiple methods or attributes, but isn't used and
may be removed.

Additionally, all entry reports return a conerr_t. If the access is successful, they should return
ce_ok. If the access fails due to a system error, they should return ce_system. If the access fails
due to an expected error which should be noted in the API definition, they should return
ce_object. If an expected error occurs and an error payload is defined, it may be set in *error.
The caller will unref the error object when it is done with it.

■ A method entry point has the type meth_invoke_f:

typedef conerr_t (meth_invoke_f)(struct rad_instance *i, struct adr_method *m,

adr_data_t **result, adr_data_t **args, int count, adr_data_t **error);

args is an array of count arguments.

Upon successful return, *result should contain the return value of the method, if any.

6C H A P T E R 6

57

The entry point for a method named METHOD in interface INTERFACE is named
interface_INTERFACE_invoke_METHOD.

■ An attribute read entry point has the type attr_read_f:

typedef conerr_t (attr_read_f)(struct rad_instance *i, struct adr_attribute *a,

adr_data_t **value, adr_data_t **error);

Upon successful return, *value should contain the value of the attribute, if any.

The read entry point for an attribute named ATTR in interface INTERFACE is named
interface_INTERFACE_read_ATTR.

■ An attribute write entry point has the type attr_write_f:

typedef conerr_t (attr_write_f)(struct rad_instance *i, struct adr_attribute *a,

adr_data_t *newvalue, adr_data_t **error);

newvalue points to the new value. If the attribute is nullable, newvalue can be NULL.

The write entry point for an attribute named ATTR in interface INTERFACE is named
interface_INTERFACE_write_ATTR.

rad explicitly checks the types of all arguments passed to methods and all values written to
attributes. Stub implementations can assume that all data provided is of the correct type. Stub
implementations are responsible for returning valid data. Returning invalid data results in an
undefined behavior.

Global Variables
boolean_t rad_isproxy A flag to determine if code is executing in the main or

proxy rad daemon.

rad_container_t *rad_container The rad container that contains the object instance.

Module Registration
int _rad_init(void *handle);

int rad_module_register(void *handle, int version, rad_modinfo_t *modinfo);

A module must provide a _rad_init. This is called by the rad daemon when the module is
loaded and is a convenient point for module initialization including registration. Return 0 to
indicate that the module successfully initialized.

rad_module_register provides a handle, which is the handle provided to the module in the call
to _rad_init. This handle is used by the rad daemon to maintain the private list of loaded
modules. The version indicates which version of the rad module interface the module is using.
modinfo contains information used to identify the module.

API Definitions and Implementation

Remote Administration Daemon Developer Guide • October 201258

Instance Management
rad_instance_t *instance_create(adr_name_t *name, rad_object_type *type,

void *data, void (*)(void *)freef);

instance_create uses the supplied parameters to create a new instance, with name, of an
object of type. data is the user data to store with the instance the freef function is a callback
which will be called with the user data when the instance is removed. If the function fails, it
returns NULL. Otherwise, a valid instance reference is returned. Note that you do not have to call
instance_hold on a newly created instance, because the reference count is initialized to 1.

rad_instance_t *instance_hold(rad_instance_t *instance);

instance_hold increments the reference count on instance.

void instance_rele(rad_instance_t *instance);

instance_rele decrements the reference count on instance. If the count reaches 0, then the
instance is destroyed.

adr_data_t *instance_getname(rad_instance_t *instance);

instance_getname returns a adr_data_t * containing the name of the instance.

void * instance_getdata(rad_instance_t *instance);

instance_getdata returns the user data (supplied in instance_create) of the instance.

void instance_notify (rad_instance_t *instance, const char *event, long sequence,

adr_data_t *data);

instance_notify generates an event on the supplied instance. The seq is supplied in the event
as the sequence number and the payload of the event is provided in data.

Container Interactions
conerr_t cont_insert(rad_container_t *container, rad_instance_t *instance,

long long id);

conerr_t cont_insert_singleton(rad_container_t *container, adr_name_t *name,

rad_object_t *object);

Create a instance, rad_instance_t, using the supplied name and object and then insert into
container. If the operation succeeds, ce_ok is returned.

conerr_t cont_insert_singleton_id(rad_container_t *container, adr_name_t *name,

rad_object_t *object, long long id);

API Definitions and Implementation

Chapter 6 • Module Development 59

As cont_insert_singleton_id but with the ability to specify an id for the created instance.
Returns ce_ok on success.

void cont_remove(rad_container_t *container, rad_instance_t *instance);

Remove the instance from the container.

conerr_t cont_register_dynamic(rad_container_t *container, adr_name_t *pattern,

rad_dyn_list_t listf, rad_dyn_lookup_t lookupf, void *arg);

Register a dynamic container instance manager. The container defines the container in which
the instances will be managed. The pattern defines the name filter for which this instance
manager is responsible.

A typical pattern would define the type of the instance which are managed. For example, zpat =
adr_name_vcreate (DOMAIN, 1, "type", "Zone") would be responsible for managing all
instances with a type of "Zone". listf is a user-supplied function which is invoked when
objects with the matching pattern are listed. lookupf is a user-supplied function which is
invoked when objects with the matching pattern are looked up. arg is stored and provided in the
callback to the user functions.

Logging

Function Description

void rad_log(rad_logtype_t type,

const char * format, ...);

Log a message with type and format to the
rad log. If the type is a lower level than the
rad logging level, then the message is
discarded.

void rad_log_alloc() Log a memory allocation failure with log
level RL_FATAL.

rad_logtype_t rad_get_loglevel() Return the logging level.

Using Threads

Function Description

void *rad_thread_arg(rad_thread_t *tp); Return the arg referenced by the tp.

API Definitions and Implementation

Remote Administration Daemon Developer Guide • October 201260

Function Description

void rad_thread_ack(rad_thread_t *tp,

rad_moderr_t error);

This function is intended to be used
from a user function previously supplied
as an argument to rad_thread_create.
It should not be used in any other
context.

Acknowledge the thread referenced by
tp. This process enables the controlling
thread, from which a new thread was
created using rad_thread_create, to
make progress. The error is used to
update the return value from
rad_thread_create and should return
rm_ok for success.

rad_moderr_t rad_thread_create(rad_threadfp_t fp,

void *arg);

Create a thread to run fp. This function
will not return until the user function
(fp) calls rad_thread_ack. arg is
stored and passed into fp as a member
of the rad_thread_t data. It can be
accessed using rad_thread_arg.

rad_moderr_t rad_thread_create_async(

rad_thread_asyncfp_t fp, void *arg);

Create a thread to run fp. arg is stored
and passed into fp.

Synchronization

Function Description

void rad_mutex_init(pthread_mutex_t *mutex); Initialize a mutex. abort() on failure.

void rad_mutex_enter(pthread_mutex_t *mutex); Lock a mutex. abort() on failure.

void rad_mutex_exit(pthread_mutex_t *mutex); Unlock a mutex. abort() on failure.

void rad_cond_init(pthread_cond_t *cond); Initialize a condition variable, cond.
abort(), on failure.

Subprocesses

Function Description

exec_params_t *rad_exec_params_alloc Allocate a control structure for
executing a subprocess.

API Definitions and Implementation

Chapter 6 • Module Development 61

Function Description

void rad_exec_params_free(exec_params_t *params); Free a subprocess control structure,
params.

void rad_exec_params_set_cwd(exec_params_t *params,

const char *cwd);

Set the current working directory, cwd,
in a subprocess control structure,
params.

void rad_exec_params_set_env(exec_params_t *params,

const char **envp);

Set the environment, envp, in a
subprocess control structure, params.

void rad_exec_params_set_loglevel(

exec_params_t *params, rad_logtype_t loglevel);

Set the rad log level, loglevel, in a
subprocess control structure, params.

int rad_exec_params_set_stdin(exec_params_t *params,

int fd);

Set the stdin file descriptor, fd, in a
subprocess control structure, params.

int rad_exec_params_set_stdout(exec_params_t *params,

int fd);

Set the stdout file descriptor, fd, in a
subprocess control structure, params.

int rad_exec_params_set_stderr(exec_params_t *params,

int fd);

Set the stderr file descriptor, fd, in a
subprocess control structure, params.

int rad_forkexec(exec_params_t *params,

const char **argv, exec_result_t *result);

Use the supplied subprocess control
structure, params, to fork and execute
(execv) the supplied args, argv. If result
is not NULL, it is updated with the
subprocess pid and file descriptor
details.

int rad_forkexec_wait(exec_params_t *params,

const char **argv, int *status);

Use the supplied subprocess control
structure, params, to fork and execute
(execv) the supplied args, argv. If status
is not NULL, it is updated with the exit
status of the subprocess. This function
will wait for the subprocess to terminate
before returning.

int rad_wait(exec_params_t *params,

exec_result_t *result, int *status);

Use the supplied subprocess control
structure, params, to wait for a previous
invocation of rad_forkexe to complete.
If result is not NULL, it is updated with
the subprocess pid and file descriptor
details. If status is not NULL, it is updated
with the exit status of the subprocess.
This function will wait for the
subprocess to terminate before
returning.

API Definitions and Implementation

Remote Administration Daemon Developer Guide • October 201262

Utilities
void *rad_zalloc(size_t size);

Return a pointer to a zero-allocated block of size bytes.

char *rad_strndup(char *string,

size_t length);

int rad_strccmp(const char * zstring,

const char * cstring,

size_t length);

int rad_openf(const char *format,

int oflag,

mode_tmode,

...);

FILE *rad_fopenf(const char *format,

mode_tmode,

...);

Locales

Function Description

int rad_locale_parse(const char *locale,

rad_locale_t **rad_locale);

Update rad_locale with locale details
based on locale. If locale is NULL, then
attempt to retreive a locale based on the
locale of the rad connection. Returns 0
on success.

void rad_locale_free(rad_locale_t *rad_locale); Free a locale, rad_locale, previously
obtained with rad_locale_parse.

Transactional Processing
There is no direct support for transactional processing within a module. If a transactional
model is desirable, then it is the responsibility of the module creator to provide the required
building blocks, start_transaction, commit, rollback, and other related processes.

Asynchronous Methods and Progress Reporting
Asynchronous methods and progress reporting is achieved using threads and events. The
pattern is to return a token from a synchronous method invocation which spawns a thread to
do work asynchronously. This worker thread is then responsible for providing notifications to
interested parties events.

API Definitions and Implementation

Chapter 6 • Module Development 63

Example:

An interface has a method which returns a Task object. The method is called installpkg and
takes one argument, the name of the package to install.

Task installpkg(string pkgname);

The Task instance returned by the method, contains enough information to identify a task.
Prior to invoking installpkg, the client subscribes to a task-update event. The worker thread is
responsible for issuing events about the progress of the work. These events contain information
about the progress of the task.

In a minimal implementation, the worker thread would issue one event to notify the client that
the task was complete and what the outcome of the task was. A more complex implementation
would provide multiple events documenting progress and possibly also provide an additional
method that a client could invoke to interrogate the server for a progress report.

radNamespaces
Objects in the rad namespace can be managed either as a set of statically installed objects or as a
dynamic set of objects that are listed or created on demand.

Static Objects
rad_modapi.h declares two interfaces for statically adding objects to a namespace.

cont_insert() adds an object to the namespace. In turn, objects are created by calling
instance_create() with a name, a pointer to the interface the object implements, and a pointer
to object-specific callback data. For example:

i = instance_create("com.oracle.solaris.user:type=User,name=Kyle",
&interface_User_svr, kyle_data);

cont_insert(&rad_container, i, error_return);

cont_insert_singleton() is a convenience routine that creates an object instance for the
specified interface with the specified name and adds it to the namespace. The callback data is set
to NULL.

cont_insert_singleton(&rad_container,

"com.oracle.solaris.user:type=UserManager", &interface_UserManager_svr,

error_return);

radNamespaces

Remote Administration Daemon Developer Guide • October 201264

radModule Linkage
Each module is required to provide a function, _rad_init(), for linkage and identification
purposes. This function is called before any other function in the module. It is used to initialize
the module and register itself with rad.

Note – Within _rad_init(), modules can test the rad_isproxy variable to determine whether
this routine is running in the main rad (proxy) daemon.

When rad_isproxy is B_TRUE, modules that depend on running as the authenticated user in the
rad slave should return immediately from _rad_init() without further initialization. Modules
that do not perform any user-specific or restricted operations should proceed with
initialization.

When rad_isproxy is B_FALSE, the module is being initialized in the slave.

EXAMPLE 6–1 Module Initialization and Registration

#include <rad/rad_modapi.h>

static rad_modinfo_t modinfo = {"usermgr", "User Management Module"};

int

_rad_init(void *handle)

{

if (rad_module_register(handle, RAD_MODVERSION, &modinfo) == -1)

return (-1);

/* This module must be run as the authenticated user */

if (rad_isproxy)

return (0);

(void) cont_insert_singleton(rad_container, adr_name_fromstr(

"com.oracle.solaris.user:type=UserManager"),
&interface_UserMgr_svr);

return (0);

}

radModule Linkage

Chapter 6 • Module Development 65

66

rad Best Practices

This chapter provides guidance when using rad. The guidance material is grouped around the
following topics.
■ When to use rad?
■ How to use rad?

When To Use rad?
rad is designed to provide remote administrative interfaces for operating system
components/sub-systems. Such interfaces support the distributed administration of systems
and greatly increase the abilities of system administrators to support large installations.

It is not intended to be a general purpose mechanism for building distributed applications,
many alternative facilities, for example, RPC, RMI, CORBA, and MPI exist for such
applications.

How To Use rad?
This section contains specific guidance on how to use rad.

API Guidelines
Designing a rad API requires judgement and the application of domain knowledge.

Target Audience
The users of the API fall into two broad categories:
■ Administrators
■ Developers

7C H A P T E R 7

67

Unfortunately, accommodating the desires of consumers in these two categories within one
interface is difficult. The first group desire task-based APIs which match directly onto
well-understood and defined administrative activities. The second group desire detailed,
operation-based interfaces which may be aggregated to better support unusual or niche
administrative activities.

For any given subsystem, you can view existing command-line utilities (CLIs) and libraries
(APIs) as expressions of the rad APIs which are required. The CLIs represent the task-based
administrative interfaces and the APIs represent the operation-based developer interfaces.

The goal in using rad is to provide interfaces that address the lowest-level objectives of the
target audience. If targeting administrators (task-based), this effort could translate to matching
existing CLIs. If targeting developers, this effort could mean significantly less aggregation of the
lower-level APIs.

Legacy Constraints
Many subsystems present incomplete interfaces to the world. Some CLIs contain processing
capabilities that are not accessible from an existing API. This situation is another motivation for
providing task-based administrative interfaces before introducing more detailed interfaces.

Such constraints must be considered in the rad API design. Consider migrating functionality
from the CLI into the API to facilitate the creation of the new interface. Also consider
presenting an interface which wraps the CLI and takes advantage of the existing functionality.
Do not simply duplicate the functionality in the new rad interface, which would introduce
redundancy and significantly increase maintenance complexity. One particular area where rad
interface developers need to be careful is to avoid duplication around parameter checking and
transformation. This duplication is likely to be a sign that existing CLI functionality should be
migrated to an API.

rad modules must be written in C. Some subsystems, for instance, those written in other
languages, have no mechanism for a C module to access API functionality. In these cases, rad
module creators must access whatever functionality is available in the CLI or make a potentially
significant engineering effort to access the existing functionality, for example, rewriting existing
code in C, embedding a language interpreter in their C module, and the like.

Conservative Design
Designing a rad interface is very similar to designing a library interface. The same general
principles of design apply: be conservative, start small, consider evolutionary paths and
carefully consider commitment levels.

Once an interface is established, the use of versioning and considered, incremental
improvements will expand the functionality.

How To Use rad?

Remote Administration Daemon Developer Guide • October 201268

Component Guidelines
This section presents specific design advice on the most significant components of a rad
module. Naming is addressed separately in “Naming Guidelines” on page 70

API Guidelines
APIs are the primary deliverable of a rad module. They are a grouping of interfaces, events,
methods and properties which enable a user to interact with a subsystem.

When exposing the elements of a subsystem consider carefully how existing functions can be
grouped together to form an interface. Imperative languages, such as C, tend to pass structures
as the first argument to functions, which provides a clear indicator as to how best to group
functions into APIs.

Method Guidelines
Methods provide mechanisms for examining and modifying administrative state.

Consider grouping together existing native APIs into aggregated rad functions which enable
higher order operations to be exposed.

Follow established good practice for RPC style development. rad is primarily for remote
administration, and avoiding excessive network load is good practice.

Property Guideline
Make sure to define an <error> element with properties which can be modified.

Event Guidelines
The module is responsible for providing a sequence number. Monotonically increasing
sequence numbers are recommended for use, since these will be of most potential use to any
clients.

Consider providing mechanisms for allowing a client to throttle event generation.

Carefully design event payloads to minimize network load.

Don't try to replicate the functionality of network monitoring protocols such as SNMP.

Module Location: Deciding between Proxy or Slave
Judicious use of the is_proxy variable enables you to control where a module is loaded for
execution: in the rad proxy or in a slave process.

A module should, by default, be loaded into a slave process unless the following conditions
apply:

How To Use rad?

Chapter 7 • rad Best Practices 69

■ Module performs self-authentication
■ Module is very simple and cannot fail fatally

Synchronous and Asynchronous Invocation
All method invocations in rad are synchronous. Asynchronous behavior can be obtained by
adopting a design pattern that relies on the use of events to provide notifications. Refer to
“Synchronization” on page 61 for more details.

Duplication
Do not duplicate code from existing CLIs. Instead, consider moving common code into a lower
library layer that can be shared by rad and the CLI.

Client Library Support
rad modules are designed to have a language agnostic interface. However, you might want to
provide additional language support through the delivery of a language-specific extension. This
type of deliverables should be restricted in use. The main reason for their existence is to help
improve the fit of an interface into a language idiom.

Naming Guidelines
When naming an API, interface, or object, module developers have broad leeway to choose
names that make sense for their modules. However, some conventions can help avoid pitfalls
that might arise when retrieving objects from the rad server.

Object Names
The domain portion of rad object names follows a reverse-dotted naming convention that
prevents collisions in rad's flat object namespace. This convention typically resembles a Java
package naming scheme:

com.oracle.solaris.rad.zfs

com.oracle.solaris.rad.zonesmgt

com.oracle.solaris.rad.usermgt

org.opensolaris.os.rad.ips

...

To distinguish a rad API from a native API designed and implemented for a specific language,
include a "rad." component in the API name.

With the goal of storing objects with names consumers would expect, APIs, and the domains of
the objects defined within them, should share the same name. This practice makes the mapping
between the two easily identifiable by both the module consumer and module developer.

With the same goal of simplicity, identifying an interface object is made easier by adhering to a
"type=interface" convention within the object name.

How To Use rad?

Remote Administration Daemon Developer Guide • October 201270

Applying both conventions, a typical API will look like the following example.

<api

xmlns="http://xmlns.oracle.com/radadr"
name="com.oracle.solaris.rad.zfs">

<interface name="ZPool">
<summary>

zpool administration

</summary>

...

Within the module, the API appears as follows:

int

_rad_init(void *handle)

{

...

adr_name_t *name =

adr_name_fromstr("com.oracle.solaris.rad.zfs:type=ZPool");
(void) cont_insert_singleton(rad_container, name, &interface_ZPool_svr);

On the consumer side (Python), the API appears as follows:

import rad.client

import rad.util

Create a connection

radconn = rad.util.connect_unix()

Retrieve a ZPool object

zpool_name = rad.client.Name("com.oracle.solaris.rad.zfs",
[("type", "ZPool")])

zpool = radconn.get_object(zpool_name)

Using this naming convention also precludes the need to specify a pragma to identify a package
when generating Java interfaces because radadrgen(1) uses the API name as the Java package
name by default.

Case
In an effort to normalize the appearance of like items across development boundaries, and to
minimize the awkwardness in generated language-specific interfaces, several case strategies
have been informally adopted.

Module The base of the API/domain name. For a module describing an interface
domain.prefix.base.xml, module spec files should be named base.xml, and the
resulting shared library mod_base.so.

Examples:
■ /usr/lib/rad/apis/zfs.xml

■ /usr/lib/rad/module/mod_zfs.so

How To Use rad?

Chapter 7 • rad Best Practices 71

API Reverse-dotted domain, all lowercase.

Examples:
■ com.oracle.solaris.rad.zfs

■ com.oracle.solaris.rad.zonemgt

Interface, struct, union,
enum

Non-qualified, camel case, starting with uppercase.

Examples:
■ Time

■ NameService

■ LDAPConfig

■ ErrorCode

Enum value and fallback Non-qualified, uppercase, underscores.

Examples:
■ CHAR

■ INVALID_TOKEN

■ REQUIRE_ALL

Interface property and
method, struct field, event

Non-qualified, camel case, starting with lowercase.

Examples:
■ count

■ addHostName

■ deleteUser

Language-Specific Considerations
Though ADR is language-neutral, certain environments might have conventions that place
additional constraints on interface design.

Currently known language-specific constraints:

■ JMX: Interface-defined method names that resemble derived method names

A JMX MXBean Proxy has a single namespace for both methods defined by the interface, and
derived methods used for accessing attributes defined by the interface. If a method defined by
the interface has a name and signature that is consistent with the JavaBeans-style naming of a
derived attribute-access method, then the Proxy will assume calls to it are attempts to access a
foo attribute on the JMX object and will fail. For example:

public void setFoo(String s);

public int getFoo();

public boolean isFoo();

This constraint is not a limitation of Java or of JMX but of the Proxy implementation. The
designer could choose not use the Proxy, or to use a Proxy implementation that does not have
this limitation.

How To Use rad?

Remote Administration Daemon Developer Guide • October 201272

API Design Examples
Combining the tools described so far in this document to construct an API with a known design
can be a challenge. Several possible solutions for a particular problem are often available. The
examples in this section illustrate the best practices described in previous sections.

User Management Example
Object/interface granularity is subjective. For example, imagine an interface for managing a
user. The user has a few modifiable properties:

TABLE 7–1 Example User Properties

Property Type

name string

shell string

admin boolean

The interface for managing this user might consist solely of a set of attributes corresponding to
the above properties. Alternatively, it could consist of a single attribute that is a structure
containing fields that correspond to the properties, possibly more efficient if all properties are
usually read or written together. The object implementing this might be named as follows:

com.example.users:type=TheOnlyUser

If instead of managing a single user you need to manage multiple users, you have a couple of
choices. One option would be to modify the interface to use methods instead of attributes, and
to add a "user" argument to the methods, for example:

setUserAttributes(username, attributes) throws UserError

attributes getUserAttributes(username) throws UserError

This example is sufficient for a single user, and provides support to other global operations such
as adding a user, deleting a user, getting a list of users and so on. You might want to give it a
more appropriate name, for example:

com.example.users:type=UserManagement

However, suppose there were many more properties associated with the user and many more
operations you would want to do with a user, for example, sending them email, giving them a
bonus and so on. As the server functionality grows, the UserManagement's API grows
increasingly cluttered. It would accumulate a mixture of global operation and per-user
operations, and the need for each per-user operation to specify a user to operate on, and specify
the errors associated with not finding that user, would start looking redundant.

API Design Examples

Chapter 7 • rad Best Practices 73

username[] listUsers()

addUser(username, attributes)

giveRaise(username, dollars) throws UserError

fire(username) throws UserError

sendEmail(username, message) throws UserError

setUserAttributes(username, attributes) throws UserError

attributes getUserAttributes(username) throws UserError

A cleaner alternative would be to separate the global operations from the user-specific
operations and create two interfaces. The UserManagement object would use the global
operations interface:

username[] listUsers()

addUser(username, attributes)

A separate object for each user would implement the user-specific interface:

setAttributes(attributes)

attributes getAttributes()

giveRaise(dollars)

fire()

sendEmail(message)

Note that if fire operates more on the namespace than the user, it should be present in
UserManagement where it would need to take a username argument.

Finally, the different objects would be named such that the different objects could be easily
differentiated and be directly accessed by the client:

com.example.users:type=UserManagement

com.example.users:type=User,name=ONeill

com.example.users:type=User,name=Sheppard

...

This example also highlights a situation where the rad server may not want to enumerate all
objects when a client issues a LIST request. Listing all users may not be particularly expensive,
but pulling down a list of potentially thousands of objects on every LIST call will not benefit the
majority of clients.

API Design Examples

Remote Administration Daemon Developer Guide • October 201274

rad Binary Protocol

In addition to supporting multiple transports, rad is capable of talking different protocols. The
default and sole protocol is a proprietary binary protocol designated rad. This appendix
documents version 1 of this protocol.

Overview
The rad protocol is a bidirectional binary protocol that operates over a single stream.
Communication in both directions takes the form of discrete messages. These messages are
framed using RPC record marking. For more information, see the “RECORD MARKING
STANDARD” section in the RPC standard.

The individual messages take the formats documented in this appendix. Even though RPC
record marking permits skipping messages of unknown format, both the client and the server
are free to immediately drop the connection when an invalid message is seen.

The rad protocol is built using XDR, so for simplicity and clarity, the XDR primitive type names
and syntax are used throughout this appendix. For example:

■ “FOO<>” — represents a variable-length array of FOOs, communicated as an unsigned int
containing the size followed by that number of FOOs.

■ “FOO[n]” — represents a fixed-length array of a predetermined size, communicated only as
the nFOOs.

■ “FOO *” — represents an optional value communicated as a boolean value followed by a
FOO if and only if the boolean value is true.

AA P P E N D I X A

75

http://www.ietf.org/rfc/rfc1831.txt
http://www.ietf.org/rfc/rfc1831.txt

Common Data Formats
The types and concepts that appear repeatedly throughout the rad protocol are described in this
section.

Operations
The various operations one can perform against the server are communicated with an
operation code.

TABLE A–1 OP-CODE Description

Field Name Length Type Description

op_code 4 int

operation code:

0

OC-INVOKE

1

OC-GETATTR

2

OC-SETATTR

3

OC-LOOKUP

4

OC-DEFINE

5

OC-LIST

6

OC-SUB

7

OC-UNSUB

Errors
Errors in the rad protocol are communicated by an error code, and optionally structured error
data.

Common Data Formats

Remote Administration Daemon Developer Guide • October 201276

TABLE A–2 ERROR-CODE Description

Field Name Length Type Description

error_code 4 int

error code:

0

EC-OK

1

EC-OBJECT

2

EC-NOMEM

3

EC-NOTFOUND

4

EC-PRIV

5

EC-SYSTEM

6

EC-EXISTS

7

EC-MISMATCH

8

EC-ILLEGAL

For object-specific errors, EC-OBJECT, the format of the structured data is defined by the object's
interface definition. For the remainder, save for EC-OK (which indicates success), the format is
defined during the initial connection handshake. See “Connection Initialization” on page 88.

Time
Times are represented in the rad protocol, as seconds and nanoseconds offset from the epoch
(January 1, 1970 UTC).

Note that the accuracy of such time data is determined by its context. In nearly all cases, the full
nanosecond precision is only relevant when compared to time data obtained from the same
host.

TABLE A–3 TIME-DATA

Field Name Length Type Description

secs 8 hyper Number of seconds

nsecs 4 int

Number of nanoseconds (0 ≤ nsec ≤
109)

Common Data Formats

Appendix A • rad Binary Protocol 77

Object Names
rad object names are structured, consisting of a domain and one or more key-value pairs. When
an object name or pattern needs to be represented in the rad protocol, this structure is flattened
to a canonical string format. This string format consists of the domain, followed by a colon (':'),
followed by comma-separated key-value pairs. Each key-value pair consists of the name,
followed by an equals sign ('='), followed by the value.

Because keys and values may contain the special characters '=' or ',', a quoting algorithm is
applied when constructing the string. The substitutions listed in the following table are applied
to keys and values.

TABLE A–4 Object Name Escaping

Plain Text Escaped Text

\ \S

, \C

= \E

Backslashes are found only as part of quoted characters, and commas and equals signs, when
present, always have their special meaning. Object names that use no special characters are
passed through unchanged. These facts can be used to simplify parsing or preprocessing of
string-formatted object names.

TABLE A–5 NAME-DATA

Field Name Length Type Description

name variable string<> Flattened object name

For example, an object name in the domain com.example with the following keys and values:

Key Value

directory C:\

first,last Doe,John

would be represented by the string com.example:directory=C:\S,first\Clast=Doe\CJohn.

Common Data Formats

Remote Administration Daemon Developer Guide • October 201278

ADR Data
Central to the rad protocol is the communication of data defined by ADR. Most ADR
primitives map directly to XDR types:

TABLE A–6 Primitive ADR to Wire Type Mapping

ADR Type Wire Type

boolean XDR boolean

integer XDR int

uinteger XDR unsigned int

long XDR hyper

ulong XDR unsigned hyper

float XDR float

double XDR double

string XDR string<>

opaque XDR opaque<>

secret XDR string<>

time TIME-DATA (see “Time” on page 77)

name NAME-DATA (see “Object Names” on page 78)

Optional ADR data of any type is represented as XDR optional data.

TABLE A–7 OPTIONAL-DATA Description

Field Name Length Type Description

data Varies ADR-DATA* Optional encoded data

Array data is communicated as an XDR array of the element data represented by an XDR
unsigned int whose value is the number of array elements followed by that number of element
data.

TABLE A–8 ARRAY-DATA Description

Field Name Length Type Description

elements Varies ADR-DATA<> Array elements

Common Data Formats

Appendix A • rad Binary Protocol 79

Structure data is communicated by communicating each structure field in the order they are
defined. This may consist of a mixture of nullable and non-nullable data.

TABLE A–9 STRUCT-DATA

Field Name Length Type Description

fields Varies ADR-DATA[n] Fixed-length array of structure fields (n =
type-defined field count)

Enumeration data is communicated as an XDR unsigned int whose value is the 1-based index
into the list of enumerated values, that is, 1 would be the first enumerated value, n would be the
nth enumerated value. A value of 0 represents the fallback value. For enumerations without a
fallback value, the 0 value is unused.

TABLE A–10 ENUM-DATA Description

Field Name Length Type Description

value 4 unsigned int 0 if fallback, 1-based index otherwise

Union data is communicated as an XDR unsigned int whose value is the 1-based index into the
list of union arms. A value of 0 represents the default arm. When a non-default arm is selected,
the arm is followed by that arm's data. When the default arm is selected, it is first followed by the
discriminant data value and then is followed by the default arm's data.

TABLE A–11 UNION-DATA (Non-Default) Description

Field Name Length Type Description

arm_index 4 unsigned int 1-based index into list of arms

arm_data Varies ADR-DATA Arm data

TABLE A–12 UNION-DATA (Default) Description

Field Name Length Type Description

arm_index 4 unsigned int 0

discriminant 4 ENUM-DATA | boolean Discriminant value

arm_data Varies ADR-DATA Arm data

Common Data Formats

Remote Administration Daemon Developer Guide • October 201280

ADR types
As discussed in “ADR Data” on page 79, the ADR data communicated by the rad protocol has a
structure determined by its type. Before that data can be communicated to the client, however,
the types themselves must be communicated.

For efficiency, type data is communicated using a system of type spaces and type references. A
type space is an array of type definitions that is referenced by a protocol-defined set of
consumers. A consumer referring to a type will use a type reference, which points to either a
primitive type or to an element of the type space.

Both type references and type spaces refer to the various types by using an integral type code.

Common Data Formats

Appendix A • rad Binary Protocol 81

TABLE A–13 TYPE-CODE

Field Name Length Type Description

type_code 4 int

Type code:

0

TC-VOID

1

TC-BOOLEAN

2

TC-INTEGER

3

TC-UINTEGER

4

TC-LONG

5

TC-ULONG

6

TC-FLOAT

7

TC-DOUBLE

8

TC-TIME

9

TC-STRING

10

TC-OPAQUE

11

TC-SECRET

12

TC-NAME

13

TC-ENUM

14

TC-ARRAY

15

TC-STRUCT

16

TC-UNION

A type reference consists of an XDR int whose value is one of the type constants listed in the
table. If the type is an enum, array, union, or struct, the type reference also includes an XDR
int whose value is an index into the current type space as listed in the following tables.

Common Data Formats

Remote Administration Daemon Developer Guide • October 201282

TABLE A–14 TYPEREF (Basic Type)

Field Name Length Type Description

type_code 4 TYPE-CODE A primitive type code

TABLE A–15 TYPEREF (Derived Type)

Field Name Length Type Description

type_code 4 TYPE-CODE TC-ENUM, TC-ARRAY, TC-STRUCT, or
TC-UNION

type_index 4 int Type space index

A type space is a topologically sorted array of type definitions. A derived type may reference
only derived types defined earlier in the type space. That is, a type reference used by the type at
index X may reference only a primitive type or a derived type at index less than X. Recursively
defined types are not supported.

Apart from a common distinguishing type code, each derived type is defined differently. Arrays
are the simplest. An array definition consists of only a reference to the element type.

TABLE A–16 ARRAY-TYPE

Field Name Length Type Description

type_code 4 TYPE-CODE TC-ARRAY

element_type Varies TYPEREF The element type

A structure type definition consists of a name and an array of field definitions. The order in
which the fields are specified in STRUCT-TYPE is the order used to serialize the fields in
STRUCT-DATA.

TABLE A–17 FIELD-TYPE

Field Name Length Type Description

name Varies string<> The field name

nullable 4 boolean Is the field value nullable?

type Varies TYPEREF The field type

Common Data Formats

Appendix A • rad Binary Protocol 83

TABLE A–18 STRUCT-TYPE

Field Name Length Type Description

type_code 4 TYPE-CODE TC-STRUCT

name Varies string<> The structure name

fields Varies FIELD-TYPE<> Ordered list of structure fields

A union type definition consists of a name, a reference to the discriminant type, optionally a
default arm specification, and an array of arm definitions. The arm index referenced by
UNION-DATA is an index into the array of arms defined by the corresponding UNION-TYPE.

TABLE A–19 ARM-TYPE

Field Name Length Type Description

value 4 ENUM-DATA | boolean The discriminant value that selects this arm

nullable 4 boolean Is the arm's value nullable?

type Varies TYPEREF The arm's type

TABLE A–20 UNION-TYPE (Without Default Arm)

Field Name Length Type Description

type_code 4 TYPE-CODE TC-UNION

name Varies string<> The union name

disc_type Varies TYPEREF The discriminant type

hasdefault 4 boolean False

arms Varies ARM-TYPE<> Ordered list of arms

TABLE A–21 UNION-TYPE (With Default Arm)

Field Name Length Type Description

type_code 4 TYPE-CODE TC-UNION

name Varies string<> The union name

disc_type Varies TYPEREF The discriminant type

hasdefault 4 boolean True

def_nullable 4 boolean Is the default arm value nullable?

def_type Varies TYPEREF The default arm type

Common Data Formats

Remote Administration Daemon Developer Guide • October 201284

TABLE A–21 UNION-TYPE (With Default Arm) (Continued)
Field Name Length Type Description

arms Varies ARM-TYPE<> Ordered list of arms

Lastly, an enum type definition consists of a name, an optional fallback value, and a list of
enumeration values. The value index referenced by ENUM-DATA is an index into the array of
values defined by the corresponding ENUM-TYPE.

TABLE A–22 VALUE-TYPE

Field Name Length Type Description

name Varies string<> The value's name

value 4 int The value's assigned value

TABLE A–23 ENUM-TYPE

Field Name Length Type Description

type_code 4 TYPE-CODE TC-ENUM

name Varies string<> The enum name

fb_name Varies string<> * The fallback value's name, if one exists

values Varies VALUE-TYPE<> Ordered list of values

The type space itself is an array. Each element is one of these four type definitions (ARRAY-TYPE,
STRUCT-TYPE, UNION-TYPE, or ENUM-TYPE).

TABLE A–24 TYPESPACE

Field Name Length Type Description

types Varies ?-TYPE<> Ordered list of types in the type space

Interface Definitions
The ultimate description of the interactions permitted with a particular object is its interface
definition. An interface definition contains many elements: an API name, a list of versioned
interface names the interface supports, and definitions of the interface's attributes, methods,
and events.

Each interface name has a set of stabilities and versions.

Common Data Formats

Appendix A • rad Binary Protocol 85

TABLE A–25 STABILITY-CODE

Field Name Length Type Description

stability_code 4 int

Stability code:

1

SC-PRIVATE

2

SC-UNCOMMITTED

3

SC-COMMITTED

TABLE A–26 VERSION-DATA

Field Name Length Type Description

stability 4 STABILITY-CODE Stability version applies to

major 4 int Major version number

minor 4 int Minor version number

TABLE A–27 INTERFACENAME-DATA

Field Name Length Type Description

interface_name Varies string<> Interface name

versions Varies VERSION-DATA<> Interface versions by stability

An attribute consists of a name, stability, various flags, a type, and separate, optional read and
write error types.

TABLE A–28 ATTRIBUTE-TYPE

Field Name Length Type Description

aname Varies string<> Attribute name

stability 4 STABILITY-CODE Stability

readable 4 boolean Is attribute readable?

writable 4 boolean Is attribute writable?

nullable 4 boolean Is attribute nullable?

type Varies TYPEREF Attribute type

read_error Varies TYPEREF * Error data on read, if applicable

Common Data Formats

Remote Administration Daemon Developer Guide • October 201286

TABLE A–28 ATTRIBUTE-TYPE (Continued)
Field Name Length Type Description

write_error Varies TYPEREF * Error data on write, if applicable

A method resembles an attribute. It has a name, stability, a result type, only a single optional
error type, and an array of argument definitions.

TABLE A–29 ARGUMENT-TYPE

Field Name Length Type Description

argname Varies string<> Argument name

nullable 4 boolean Is argument nullable?

type Varies TYPEREF Argument type

TABLE A–30 METHOD-TYPE

Field Name Length Type Description

mname Varies string<> Method name

stability 4 STABILITY-CODE Stability

nullable 4 boolean Is result nullable?

result_type Varies TYPEREF Result type

error Varies TYPEREF * Error data, if applicable

args Varies ARGUMENT-TYPE<> Arguments

An event consists only of a name, stability, and type.

TABLE A–31 EVENT-TYPE

Field Name Length Type Description

ename Varies string<> Method name

stability 4 STABILITY-CODE Stability

event_type Varies TYPEREF Event type

An interface definition combines all of the described elements.

Common Data Formats

Appendix A • rad Binary Protocol 87

TABLE A–32 INTERFACE-TYPE

Field Name Length Type Description

api_name Varies string<> API name (domain)

interfaces Varies INTERFACENAME-DATA<> Interface names and versions implemented

types Varies TYPESET<> Types used by interface definition

attributes Varies ATTRIBUTE-TYPE<> Interface attributes

methods Varies METHOD-TYPE<> Interface methods

events Varies EVENT-TYPE<> Interface events

Connection Initialization
Once a connection has been established between a client and server, a short synchronous
handshake initiates the rad protocol. The server begins by sending a SERVER-HELLO message.
This message specifies the minimum and maximum protocol versions (inclusive) recognized by
the server.

TABLE A–33 SERVER-HELLO

Field Name Length Type Description

protocol 3 string[3] “RAD”

min_ver 4 int Minimum supported version

max_ver 4 int Maximum supported version

The client then replies with a CLIENT-HELLO message specifying the version it wishes to use.
This version may not be less than the server's minimum version or greater than the server's
maximum version.

TABLE A–34 CLIENT-HELLO

Field Name Length Type Description

protocol 3 string[3] “RAD”

version 4 int Client-selected version

locale Varies string<256> Client locale

Part of the rad protocol is the communication of structured error data on request failures. For
consistency with the object-specific errors that server-side objects are permitted to return, the

Connection Initialization

Remote Administration Daemon Developer Guide • October 201288

errors returned by rad when requests fail for other reasons are also defined using ADR. After
the server receives and accepts a CLIENT-HELLO message, it replies with ERRORS to communicate
those type definitions.

TABLE A–35 ERRORS

Field Name Length Type Description

error_space Varies TYPESPACE Typespace containing error types

errors Varies TYPEREF<> Error types, starting with EC-NOMEM

The TYPEREFs refer to the types defined in the error_space TYPESPACE. The types define the
first error_count errors, starting from the first non object-specific error, EC-NOMEM. Any
errors for which types are not defined have type void.

At this point, the handshake is complete and normal client-server communication can occur.

Messages
Normal communication consists of an asynchronous exchange of messages: REQUESTs from the
client to the server, RESPONSEs from the server to the client, and EVENTs from the server to the
client.

A REQUEST is the rad equivalent of a low-level remote procedure call. It consists of a
client-selected, non-zero serial number, an operation code, and an opaque, operation-specific,
variable-length payload.

TABLE A–36 REQUEST

Field Name Length Type Description

serial 8 hyper Client-specified serial number

opcode 4 OP-CODE Operation code (see “Operations” on page 76)

payload Varies opaque<> Request payload

The server will respond to every REQUEST with a RESPONSE. A RESPONSE consists of the serial
number of the corresponding REQUEST, an error code, and a response payload. If REQUEST
succeeded, the error code will be EC-OK and the payload will contain the operation-defined
payload data. Otherwise, the error code will reflect the type of failure and the payload will
contain either the protocol-defined or object-defined error payload data.

Messages

Appendix A • rad Binary Protocol 89

TABLE A–37 RESPONSE

Field Name Length Type Description

serial 8 hyper Serial number of REQUEST

error 4 ERROR-CODE Error code (see “Errors” on page 76)

payload Varies opaque<> Response payload

The rad protocol does not require the client to wait for a RESPONSE before sending another
REQUEST. However, the server implementation might place limits on the number of outstanding
requests that can be handled simultaneously. A client with an outstanding REQUEST must
assume that a subsequent REQUEST will block until the RESPONSE from the outstanding REQUEST
is read.

A client may (through a REQUEST) subscribe to asynchronous event sources. When an event
occurs, the server will send an EVENT message to the client. An EVENT message will include the
object ID of the source object, the time of the event, the name of the event, and an event-specific
opaque payload. An EVENT message is distinguished from a RESPONSE by having a serial number
of 0.

TABLE A–38 EVENT

Field Name Length Type Description

serial 8 hyper 0

source 8 hyper ID of generating object

sequence 8 hyper Sequence number of event

timestamp 12 TIME-DATA Time of event

name Varies string<> Event name

payload Varies opaque<> Event payload

Operations
Each operation that a client can perform against a rad server has its own request and response
payloads. To facilitate processing without needing to fully decode the payload, these payloads
are communicated as variable-lengthed opaque data in the REQUEST and RESPONSE.

For consistency and flexibility, all ADR data referenced by these payloads is communicated as
OPTIONAL-DATA, which in turn is wrapped as opaque data.

Operations

Remote Administration Daemon Developer Guide • October 201290

TABLE A–39 PAYLOAD-DATA

Field Name Length Type Description

data Varies opaque<> Encapsulated OPTIONAL-DATA

INVOKE Operation
INVOKE makes a method call against a rad object, identified by its object ID.

TABLE A–40 INVOKE-REQUEST

Field Name Length Type Description

objectid 8 hyper Object ID, returned by lookup

mname Varies string<> The method to invoke

arguments Varies PAYLOAD-DATA<> Array of method arguments

TABLE A–41 INVOKE-RESPONSE

Field Name Length Type Description

result Varies PAYLOAD-DATA The return value of method call, if any

INVOKE can fail for the following reasons:

EC-OBJECT The method call was made but failed for an object-specific reason.

EC-NOTFOUND objectid is not a known object ID or the object does not have the method
mname.

EC-MISMATCH The wrong number of arguments were provided, or a non-nullable
argument was missing.

EC-NOMEM The server had insufficient resources to complete the operation.

EC-SYSTEM An unexpected internal error occurred.

GETATTR Operation
GETATTR reads an attribute of a rad object identified by its object ID.

Operations

Appendix A • rad Binary Protocol 91

TABLE A–42 GETATTR-REQUEST

Field Name Length Type Description

objectid 8 hyper Object ID, returned by lookup

aname Varies string<> The attribute to read

TABLE A–43 GETATTR-RESPONSE

Field Name Length Type Description

result Varies PAYLOAD-DATA The value of the attribute

GETATTR can fail for the following reasons:

EC-OBJECT An attempt to read the attribute was made, but failed for an
object-specific reason.

EC-NOTFOUND objectid is not a known object ID or the object does not have the attribute
aname.

EC-ILLEGAL aname refers to a write-only attribute.

EC-NOMEM The server had insufficient resources to complete the operation.

EC-SYSTEM An unexpected internal error occurred.

SETATTR Operation
SETATTR reads an attribute of a rad object identified by its object ID. The response payload for a
SETATTR request is empty.

TABLE A–44 SETATTR-REQUEST

Field Name Length Type Description

objectid 8 hyper Object ID, returned by lookup

aname Varies string<> The attribute to write

value Varies PAYLOAD-DATA The new value of the attribute

SETATTR can fail for the following reasons:

EC-OBJECT An attempt to write the attribute was made, but failed for an
object-specific reason.

Operations

Remote Administration Daemon Developer Guide • October 201292

EC-NOTFOUND objectid is not a known object ID or the object does not have the attribute
aname.

EC-MISMATCH aname has a non-nullable value and value was NULL.

EC-ILLEGAL aname refers to a read-only attribute.

EC-NOMEM The server had insufficient resources to complete the operation.

EC-SYSTEM An unexpected internal error occurred.

LOOKUP Operation
LOOKUP attempts to find the named object in the server's namespace, returning the object and
interface IDs of the object if it exists. Because an object is not usable until its interface has been
defined, the client may request the interface definition be provided as part of the LOOKUP
response. For the same reason, the server may unilaterally decide to provide the interface
definition if it believes the client has not seen it yet.

TABLE A–45 LOOKUP-REQUEST

Field Name Length Type Description

name Varies NAME-DATA Object name

define 4 boolean Include object definition?

TABLE A–46 LOOKUP-RESPONSE

Field Name Length Type Description

objectid 8 hyper ID of the object

interfaceid 8 hyper ID of the object's interface

definition Varies INTERFACE-TYPE * The definition of the object's interface

LOOKUP can fail for the following reasons:

EC-NOTFOUND name does not exist.

EC-NOMEM The server had insufficient resources to complete the operation.

EC-SYSTEM An unexpected internal error occurred.

DEFINE Operation
DEFINE requests a definition of the specified interface ID.

Operations

Appendix A • rad Binary Protocol 93

TABLE A–47 DEFINE-REQUEST

Field Name Length Type Description

interfaceid 8 hyper Interface ID

TABLE A–48 DEFINE-RESPONSE

Field Name Length Type Description

definition varies INTERFACE-TYPE The definition of the interface

DEFINE can fail for the following reasons:

EC-NOTFOUND interfaceid isn't a known interface ID.

EC-NOMEM The server had insufficient resources to complete the operation.

EC-SYSTEM An unexpected internal error occurred.

LIST Operation
LIST requests an enumeration of all objects present in the server that match the specified object
name pattern. The empty string matches all server objects.

TABLE A–49 LIST-REQUEST

Field Name Length Type Description

pattern Varies NAME-DATA Object name pattern

TABLE A–50 LIST-RESPONSE

Field Name Length Type Description

names Varies NAME-DATA<> The definition of the interface

LIST can fail for the following reasons:

EC-NOMEM The server had insufficient resources to complete the operation.

EC-SYSTEM An unexpected internal error occurred.

.

Operations

Remote Administration Daemon Developer Guide • October 201294

SUB and UNSUB Operations
SUB and UNSUB subscribe and unsubscribe, respectively, to the named event of the specified
object. The response payload for a successful SUB or UNSUB is empty.

Note that it is possible to receive an EVENT that has been unsubscribed even after a successful
UNSUB operation.

TABLE A–51 SUB-REQUEST

Field Name Length Type Description

objectid 8 hyper ID of the object

event Varies string<> Event name

TABLE A–52 UNSUB-RESPONSE

Field Name Length Type Description

objectid 8 hyper ID of the object

event Varies string<> Event name

SUB can fail for the following reasons:

EC-NOTFOUND objectid is not a known object ID or the object does not have the event
event.

EC-EXISTS The client is already subscribed to event.

EC-NOMEM The server had insufficient resources to complete the operation.

EC-SYSTEM An unexpected internal error occurred.

UNSUB can fail for the following reasons:

EC-NOTFOUND objectid is not a known object ID the object does not have the event
event, or the client isn't subscribed to event.

EC-NOMEM The server had insufficient resources to complete the operation.

EC-SYSTEM An unexpected internal error occurred.

Operations

Appendix A • rad Binary Protocol 95

96

	Remote Administration Daemon Developer Guide
	Preface
	Access to Oracle Support
	Typographic Conventions
	Shell Prompts in Command Examples

	Introduction
	Remote Administration Daemon
	Features Overview

	Concepts
	Interface
	Name
	Derived Types
	Features
	Methods
	Attributes
	Events

	Versioning
	Numbering
	Commitment
	Clients and Versioning

	rad Namespace
	Naming
	Equality
	Patterns

	Operations

	Data Typing
	Base Types
	Derived Types
	Optional Data

	Abstract Data Representation
	ADR Interface Description Language
	Overview
	Enumeration Definitions
	Structure Definitions
	Union Definitions
	Interface Definitions
	Version
	Methods
	Attributes
	Events

	Pragmas
	Example

	radadrgen
	Code Generation

	libadr
	Data Management
	adr_type_t Type
	adr_data_t Type
	Allocating adr_data_t Values
	Allocating Strings
	Allocating boolean
	Allocating Numeric Types
	Allocating Times
	Allocating Opaques
	Allocating Secrets
	Allocating Names
	Allocating Enumerations
	Allocating Unions
	Allocating Structures
	Allocating Arrays

	Accessing Simple adr_data_t Values
	Manipulating Derived Type adr_data_t
	Manipulating Array adr_data_t Values
	Manipulating the Structure of a adr_data_t Type

	Validating adr_data_t Values

	ADR Object Name Operations
	adr_name_t Type
	Creating adr_name_t Type
	Inspecting adr_name_t Type
	String Representation

	API Management
	radadrgen-Generated Definitions
	Running radadrgen
	Example radadrgen output

	Client Libraries
	Java/JMX Client
	Connecting to the rad Server
	RadConnector.PROTOCOL_UNIX
	RadConnector.PROTOCOL_TCP
	RadConnector.PROTOCOL_TLS
	RadConnector.PROTOCOL_PRIVATE
	RadConnector.PROTOCOL_ZONESBRIDGE

	radadrgen Usage
	Enums
	Structured Types
	Unions
	Interfaces

	Caveats

	Python Client
	Modules
	client
	util

	Module Development
	API Definitions and Implementation
	Entry Points and Generated Stubs
	Global Variables
	Module Registration
	Instance Management
	Container Interactions
	Logging
	Using Threads
	Synchronization
	Subprocesses
	Utilities
	Locales
	Transactional Processing
	Asynchronous Methods and Progress Reporting

	rad Namespaces
	Static Objects

	rad Module Linkage

	rad Best Practices
	When To Use rad?
	How To Use rad?
	API Guidelines
	Target Audience
	Legacy Constraints
	Conservative Design

	Component Guidelines
	API Guidelines
	Method Guidelines
	Property Guideline
	Event Guidelines
	Module Location: Deciding between Proxy or Slave
	Synchronous and Asynchronous Invocation
	Duplication
	Client Library Support

	Naming Guidelines
	Object Names
	Case
	Language-Specific Considerations

	API Design Examples
	User Management Example

	rad Binary Protocol
	Overview
	Common Data Formats
	Operations
	Errors
	Time
	Object Names
	ADR Data
	ADR types
	Interface Definitions

	Connection Initialization
	Messages
	Operations
	INVOKE Operation
	GETATTR Operation
	SETATTR Operation
	LOOKUP Operation
	DEFINE Operation
	LIST Operation
	SUB and UNSUB Operations

