

Oracle® Fusion Middleware
Developer's Guide for Oracle Access Manager and Oracle
Security Token Service

11g Release 1 (11.1.1)

E12491-03

June 2011

Oracle Fusion Middleware Developer's Guide for Oracle Access Manager and Oracle Security Token Service
11g Release 1 (11.1.1)

E12491-03

Copyright © 2000, 2011 Oracle and/or its affiliates. All rights reserved.

Primary Author: Trish Fuzesy

Contributing Author: Toby Close, Peter Povenic, Umesh Waghode, Svetlana Klomeyskaya, Resha Chhada,
Gail Flanegin

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

v

Content

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... x
Conventions ... x

What’s New in Oracle Access Manager?.. xi

Product and Component Name Changes.. xi
Oracle Access Manager 11g Software Developer Kit.. xii

1 Introduction to this Book

1.1 Chapter 2: Introduction to the Access SDK and API .. 1-1
1.2 Chapter 3: Creating Custom Authentication Plug-ins .. 1-1
1.3 Chapter 4: Writing Oracle Security Token Service Module Classes.................................... 1-2
1.4 Introduction to Java API References ... 1-2

2 Introduction to the Access SDK and API

2.1 Introduction to the Access SDK .. 2-1
2.2 Locating Access SDK Packages and Resources .. 2-2
2.3 Uses, Functionality, and New Features ... 2-2
2.4 Messages, Exceptions and Logging.. 2-4
2.4.1 Messages ... 2-4
2.4.2 Exceptions ... 2-4
2.4.3 Logging ... 2-5
2.5 Configuring and Deploying Access Clients.. 2-7
2.5.1 Configuration Requirements ... 2-7
2.5.2 Generating the Required Configuration Files ... 2-8
2.5.3 SSL Certificate and Key Files ... 2-8
2.5.3.1 Simple Transport Security Mode ... 2-8
2.5.3.2 Cert Transport Security Mode ... 2-10
2.6 Developing Access Clients ... 2-10
2.6.1 Introduction to Access Clients .. 2-10
2.6.1.1 When to Create a Custom Access Client.. 2-11
2.6.1.2 Access Client Architecture ... 2-11
2.6.1.3 Overview of Access Client Request Processing .. 2-12

vi

2.6.2 Structure of an Access Client ... 2-13
2.6.2.1 Typical Access Client Execution Flow.. 2-14
2.6.2.2 Example of a Simple Access Client: JAccess Client.java...................................... 2-15
2.6.2.3 Example: Java Login Servlet .. 2-19
2.6.2.4 Example Using Additional Methods: access_test_java.java................................ 2-25
2.6.2.5 Example of Implementing Certificate-Based Authentication in Java 2-34
2.7 Building and Deploying an Access Client Program ... 2-35
2.7.1 Setting the Development Environment ... 2-35
2.7.2 Compiling a New Access Client Program .. 2-35
2.7.3 Configuring and Deploying a New Access Client Program 2-35
2.8 Compatibility: 11g versus 10g Access SDK and APIs .. 2-35
2.8.1 Compatibility of the Access SDK ... 2-36
2.8.2 Compatibility of 10g JNI ASDK and 11g Access SDK... 2-37
2.8.3 Deprecated: Oracle Access Manager 10g JNI SDK .. 2-38
2.9 Migrating Earlier Applications or Converting Your Code .. 2-38
2.9.1 Modifying Your Development and Runtime Environment 2-38
2.9.2 Migrating Your Application.. 2-38
2.9.2.1 Configuration Specific to Migration ... 2-39
2.9.3 Converting Your Code... 2-40
2.9.3.1 Understanding Differences Between JNI ASDK and Access SDK..................... 2-40
2.9.3.2 Converting Code.. 2-41
2.10 Best Practices .. 2-44
2.10.1 Avoiding Problems... 2-44
2.10.1.1 Thread Safe Code... 2-45
2.10.2 Identifying and Resolving Problems ... 2-45

3 Creating Custom Authentication Plug-ins

3.1 Introduction to Authentication Plug-ins ... 3-1
3.1.1 About the Custom Plug-in Life Cycle... 3-3
3.1.2 About Planning, the Authentication Model, and Plug-ins .. 3-4
3.2 Introduction to Plug-in Interfaces .. 3-6
3.2.1 About the Plug-in Interfaces ... 3-6
3.2.1.1 GenericPluginService ... 3-6
3.2.1.2 AuthnPluginService .. 3-7
3.2.2 About Plug-in Hierarchies.. 3-7
3.3 Sample Code: Custom Database User Authentication Plug-in ... 3-9
3.3.1 Sample Code: Database User Authentication Plug-in... 3-10
3.3.2 Sample Plug-in Configuration Metadata Requirements... 3-13
3.3.3 Sample Manifest for the Plug-in ... 3-15
3.3.4 Plug-in JAR File Structure ... 3-15
3.4 Developing an Authentication Plug-in... 3-16
3.4.1 About Writing a Custom Authentication Plug-in ... 3-16
3.4.2 Writing a Custom Authentication Plug-in.. 3-17
3.4.3 JARs Required for Compiling a Custom Authentication Plug-in 3-17
3.5 Adding Custom Plug-ins .. 3-18
3.5.1 About Managing Custom Plug-ins .. 3-18
3.5.2 Adding Custom Plug-ins... 3-24

vii

3.5.3 Checking a Plug-in’s Activation Status ... 3-26
3.5.4 Deleting Custom Authentication Plug-ins.. 3-26
3.6 Creating a Custom Authentication Module for Custom Plug-ins.................................... 3-27
3.6.1 About Creating Custom Authentication Modules .. 3-27
3.6.2 Creating a Custom Authentication Module ... 3-30
3.7 Creating Authentication Schemes with Custom Authentication Modules..................... 3-32
3.8 Configuring Logging for Custom Plug-ins ... 3-32

4 Writing Oracle Security Token Service Module Classes

4.1 Introduction to Oracle Security Token Service Custom Token Module Classes............... 4-1
4.2 Writing a TokenValidatorModule Class.. 4-2
4.2.1 About Writing a TokenValidatorModule Class .. 4-2
4.2.2 Writing a TokenValidatorModule Class .. 4-5
4.3 Writing a TokenIssuanceModule Class ... 4-5
4.3.1 About Writing a TokenIssuanceModule Class.. 4-5
4.3.2 Writing a TokenIssuanceModule Class .. 4-8
4.4 Making Custom Classes Available... 4-8
4.4.1 About Making Classes Available .. 4-8
4.4.2 About Narrowing a Search for Custom Tokens... 4-11
4.4.3 Managing Custom Tokens ... 4-13
4.5 Managing a Custom Oracle Security Token Service Configuration................................. 4-14
4.5.1 Creating the Validation Template .. 4-14
4.5.2 Creating the Issuance Template for a Custom Token ... 4-16
4.5.3 Adding the Custom Token to a Requester Profile ... 4-18
4.5.4 Adding the Custom Token to the Relying Party Profile ... 4-19
4.5.5 Mapping the Token to a Requestor.. 4-20
4.5.6 Creating an /wssuser EndPoint ... 4-20

viii

ix

Preface

This guide explains how to write custom applications and plug-ins to functions
programmatically, to create custom AccessGates that protect non-Web-based resources.

This Preface covers the following topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This document is intended for administrators who are familiar with Oracle Access
Manager and Oracle Security Token Service.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

x

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
For more information, see the following documents in the Oracle Fusion Middleware
11g Release 1 (11.1.1) documentation set:

■ Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle
Security Token Service

■ Oracle Security Token Service Java API Reference

■ Oracle Access Manager Access SDK Java API Reference

■ Oracle Access Manager Extensibility Java API Reference

■ Oracle Fusion Middleware WebLogic Scripting Tool Command Reference

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xi

What’s New in Oracle Access Manager?

This section describes new features of Oracle Access Manager 11g.

The following sections describe the new features in Oracle Access Manager that are
reflected in this book:

■ Product and Component Name Changes

■ Oracle Access Manager 11g Software Developer Kit

Product and Component Name Changes
Many Oracle Access Manager component names remain the same. However, there are
several important changes that you should know about, as shown in the following
table:

Area Oracle Access Manager 10g Oracle Access Manager 11g

Deployment Stand alone server Deployed in a container

Component Names Access Server

Policy Manager

Identity Server

WebPass

OAM Server

OAM Administration Console

N/A

N/A

Agents WebGate

AccessGate

OAM Agent

OAM Agent

Console Names Policy Manager

Identity System Console

Access System Console

OAM Administration Console

N/A

N/A

Directory Profiles Directory Profiles User-Identity Stores

Identity Administration Identity Server Identity agnostic (Oracle Identity
Manager 11g is used by default)

Administrators Master Administrator

Master Identity Administrator

Master Access Administrator

Delegated Administrators

OAM Administrator

N/A

N/A

N/A

Agent and partner application
registration

N/A OAM Administration Console

Remote registration tool provides
automated Agent registration and
application domain creation with
default security policies

xii

Oracle Access Manager 11g Software Developer Kit
Oracle Access Manager 11g provides a pure Java software developer kit (SDK) for the
creation of custom AccessGates and extensions of authentication and authorization
functionality. Oracle Access Manager 11g also provides compatibility with the Oracle
Access Manager 10g JNI SDK, which can be migrated to use the Oracle Access
Manager 11g.

Automated creation of Oracle
Access Manager 10g form-based
authentication scheme, policy
domain, access policies, and
WebGate profile for the Identity
Asserter for single sign-on

OAMCfgTool

Platform-agnostic tool and scripts

N/A

Configuration Store LDAP XML file

Policy Store LDAP RDBMS

Policy Model Open (default allow) Closed (default = deny access)

Policy Domain Policy Domain Application Domain

Session management Stateless, stored in a cookie Stateful, stored on the server

Authentication to LDAP LDAP defined system wide LDAP defined in an
authentication scheme

Resource Types Resource Type Resource Type

Resources Resource Resource

Host Identifiers Host Identifiers Host Identifiers

Authentication Authentication

Authentication Scheme

Authentication Plug-ins

N/A

Authentication Rule

Authentication

Authentication Scheme

Authentication Plug-ins

Authentication Modules

Authentication Policy

Authorization Authorization

Authorization Rule

Authorization Expression

Authorization

Constraint

Authorization Policy

Actions Actions Responses

Software Developer Kit Access SDK Access SDK

Access Protocol NetPoint Access Protocol (NAP) Oracle Access Protocol (OAP)

Access Protocol port number 6021 5575 (assigned by the Internet
Assigned Numbers Authority
(IANA))

Area Oracle Access Manager 10g Oracle Access Manager 11g

1

Introduction to this Book 1-1

1Introduction to this Book

This chapter provides the following sections to introduce this book:

■ Chapter 2: Introduction to the Access SDK and API

■ Chapter 3: Creating Custom Authentication Plug-ins

■ Chapter 4: Writing Oracle Security Token Service Module Classes

■ Introduction to Java API References

1.1 Chapter 2: Introduction to the Access SDK and API
Oracle Access Manager 11g provides a pure Java software developer kit (SDK) for the
creation of custom Access Clients and extensions of Oracle Access Manager 11g
authentication and authorization functionality and custom tokens. Oracle Access
Manager 11g also provides backward compatibility with the Oracle Access Manager
10g JNI SDK, which can be migrated and used with Oracle Access Manager 11g.

Chapter 2 provides the following sections:

■ Section 2.1, "Introduction to the Access SDK"

■ Section 2.2, "Locating Access SDK Packages and Resources"

■ Section 2.3, "Uses, Functionality, and New Features"

■ Section 2.4, "Messages, Exceptions and Logging"

■ Section 2.5, "Configuring and Deploying Access Clients"

■ Section 2.6, "Developing Access Clients"

■ Section 2.7, "Building and Deploying an Access Client Program"

■ Section 2.8, "Compatibility: 11g versus 10g Access SDK and APIs"

■ Section 2.9, "Migrating Earlier Applications or Converting Your Code"

■ Section 2.10, "Best Practices"

1.2 Chapter 3: Creating Custom Authentication Plug-ins
The OAM Server uses both authentication and authorization controls to limit access to
the resources that it protects. Authentication is governed by specific authenticating
schemes, which rely on one or more plug-ins that test the credentials provided by a
user when he or she tries to access a resource. The plug-ins can be taken from a
standard set provided with OAM Server installation, or custom plug-ins created by
your own Java developers.

Chapter 4: Writing Oracle Security Token Service Module Classes

1-2 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

Chapter 3 provides the following sections:

■ Section 3.1, "Introduction to Authentication Plug-ins"

■ Section 3.2, "Introduction to Plug-in Interfaces"

■ Section 3.3, "Sample Code: Custom Database User Authentication Plug-in"

■ Section 3.4, "Developing an Authentication Plug-in"

■ Section 3.5, "Adding Custom Plug-ins"

■ Section 3.6, "Creating a Custom Authentication Module for Custom Plug-ins"

■ Section 3.7, "Creating Authentication Schemes with Custom Authentication
Modules"

■ Section 3.8, "Configuring Logging for Custom Plug-ins"

1.3 Chapter 4: Writing Oracle Security Token Service Module Classes
When Oracle Security Token Service does not support the token that you want to
validate or issue out-of-the-box, you can write your own validation and issuance
module classes. One of the following two (validation or issuance class) is required for
custom tokens:

■ Custom validation class uses Oracle Security Token Service to validate a custom
token

■ Custom issuance class enables Oracle Security Token Service to issue a custom
token

Chapter 4 discusses Oracle Access Manager 11g and Oracle Security Token Service
custom token options. It includes the following sections:

■ Section 4.1, "Introduction to Oracle Security Token Service Custom Token Module
Classes"

■ Section 4.2, "Writing a TokenValidatorModule Class"

■ Section 4.3, "Writing a TokenIssuanceModule Class"

■ Section 4.4, "Making Custom Classes Available"

■ Section 4.5, "Managing a Custom Oracle Security Token Service Configuration"

1.4 Introduction to Java API References
Specific Java API reference details for this release are provided the following
publications:

■ Oracle Access Manager Access SDK Java API Reference

■ Oracle Access Manager Extensibility Java API Reference

■ Oracle Security Token Service Java API Reference

2

Introduction to the Access SDK and API 2-1

2 Introduction to the Access SDK and API

This chapter provides the following sections:

■ Section 2.1, "Introduction to the Access SDK"

■ Section 2.2, "Locating Access SDK Packages and Resources"

■ Section 2.3, "Uses, Functionality, and New Features"

■ Section 2.4, "Messages, Exceptions and Logging"

■ Section 2.5, "Configuring and Deploying Access Clients"

■ Section 2.6, "Developing Access Clients"

■ Section 2.7, "Building and Deploying an Access Client Program"

■ Section 2.8, "Compatibility: 11g versus 10g Access SDK and APIs"

■ Section 2.9, "Migrating Earlier Applications or Converting Your Code"

■ Section 2.10, "Best Practices"

2.1 Introduction to the Access SDK
The Oracle Access Manager 11g Access SDK is a platform independent package that
Oracle has certified on a variety of enterprise platforms (using both 32-bit and 64-bit
modes) and hardware combinations. It is provided on JDK versions that are supported
across Oracle Fusion Middleware applications.

The oracle.security.am.asdk package provides the Oracle Access Manager 11g
version of the Application Programming Interface (API). The 11g version is very
similar to the Oracle Access Manager 10g API, with enhancements for use with the
OAM 11g Server. The 11g Access SDK provides backwards compatibility by
supporting com.oblix.access interfaces.

The Oracle Access Manager 10g (10.1.4.3) com.oblix.access package and classes
are deprecated. A deprecated API is not recommended for use, generally due to
improvements, and a replacement API is usually given. Deprecated APIs may be
removed in future implementations.

See Also: Oracle Security Token Service Java API Reference

Note: Oracle strongly recommends that developers use the Oracle
Access Manager 11g Access SDK for all new development.

Locating Access SDK Packages and Resources

2-2 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

2.2 Locating Access SDK Packages and Resources
Once the Access SDK is installed, do not change the relative locations of the
subdirectories and files. Doing so may prevent an accurate build and proper operation
of the API.

Table 2–1 identifies the Access SDK packages and resources and where you can find
each one.

2.3 Uses, Functionality, and New Features
The Oracle Access Manager 11g Access SDK is intended for Java application
developers and the development of tightly coupled, performant integrations.

From a functional perspective, the Oracle Access Manager 11g Access SDK maintains
parity with the 10g (10.1.4.3) Java Access SDK to ensure that you can re-write existing
custom code using the new API layer.

The Oracle Access Manager 11g Access SDK includes authentication and authorization
functionality. However, it does not include Administrative APIs (for instance, there is
no 11g Policy Manager API) and does not use Oracle Access Manager 11g cookies.

The most common use of the Access SDK is to enable the development of a custom
integration between Oracle Access Manager and other applications (Oracle or third
party). Usage examples include:

Table 2–1 Locations: Access SDK Resources

Resources and Locations

Supported Versions and Platforms: Oracle Technology Network

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-cert
ification-100350.html

Download Packages: Oracle Technology Network

http://www.oracle.com/technetwork/middleware/downloads/oid-11g-161194.
html

Oracle Access Manager 11g Access SDK Packages:

■ oracle.security.am.asdk: A new authentication and authorization API that provides
enhancements to take advantage of Oracle Access Manager 11g Server functionality. The
Oracle Access Manager 11g version of the Access SDK API can be used with either Oracle
Access Manager 10gR3 (10.1.4.3) or Oracle Access Manager 11gR1 (11.1.1.5+) version of
the Server.

■ com.oblix.access: Available for compatibility with programs written with an Oracle
Access Manager 10g JNI ASDK, this is the 10g version of the authentication and
authorization API with some enhancements for Oracle Access Manager 11g.

Java Docs:

■ Oracle Access Manager Access SDK Java API Reference

■ Oracle Access Manager Extensibility Java API Reference

■ Oracle Security Token Service Java API Reference

Each method includes the following details:

■ Comprehensive description of a method

■ Parameters of the method

■ Return values

■ Exceptions the method may throw

■ Other relevant details

Uses, Functionality, and New Features

Introduction to the Access SDK and API 2-3

■ Accessing session information that may be stored as part of the Oracle Access
Manager authentication process.

■ Verifying the validity of the Oracle Access Manager session cookie rather than
trusting an HTTP header for the principle user.

Another use for the Access SDK is the development a custom Access Client for a Web
server or an application server for which Oracle does not provide an out-of-the-box
integration.

Table 2–2 describes the primary features of the Oracle Access Manager 11g Access
SDK.

The Access SDK enables you to develop custom integrations with Oracle Access
Manager for the purpose of controlling access to protected resources such as
authentication, authorization, and auditing. This access control is generally
accomplished by developing and deploying custom Access Clients, which are
applications or plug-ins that invoke the Access Client API to interface with the Access
SDK runtime.

Access Client-side caching is used internally within the Access SDK runtime to further
minimize the processing overhead. The Access SDK runtime, together with the Oracle
Access Manager server, transparently performs dynamic configuration management,
whereby any Access Client configuration changes made using Oracle Access Manager
administration console are automatically reflected in the affected Access SDK
runtimes.

You can develop different types of custom Access Clients, depending on their desired
function, by utilizing all, or a subset of, the Access Client API. The API is generally
agnostic about the type of protected resources and network protocols used to
communicate with the users. For example, the specifics of HTTP protocol and any use

Table 2–2 Oracle Access Manager 11g Access SDK Features

Feature Description

Installation Client Package: Is comprised of a single jar file. Supporting files (for signing and TLS
negotiations) are not included and should be generated separately.

Server Related Code: Is included as part of the core Oracle Access Manager server installation.

Note: Access Clients and plug-ins developed with Oracle Access Manager 10g (10.1.4.3) can be
used with Oracle Access Manager 11g. Oracle Access Manager 10g (10.1.4.3) bundle patches are
used to distribute Java SDK code enhancements for use with Oracle Access Manager 11g.

Built In Versioning Enables you to:

■ Determine the Access SDK version that is installed.

■ Validate compatible versions it can operate with (Oracle Access Manager 10g (10.1.4.3) and
Oracle Access Manager 11g).

If there is a mismatch, Access SDK functions halt and an informative message is logged and
presented.

Logging The Access SDK logging mechanism enables you to specify the level (informational, warning,
and error level) of detail you want to see in a local file. Messages provide enough detail for you
to resolve an issue. For example, if an incompatible Access SDK package is used, the log message
includes details about a version mismatch and what version criteria should be followed.

If the SDK generates large amounts of logs within a given period of time, you can configure a
rollover of the logs based on a file limit or a time period. For example, if a file limit has been
reached (or a certain amount of time has passed), the log file is copied to an archive directory and
a new log file is started

New Calls The Access SDK incorporates new calls to determine additional information about the session
based on the new Oracle Access Manager 11g architecture.

Note: Access Clients and plug-ins developed with the Oracle Access Manager 10g
com.oblix.access package can be migrated to operate with the OAM 11g Server.

Messages, Exceptions and Logging

2-4 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

of HTTP cookies are outside of the scope of Access SDK. You can develop Access
Clients to protect non-HTTP resources as easily as agents protecting HTTP resources.

The typical functions that a custom Access Client can perform, individually or in
combination with other Access Clients, are as follows:

■ Authenticate users by validating their credentials against Oracle Access Manager
and its configured user repositories.

■ Authenticate users and check for authorization to access a resource.

■ Authenticate users and create unique Oracle Access Manager sessions represented
by session tokens.

■ Validate session tokens presented by users, and authorize their access to protected
resources.

■ Terminate Oracle Access Manager sessions given a session token or a named
session identifier.

■ Enumerate Oracle Access Manager sessions of a given user by specifying named
user identifier.

■ Save or retrieve custom Oracle Access Manager session attributes.

Some Access Client operations are restricted for use by the designated Access Client
instances. For example, see OperationNotPermitted in Oracle Access Manager
Access SDK Java API Reference.

An Oracle Access Manager administrator can use the Oracle Access Manager
administration console to control the privileges of individual Access Clients. For more
information, see Oracle Fusion Middleware Administrator's Guide for Oracle Access
Manager with Oracle Security Token Service.

2.4 Messages, Exceptions and Logging
This section describes the messages and exceptions used by the Access SDK to indicate
status or errors.

The execution log generated by the Access SDK is also described. The execution log
provides information about operations performed. For example, operation status, any
errors or exceptions that occur, and any general information that is helpful for
troubleshooting.

The following topics are discussed in this section:

■ Messages

■ Exceptions

■ Logging

2.4.1 Messages
The Access SDK provides support for localized messages that indicate status or error
conditions. Error messages, which are provided to the application as exceptions, are
also localized. These localized error messages are logged in the Access SDK log file.

2.4.2 Exceptions
The following types of exceptions are used to indicate error conditions to an
application:

Messages, Exceptions and Logging

Introduction to the Access SDK and API 2-5

■ OperationNotPermittedException

The Oracle Access Manager 11g Access SDK introduces a new set of session
management APIs. Only privileged Access Clients can perform these session
management operations.

If the Access client is not allowed to perform these operations, the Oracle Access
Manager 11g server returns an error. When the server returns an error, the Access
SDK will throw this exception.

■ AccessException

The Oracle Access Manager Access SDK API throws an AccessException
whenever an unexpected, unrecoverable error occurs during the performance of
any operation.

2.4.3 Logging
The Access SDK uses Java logging APIs for producing logs. Specifically, the
oracle.security.am.asdk package contains the AccessLogger class, which
produces the Access SDK log.

To generate the Access SDK log, you must provide a logging configuration file when
you start the application. Provide this log configuration file as a Java property while
running the application, where the Java property
-Djava.util.logging.config.file is the path to logging.properties.

For example:

java -Djava.util.logging.config.file=JRE_DIRECTORY/lib/logging.properties

The logging.properties file defines the number of Loggers, Handlers, Formatters,
and Filters that are constructed and ready to go shortly after the VM has loaded.
Depending on the situation, you can also configure the necessary logging level.

You must provide the log file path against the
java.util.logging.FileHandler.pattern property in the
logging.properties file. If you provide only the file name, the file will be created
under the current directory.

The following is an example logging.properties file:

"handlers" specifies a comma separated list of log Handler
classes. These handlers will be installed during VM startup.
Note that these classes must be on the system classpath.
By default we only configure a ConsoleHandler, which will only
show messages at the INFO and above levels.
Add handlers to the root logger.
These are inherited by all other loggers.
handlers= java.util.logging.FileHandler, java.util.logging.ConsoleHandler

Set the logging level of the root logger.
Levels from lowest to highest are
FINEST, FINER, FINE, CONFIG, INFO, WARNING and SEVERE.
The default level for all loggers and handlers is INFO.
.level= ALL

Configure the ConsoleHandler.
ConsoleHandler uses java.util.logging.SimpleFormatter by default.
Even though the root logger has the same level as this,
the next line is still needed because we're configuring a handler,
not a logger, and handlers don't inherit properties from the root logger.

Messages, Exceptions and Logging

2-6 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

java.util.logging.ConsoleHandler.level =INFO
java.util.logging.ConsoleHandler.formatter=java.util.logging.SimpleFormatter

The following special tokens can be used in the pattern property
which specifies the location and name of the log file.
/ - standard path separator
%t - system temporary directory
%h - value of the user.home system property
%g - generation number for rotating logs
%u - unique number to avoid conflicts
FileHandler writes to %h/demo0.log by default.
java.util.logging.FileHandler.pattern=%h/asdk%u.log

Configure the FileHandler.
FileHandler uses java.util.logging.XMLFormatter by default.
#java.util.logging.FileHandler.limit = 50000
#java.util.logging.FileHandler.count = 1
java.util.logging.FileHandler.formatter=java.util.logging.SimpleFormatter
java.util.logging.FileHandler.level=ALL

The following is a sample of the log output:

Apr 19, 2011 5:20:39 AM AccessClient createClient
FINER: ENTRY
Apr 19, 2011 5:20:39 AM ObAAAServiceClient setHostPort
FINER: ENTRY
Apr 19, 2011 5:20:39 AM ObAAAServiceClient setHostPort
FINER: RETURN
Apr 19, 2011 5:20:39 AM ObAAAServiceClient setHostPort
FINER: ENTRY
Apr 19, 2011 5:20:39 AM ObAAAServiceClient setHostPort
FINER: RETURN
Apr 19, 2011 5:20:39 AM AccessClient createClient
FINER: RETURN
Apr 19, 2011 5:20:39 AM AccessClient initialize
FINER: read config from server, re-init if needed
Apr 19, 2011 5:20:39 AM AccessClient updateConfig
FINER: ENTRY
Apr 19, 2011 5:20:39 AM AccessClient readConfigFromServer
FINER: ENTRY
Apr 19, 2011 5:20:39 AM ObAAAServiceClient getClientConfigInfo
FINER: ENTRY
Apr 19, 2011 5:20:39 AM ObAAAServiceClient sendMessage
FINER: ENTRY
Apr 19, 2011 5:20:39 AM oracle.security.am.common.nap.util.NAPLogger log
FINER: Getting object using poolid primary_object_pool_factory
Apr 19, 2011 5:20:39 AM oracle.security.am.common.nap.util.pool.PoolLogger
logEntry
FINER: PoolLogger : main entered: KeyBasedObjectPool.acquireObject
Apr 19, 2011 5:20:39 AM oracle.security.am.common.nap.util.NAPLogger log
FINEST: Creating pool with id = primary_object_pool_factory
Apr 19, 2011 5:20:39 AM oracle.security.am.common.nap.util.pool.PoolLogger log
FINER: PoolLogger:main : Maximum Objects = 1Minimum Objects1
Apr 19, 2011 5:20:39 AM oracle.security.am.common.nap.util.pool.PoolLogger
logEntry
FINER: PoolLogger : main entered: constructObject
Apr 19, 2011 5:20:39 AM oracle.security.am.common.nap.ObMessageChannelImpl <init>

Configuring and Deploying Access Clients

Introduction to the Access SDK and API 2-7

2.5 Configuring and Deploying Access Clients
This section describes the configuration steps required before an Access Client
developed using the Access SDK can be deployed. For more information, see
Section 2.6.1.2, "Access Client Architecture".

After development, the Access Client must be deployed in a live Oracle Access
Manager 11g environment before you can test and use it. The Access Client
deployment process is similar to that of other Oracle Access Manager Agents.

The following overview outlines the tasks that must be performed by a user with
Oracle Access Manager administrator credentials.

Task overview: Deploying Access Client Code
It is assumed that the Access Client program is already developed and compiled.

1. Retrieve the Access SDK jar file and copy this to the computer you will use to
build the Access Client.

2. Copy the Access Client to the computer hosting the application to be protected.

3. Configure the Access Client.

4. Verify you have the required Java environment available.

If your Access Client is in a standalone environment, you can use Java
Development Kit (JDK) or Java Runtime Environment (JRE). If your Access Client
is a servlet application, you can use Java EE or the Java environment available
with your Java EE container.

5. Verify that the Access SDK jar file is in the class path.

2.5.1 Configuration Requirements
An Access SDK configuration consists of the following files:

■ Configuration File (ObAccessClient.xml)

The configuration file holds various details such as Oracle Access Manager server
host, port, and other configuration items that decide behavior of the Access Client.
For example, idle session time. Name of this file is ObAccessClient.xml.

■ SSL Certification and Key File

This file is required only if the transport security mode is Simple or Cert. Both the
Oracle Access Manager 10g Server and Oracle Access Manager 11g Server
supports transport security modes Open, Simple and Cert to communicate with
agents. An Access Client developed using Access SDK is called an agent.
Depending on the mode in which Oracle Access Manager server is configured,
Access Client will have to be configured to communicate in the same mode.

For Simple or Cert transport security mode, the following is required:

– Certificate for the Access Client

– Private key for the Access Client

– CA certificate to trust OAM Server's certificate

■ password.xml File

See Also: Oracle Fusion Middleware Administrator's Guide for Oracle
Access Manager with Oracle Security Token Service

Configuring and Deploying Access Clients

2-8 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

This file is required only if the transport security mode is Simple or Cert. This file
contains a password in encrypted form. This password is the one using which SSL
key file is protected.

■ Log Configuration

Is required in order to generate a log file.

2.5.2 Generating the Required Configuration Files
The ObAccessClient.xml configuration file can be obtained by registering an Access
Client as an OAM 10g Agent with the OAM 11g Server, using the Oracle Access
Manager 11g administration console or a remote registration tool. For more
information, see Oracle Fusion Middleware Administrator's Guide for Oracle Access
Manager with Oracle Security Token Service.

If the transport security mode is given as Simple or Cert mode during registration, the
Oracle Access Manager administration console will create an SSL certificate and key
file in PEM format. The certificate and key file can then be imported in the
oamclient-keystore.jks file. The CA certificate used to issue the certificate and key
should be imported into oamclient-truststore.jks. For more information, see
Section 2.5.3, "SSL Certificate and Key Files".

The Oracle Access Manager administration console will also create a password.xml
file.

An Access Client application developed with the oracle.security.am.asdk API
can specify the location to obtain the configuration file and other required files. This is
done by initializing the Access SDK and providing the directory location where the
configuration files exist.

For information about options available to specify location of the configuration files to
the Access SDK, see Oracle Access Manager Access SDK Java API Reference.

2.5.3 SSL Certificate and Key Files
Oracle Access Manager 11g Access SDK uses SSL certificates and key files from a
database commonly known as trust stores or key stores. It requires these stores to be in
JKS (Java Key Standard) format.

2.5.3.1 Simple Transport Security Mode

Importing the CA Certificate
The CA certificate must be imported to the trust store. Oracle Access Manager 10g JNI
ASDK provides a self-signed CA certificate that can be used in Simple mode, and is
used for issuing certificates to the Access Client. OAM 11g Server also provides a
self-signed CA certificate.

In Oracle Access Manager 10g JNI ASDK, the CA certificate is found in the following
directory and is named cacert.pem: ASDK_INSTALL_
DIR/oblix/tools/openssl/simpleCA.

In OAM 11g Server, the CA certificate is found in the following directory and is named
cacert.der: $MIDDLEWARE_HOME/user_projects/domains/base_
domain/config/fmwconfig.

Execute the following command to import the PEM or DER format CA certificate into
trust store:

Configuring and Deploying Access Clients

Introduction to the Access SDK and API 2-9

1. Edit ca_cert.pem or cacert.der using a text editor to remove all data except what is
contained within the CERTIFICATE blocks, and save the file. For example:

-----BEGIN CERTIFICATE-----
Content to retain
-----END CERTIFICATE-----

2. Execute the following command, modifying as needed for your environment:

keytool -importcert -file <<ca cert file cacert.pem or
cacert.der>> -trustcacerts -keystore
oamclient-truststore.jks -storetype JKS

3. Enter keystore password when prompted. This must be same as the global pass
phrase used in the OAM Server.

Setting Up The Keystore
The Access Client’s SSL certificate and private key file must be added to the keystore.
The SSL certificate and private key file must be generated in Simple mode so the
Access Client can communicate with OAM Server.

Oracle Access Manager 10g JNI ASDK provides for generating a certificate and key file
for the Access Client. These certificates are in PEM format.

OAM 11g Server provides a tool called Remote Registration and Administration
Console for generating a certificate and key file for the Access Client. These certificates
are also in PEM format. The names of these files are aaa_cert.pem and aaa_key.pem.

Execute the following commands in order to import the certificate and key file into
keystore oamclient-keystore.jks.

1. Edit aaa_cert.pem using any text editor to remove all data except that which is
contained within the CERTIFICATE blocks, and save the file. For example:

-----BEGIN CERTIFICATE-----
Content to retain
-----END CERTIFICATE-----

2. Execute the following command, modifying as needed for your environment:

openssl pkcs8 -topk8 -nocrypt -in aaa_key.pem -inform PEM
-out aaa_key.der -outform DER

This command will prompt for a password. The password must be the global pass
phrase.

3. Execute the following command, modifying as needed for your environment:

openssl x509 -in aaa_cert.pem -inform PEM -out aaa_cert.der
-outform DER

4. Execute the following command, modifying as needed for your environment:

java -cp importcert.jar
oracle.security.am.common.tools.importcerts.CertificateImport
-keystore oamclient-keystore.jks -privatekeyfile aaa_key.der
-signedcertfile aaa_cert.der -storetype jks -genkeystore yes

In this command, aaa_key.der and aaa_cert.der are the private key and
certificate pair in DER format.

5. Enter the keystore password when prompted. This must be same as global pass
phrase.

Developing Access Clients

2-10 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

2.5.3.2 Cert Transport Security Mode
In Cert transport security mode, the certificates for the server and agent should be
requested from a certifying authority. Optionally, the Simple mode self-signed
certificates can also be used as a certifying authority, for purposes of issuing Cert
mode certificates.

Follow these steps to prepare for Cert mode:

1. Import a CA certificate of the certifying authority using the certificate and key pair
issued for Access Client and OAM Server. Follow the steps in "Importing the CA
Certificate" on page 2-8. Instead of cacert.pem or cacert.der, substitute the CA
certificate file of the issuing authority.

2. If Oracle Access Manager 10g JNI ASDK install is available, it provides a way to
generate certificate and key file for the Access Client. These certificates will be in
PEM format.

For more information about how to generate a certificate using an imported CA
certificate, see Oracle Fusion Middleware Administrator's Guide for Oracle Access
Manager with Oracle Security Token Service.

To import this certificate, key pair in the oamclient-keystore.jks in PEM format,
follow instructions in "Setting Up The Keystore" on page 2-9.

2.6 Developing Access Clients
The following topics are discussed in this section:

■ Introduction to Access Clients

■ Structure of an Access Client

2.6.1 Introduction to Access Clients
Access Clients process user requests for access to resources within the LDAP domain
protected by the OAM Server. Typically, you embed custom Access Client code in a
servlet (plug-in) or a standalone application that receives resource requests. This code
uses Access Manager API libraries to perform authentication and authorization
services on the OAM Server.

If a resource is not protected, the Access Client grants the user free access to the
requested resource. If the resource is protected and the user is authorized to provide
certain credentials to gain access, the Access Client attempts to retrieve those user
credentials so that the OAM Server can validate them. If authentication of the user and
authorization for the resource succeeds, the Access Client makes the resource available
to the user.

Access Clients can differ according to a variety of factors, as described in Table 2–3.

Table 2–3 Access Client Variations

Variation Description

Type of application Standalone application versus server plug-ins.

Development Language Each development language provides a choice of interfaces to
the underlying functionality of the API.

For Oracle Access Manager 11g, Java is the only development
language for custom Access Clients.

Resource Type Protect both HTTP and non-HTTP resources.

Developing Access Clients

Introduction to the Access SDK and API 2-11

2.6.1.1 When to Create a Custom Access Client
Typically, you deploy a custom Access Client instead of a standard WebGate when you
need to control access to a resource for which Oracle Access Manager does not already
supply an out-of-the-box solution. This might include:

■ Protection for non-HTTP resources.

■ Protection for a custom web server developed to implement a special feature (for
example, a reverse proxy).

■ Implementation of single sign-on (SSO) to protect a combination of HTTP and
non-HTTP resources.

For example, you can create an Access Client that facilitates SSO within an
enterprise environment that includes an Oracle WebLogic Server cluster as well as
non-Oracle WebLogic Server resources.

2.6.1.2 Access Client Architecture
Each Access Client is built from three types of resources, as described in Table 2–4.

Credential Retrieval Enable HTTP FORM-based input, the use of session tokens,
and command-line input, among other methods.

Table 2–4 Resources to Build Access Clients

Resource Description

Custom Access Client code Built into a servlet or standalone application. For Oracle Access
Manager 11g, you write Access Client code using the Java
language platform.

Configuration information ■ Primary configuration file required for Access SDK is
ObAccessClient.xml, which contains configuration
information that constitutes an Access Client profile.

■ Additional configuration artifacts are required depending
on the transport security mode (Open, Simple or Cert) in
which an Access Client is configured to interact with
OAM Server. If security mode is Simple or Cert, then the
following files are required.

■ oamclient-truststore.jks – JKS
format trust store file which
should contain CA certificate
of the certificate issuing
authority.

■ oamclient-keystore.jks – JKS
format key store file which
should contain certificate and
private key file issued for the
Access Client.

■ password.xml – An XML file
that holds the value of global
pass phrase. Same password is
also used to unprotect private
key file.

Access Manager API libraries Facilitate Access Client interaction with the OAM Server.

Table 2–3 (Cont.) Access Client Variations

Variation Description

Developing Access Clients

2-12 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

Figure 2–1 shows Access Client components installed on a host server:

Figure 2–1 Architectural Detail of an Access Client

2.6.1.3 Overview of Access Client Request Processing
Regardless of the variability introduced by the types of resources discussed in
Section 2.6.1.2, "Access Client Architecture", most Access Clients follow the same basic
steps to process user requests.

When a user or application submits a resource request to a servlet or application
running on the server where the Access Client is installed, the Access Client code
embedded in that servlet or application initiates the basic process shown in the
following diagram.

Figure 2–2 illustrates the process of handling a resource request.

Figure 2–2 Process Overview: Handling a Resource Request

Process Overview: Handling a resource request
1. The application or servlet containing the Access Client code receives a user request

for a resource.

2. The Access Client constructs an ResourceRequest structure, which the Access
Client code uses when it asks the OAM Server whether the requested resource is
protected.

3. The OAM Server responds.

4. Depending upon the situation, one of the following occurs:

■ If the resource is not protected, the Access Client grants the user access to the
resource.

■ If the resource is protected, the Access Client constructs an
AuthenticationScheme structure, which it uses to ask the OAM Server
what credentials the user needs to supply. This step is only necessary if the
Access Client supports the use of different authentication schemes for different
resources.

Developing Access Clients

Introduction to the Access SDK and API 2-13

5. The OAM Server responds.

6. The application uses a form or some other means to ask for user credentials. In
some cases, the user credentials may already have been submitted as part of:

■ A valid session token

■ Input from a web browser

■ Arguments to the command-line script or keyboard input that launched the
Access Client application

7. The user responds to the application.

8. The Access Client constructs an UserSession structure, which presents the user
credentials to the OAM Server, which maps them to a user profile in the Oracle
Access Manager user directory.

9. If the credentials prove valid, the Access Client creates a session token for the user,
then it sends a request for authorization to the OAM Server. This request contains
the user identity, the name of the target resource, and the requested operation.

10. The Access Client grants the user access to the resource, providing that the user is
authorized for the requested operation on the particular resource.

11. (Not pictured). A well-behaved Access Client deallocates the memory used by the
objects it has created, then shuts down the Access Manager API.

The steps detailed in "Process Overview: Handling a resource request" on page 2-12
represent only the main path of the authorization process. Typically, additional code
sections within the servlet or application handle branch situations where:

■ The requested resource is not protected.

■ The authentication challenge method associated with the protected resource is not
supported by the application.

■ The user has a valid single sign-on cookie (ObSSOCookie), which enables the user
to access to the resource without again presenting her credentials for as long as the
session token embedded in the cookie remains valid. For details about
ObSSOCookies and single sign-on, see the Oracle Fusion Middleware
Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.

■ The user fails to supply valid credentials under the specified conditions.

■ Some other error condition arises.

■ The developer has built additional custom code into the Access Client to handle
special situations or functionality.

2.6.2 Structure of an Access Client
The structure of a typical Access Client application roughly mirrors the sequence of
events required to set up an Access Client session.

Access Client Application Structure Sections
1. Include or import requisite libraries.

2. Get resource.

3. Get authentication scheme.

4. Gather user credentials required by authentication scheme.

5. Create user session.

Developing Access Clients

2-14 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

6. Check user authorization for resource.

7. Clean up (Java uses automatic garbage collection).

8. Shut down.

2.6.2.1 Typical Access Client Execution Flow
All HTTP FORM-based Access Client applications and plug-ins follow the same basic
pattern, as illustrated by the following figure. Figure 2–3 shows a process flow for
form-based applications:

Figure 2–3 Process Flow for Form-based Applications

Process overview: Access Client Execution for Form-based Applications
1. Import libraries.

2. Initialize the SDK.

3. Create ResourceRequest object.

4. Determine if the requested resource is protected.

Resource Not Protected: Grant access, shut down the API, and end program.

5. Requested Resource is Protected: Create an AuthenticationScheme object

6. Authentication Scheme HTTP FORM-based: Create a structure for user ID and
password, create UserSession object, determine if the user is authenticated

7. Authentication Scheme Not HTTP FORM-based: Deny access and report reason,
shut down the API and end program.

8. User is Authenticated: Determine if the user is authorized (Step 10).

9. User is Not Authenticated: Deny access and report reason, shut down the API and
end program.

10. User is Authorized: Grant access, shut down the API, and end program.

11. User Not Authorized: Deny access and report reason, shut down the API and end
program.

Developing Access Clients

Introduction to the Access SDK and API 2-15

2.6.2.2 Example of a Simple Access Client: JAccess Client.java
This example is a simple Access Client program. It illustrates how to implement the
bare minimum tasks required for a working Access Client, as described here.

Simple Access Client Processing: JAccess Client.java
■ Connect to the OAM Server

■ Log in using an authentication scheme employing the HTTP FORM challenge
method

■ Check authorization for a certain resource using an HTTP GET request

■ Catch and report Access SDK API exceptions

Typically, this calling sequence is quite similar among Access Clients using the FORM
challenge method. FORM-method Access Clients differ principally in the credentials
they require for authentication and the type of resources they protect.

A complete listing for JAccess Client.java appears in Example 2–1. You can copy
this code verbatim into the text file JAccess Client.java and execute it on the
computer where your Access Manager SDK is installed.

Section 2.6.2.2.1, "Annotated Code: JAccess Client.java" provides annotated code
line-by-line to help you become familiar with Java Access Manager API calls.

Example 2–1 JAccess Client.java

import java.util.Hashtable;
import oracle.security.am.asdk.*;

public class JAccessClient {
 public static final String ms_resource = "//Example.com:80/secrets/
 index.html";
 public static final String ms_protocol = "http";
 public static final String ms_method = "GET";
 public static final String ms_login = "jsmith";
 public static final String ms_passwd = "j5m1th";
 public String m_configLocation = "/myfolder";
 public static void main(String argv[]) {
 AccessClient ac = null;
 try {
 ac = AccessClient.createDefaultInstance(m_configLocation,
 AccessClient.CompatibilityMode.OAM_10G);

 ResourceRequest rrq = new ResourceRequest(ms_protocol, ms_resource,
 ms_method);
 if (rrq.isProtected()) {
 System.out.println("Resource is protected.");
 AuthenticationScheme authnScheme = new AuthenticationScheme(rrq);

Note: To run this test application, or any of the other examples, you
must make sure that your Access System is installed and set up
correctly. Specifically, check that it has been configured to protect
resources that match exactly the URLs and authentication schemes
expected by the sample programs. For details on creating application
domains and protecting resources with application domains, see
Oracle Fusion Middleware Administrator's Guide for Oracle Access
Manager with Oracle Security Token Service.

Developing Access Clients

2-16 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

 if (authnScheme.isForm()) {
 System.out.println("Form Authentication Scheme.");
 Hashtable creds = new Hashtable();
 creds.put("userid", ms_login);
 creds.put("password", ms_passwd);
 UserSession session = new UserSession(rrq, creds);
 if (session.getStatus() == UserSession.LOGGEDIN) {
 if (session.isAuthorized(rrq)) {
 System.out.println("User is logged in and authorized for the"
 +"request at level " + session.getLevel());
 } else {
 System.out.println("User is logged in but NOT authorized");
 }
//user can be loggedout by calling logoff method on the session object
 } else {
 System.out.println("User is NOT logged in");
 }
 } else {
 System.out.println("non-Form Authentication Scheme.");
 }
 } else {
 System.out.println("Resource is NOT protected.");
 }
 }
 catch (AccessException ae) {
 System.out.println("Access Exception: " + ae.getMessage());
 }
 ac.shutdown();
 }
}

2.6.2.2.1 Annotated Code: JAccess Client.java Import standard Java library class
Hashtable to hold credentials.

import java.io.Hashtable;

Import the library containing the Java implementation of the Access SDK API classes.:

import oracle.security.am.asdk.*;

This application is named JAccessClient.

public class JAccessClient {

Since this is the simplest of example applications, we are declaring global constants to
represent the parameters associated with a user request for access to a resource.

Typically, a real-world application receives this set of parameters as an array of strings
passed from a requesting application, HTTP FORM-based input, or command-line
input. For example:

public static final String ms_resource = "//Example.com:80/secrets/index.html";
 public static final String ms_protocol = "http";
 public static final String ms_method = "GET";
 public static final String ms_login = "jsmith";
 public static final String ms_passwd = "j5m1th";

Launch the main method on the Java interpreter. An array of strings named argv is
passed to the main method. In this particular case, the user jsmith, whose password
is j5m1th, has requested the HTTP resource

Developing Access Clients

Introduction to the Access SDK and API 2-17

//Example.com:80/secrets/index.html. GET is the specific HTTP operation
that will be performed against the requested resource. For details about supported
HTTP operations and protecting resources with application domains, see Oracle Fusion
Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token
Service.

 public static void main(String argv[]) {

Place all relevant program statements in the main method within a large try block so
that any exceptions are caught by the catch block at the end of the program.

AccessClient ac = null;

 try {

Initialize the Access SDK by creating AccessClient instance by providing directory
location of configuration file ObAccessClient.xml. There are multiple ways to provide
configuration location to initialize the Access SDK. For more information refer to
Oracle Access Manager Access SDK Java API Reference.

You only need to create an instance of AccessClient and it initializes Access SDK API.
AccessClient.CompatibilityMode.OAM_10G indicates that Access SDK will be
initialized to work in a mode which is compatible with both the 10g and 11g releases of
Oracle Access Manager.

 ac = AccessClient.createDefaultInstance(m_configLocation ,
 AccessClient.CompatibilityMode.OAM_10G);

Create a new resource request object named rrq using the ResourceRequest
constructor with the following three parameters:

■ ms_protocol, which represents the type of resource being requested. When left
unspecified, the default value is HTTP. EJB is another possible value, although this
particular example does not cover such a case. You can also create custom types, as
described in the Oracle Fusion Middleware Administrator's Guide for Oracle Access
Manager with Oracle Security Token Service.

■ ms_resource, which is the name of the resource. Since the requested resource type
for this particular example is HTTP, it is legal to prepend a host name and port
number to the resource name, as in the following:

//Example.com:80/secrets/index.html

■ ms_method, which is the type of operation to be performed against the resource.
When the resource type is HTTP, the possible operations are GET and POST. For
EJB-type resources, the operation must be EXECUTE. For custom resource types,
you define the permitted operations when you set up the resource type. For more
information on defining resource types and protecting resources with application
domains, see the Oracle Fusion Middleware Administrator's Guide for Oracle Access
Manager with Oracle Security Token Service.

ResourceRequest rrq = new ResourceRequest(ms_protocol,
 ms_resource, ms_method);

Determine whether the requested resource rrq is protected by an authentication
scheme.

 if (rrq.isProtected()) {

If the resource is protected, report that fact.

 System.out.println("Resource is protected.");

Developing Access Clients

2-18 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

Use the AuthenticationScheme constructor to create an authorization scheme
object named authnScheme. Specify the resource request rrq so that
AuthenticationScheme checks for the specific authorization scheme associated
with that particular resource.

 AuthenticationScheme authnScheme =new AuthenticationScheme(rrq);

Determine if the authorization scheme is FORM-based.

 if (authnScheme.isForm()) {

If the authorization scheme does use HTTP FORM as the challenge method, report that
fact, then create a hashtable named creds to hold the name:value pairs representing
the user name (userid) and the user password (password). Read the values for ms_
login and ms_passwd into the hashtable.

System.out.println("Form Authentication Scheme.");
Hashtable creds = new Hashtable();
creds.put("userid", ms_login);
creds.put("password", ms_passwd);

Using the UserSession constructor, create a user session object named session.
Specify the resource request as rrq and the authentication scheme as creds so that
UserSession can return the new structure with state information as to whether the
authentication attempt has succeeded.

UserSession session = new UserSession(rrq, creds);

Invoke the getStatus method on the UserSession state information to determine
if the user is now successfully logged in (authenticated).

if (session.getStatus() == UserSession.LOGGEDIN) {

If the user is authenticated, determine if the user is authorized to access the resource
specified through the resource request structure rrq.

if (session.isAuthorized(rrq)) {
 System.out.println(
 "User is logged in " +
 "and authorized for the request " +

Determine the authorization level returned by the getLevel method for the user
session named session.

 "at level " + session.getLevel());

If the user is not authorized for the resource specified in rrq, then report that the user
is authenticated but not authorized to access the requested resource.

} else {
 System.out.println("User is logged in but NOT authorized");

If the user is not authenticated, report that fact. (A real world application might give
the user additional chances to authenticate).

} else {
 System.out.println("User is NOT logged in");

If the authentication scheme does not use an HTTP FORM-based challenge method,
report that fact. At this point, a real-world application might branch to facilitate
whatever other challenge method the authorization scheme specifies, such as basic

Developing Access Clients

Introduction to the Access SDK and API 2-19

(which requires only userid and password), certificate (SSL or TLS over
HTTPS), or secure (HTTPS through a redirection URL). For more information about
challenge Methods and configuring user authentication, see the Oracle Fusion
Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token
Service.

} else {
 System.out.println("non-Form Authentication Scheme.");
}

If the resource is not protected, report that fact. (By implication, the user gains access
to the requested resource, because the Access Client makes no further attempt to
protect the resource).

} else {
 System.out.println("Resource is NOT protected.");
}
}

If an error occurs anywhere within the preceding try block, get the associated text
message from object ae and report it.

catch (AccessException ae) {
 System.out.println(
 "Access Exception: " + ae.getMessage());
}

If the application need to logout user, then it can invoke logoff method on the object of
UserSession class.

Now that the program is finished calling the OAM Server, shut down the API, thus
releasing any memory the API might have maintained between calls.

 ac.shutdown();
}
}

Exit the program. You don't have to deallocate the memory used by the structures
created by this application because Java Garbage Collection automatically cleans up
unused structures when it determines that they are no longer needed.

2.6.2.3 Example: Java Login Servlet
This example follows the basic pattern of API calls that define an Access Client, as
described in Section 2.6.2.2, "Example of a Simple Access Client: JAccess Client.java".
However, this example is implemented as a Java servlet running within a Web server,
or even an application server. In this environment, the Access Client servlet has an
opportunity to play an even more important role for the user of a Web application. By
storing a session token in the user's HTTP session, the servlet can facilitate single
sign-on for the user. In other words, the authenticated OAM Server session
information that the first request establishes is not discarded after one authorization
check. Instead, the stored session token is made available to server-side application
components such as beans and other servlets, so that they do not need to interrupt the
user again and again to request the same credentials. For a detailed discussion of
session tokens, ObSSOCookies, and configuring single sign-on, see the Oracle Fusion
Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token
Service.

This sample login servlet accepts userid/password parameters from a form on a
custom login page, and attempts to log the user in to Oracle Access Manager. On

Developing Access Clients

2-20 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

successful login, the servlet stores a session token in the UserSession object. This
enables subsequent requests in the same HTTP session to bypass the authentication
step (providing the subsequent requests use the same authentication scheme as the
original request), thereby achieving single sign-on.

A complete listing for the Java login servlet is shown in Example 2–2. This code can
provide the basis for a plug-in to a web server or application server.

Section 2.6.2.3.1, "Annotated Code: Java Login Servlet" is an annotated version of this
code.

Example 2–2 Java Login Servlet Example

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import oracle.security.am.asdk.*;

public class LoginServlet extends HttpServlet {

 public void init(ServletConfig config) throws ServletException {
 try {

 AccessClient ac = AccessClient.createDefaultInstance("/myfolder" ,
 AccessClient.CompatibilityMode.OAM_10G);
 } catch (AccessException ae) {
 ae.printStackTrace();
 }
 }

 public void service(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 AuthenticationScheme authnScheme = null;
 UserSession user = null;
 ResourceRequest resource = null;
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<HTML>");
 out.println("<HEAD><TITLE>LoginServlet: Error Page</TITLE></HEAD>");
 out.println("<BODY>");
 HttpSession session = request.getSession(false);
 String requestedPage = request.getParameter("request");
 String reqMethod = request.getMethod();
 Hashtable cred = new Hashtable();
 try {
 if (requestedPage == null || requestedPage.length()==0) {
 out.println("<p>REQUESTED PAGE NOT SPECIFIED\n");
 out.println("</BODY></HTML>");
 return;
 }
 resource = new ResourceRequest("http", requestedPage, "GET");
 if (resource.isProtected()) {
 authnScheme = new AuthenticationScheme(resource);
 if (authnScheme.isBasic()) {
 if (session == null) {
 String sUserName = request.getParameter("userid");
 String sPassword = request.getParameter("password");
 if (sUserName != null) {
 cred.put("userid", sUserName);
 cred.put("password", sPassword);

Developing Access Clients

Introduction to the Access SDK and API 2-21

 user = new UserSession(resource, cred);
 if (user.getStatus() == UserSession.LOGGEDIN) {
 if (user.isAuthorized(resource)) {
 session = request.getSession(true);
 session.putValue("user", user);
 response.sendRedirect(requestedPage);
 } else {
 out.println("<p>User " + sUserName + " not" +
 " authorized for " + requestedPage + "\n");
 }
 } else {
 out.println("<p>User" + sUserName + "NOT LOGGED IN\n");
 }
 } else {
 out.println("<p>USERNAME PARAM REQUIRED\n");
 }
 } else {
 user = (UserSession)session.getValue("user");
 if (user.getStatus() == UserSession.LOGGEDIN) {
 out.println("<p>User " + user.getUserIdentity() + " already"+
 "LOGGEDIN\n");
 }
 }
 } else {
 out.println("<p>Resource Page" + requestedPage + " is not"+
 " protected with BASIC\n");
 }
 } else {
 out.println("<p>Page " + requestedPage + " is not protected\n");
 }
 } catch (AccessException ex) {
 out.println(ex);
 }
 out.println("</BODY></HTML>");
 }
}

2.6.2.3.1 Annotated Code: Java Login Servlet Import standard Java packages to support
input and output and basic functionality.

import java.io.*;
import java.util.*;

Import two packages of Java extensions to provide servlet-related functionality.

import javax.servlet.*;
import javax.servlet.http.*;

Import the package oracle.security.am.asdk.jar, which is the Java
implementation of the Access SDK API.

import oracle.security.am.asdk.*;

This servlet, which builds on the functionality of the generic HttpServlet supported
by the Java Enterprise Edition, is named LoginServlet.

public class LoginServlet extends HttpServlet {

The init method is called once by the servlet engine to initialize the Access Client. In
init method, Access SDK can be initialized by instantiating AccessClient by passing

Developing Access Clients

2-22 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

the location of the configuration file ObAccessClient.xml file. For more information for
creating Access Client refer to Oracle Access Manager Access SDK Java API Reference.
OAM_10g compatibility flag initialized Access SDK in a mode such that it is
compatible with both OAM 10g server and OAM 11g server.

In the case of initialization failure, report that fact, along with the appropriate error
message.

public void init() {
 AccessClient ac =
 AccessClient.createDefaultInstance("/myfolder" ,
 AccessClient.CompatibilityMode.OAM_10G);
 } catch (AccessException ae) {
 ae.printStackTrace();
 }
}

Invoke the javax.servlet.service method to process the user's resource request.

public void service(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

Initialize members as null. These will store the Access structures used to process the
resource request, then set the response type used by this application to text/html.

AuthenticationScheme authnScheme = null;
UserSession user = null;
ResourceRequest resource = null;
response.setContentType("text/html");

Open an output stream titled LoginServlet: Error Page and direct it to the
user's browser.

PrintWriter out = response.getWriter();
out.println("<HTML>");
out.println("<HEAD><TITLE>LoginServlet: Error Page</TITLE></HEAD>");
out.println("<BODY>");

Determine if a session already exists for this user. Invoke the getSession method
with false as a parameter, so the value of the existing servlet session (and not the
UserSession) will be returned if it is present; otherwise, NULL will be returned.

 HttpSession session = request.getSession(false);

Retrieve the name of the target resource, assign it to the variable requestedPage,
then retrieve the name of the HTTP method (such as GET, POST, or PUT) with which
the request was made and assign it to the variable reqMethod.

String requestedPage = request.getParameter(Constants.REQUEST);
String reqMethod = request.getMethod();

Create a hashtable named cred to hold the user's credentials.

 Hashtable cred = new Hashtable();

If the variable requestedPage is returned empty, report that the name of the target
resource has not been properly specified, then terminate the servlet.

try {
 if (requestedPage == null) {
out.println("<p>REQUESTED PAGE NOT SPECIFIED\n");
out.println("</BODY></HTML>");
return;

Developing Access Clients

Introduction to the Access SDK and API 2-23

 }

If the name of the requested page is returned, create a ResourceRequest structure
and set the following:

■ The resource type is HTTP

■ The HTTP method is GET

■ resource is the value stored by the variable requestedPage

 resource = new ResourceRequest("http", requestedPage, "GET");

If the target resource is protected, create an AuthenticationScheme structure for
the resource request and name it authnScheme.

if (resource.isProtected()) {
 authnScheme = new AuthenticationScheme(resource);

If the authentication scheme associated with the target resource is HTTP basic and
no user session currently exists, invoke javax.servlet.servletrequest.
getParameter to return the user's credentials (user name and password) and assign
them to the variables sUserName and sPassword, respectively.

For the authnScheme.isBasic call in the following statement to work properly, the
user name and password must be included in the query string of the user's HTTP
request, as in the following:

http://host.example.com/resource?username=bob&userpassword=bobsp
assword

where resource is the resource being requested, bob is the user making the request,
and bobspassword is the user's password.

Additional Code for authnScheme.isForm

1. Process the original request and determine that form-based login is required.

2. Send a 302 redirect response for the login form and also save the original resource
information in the HTTP session.

3. Authenticate the user by processing the posted form data with the user's name
and password.

4. Retrieve the original resource from the HTTP resource and sends a 302 redirect
response for the original resource.

5. Process the original request once again, this time using the UserSession stored in
the HTTP session.

if (authnScheme.isBasic()) {
 if (session == null) {
 String sUserName = request.getParameter(Constants.USERNAME);
 String sPassword = request.getParameter(Constants.PASSWORD);

If the user name exists, read it, along with the associated password, into the hashtable
named cred.

Note: If you substitute authnScheme.isForm for
authnScheme.isBasic, you need to write additional code to
implement the following steps.

Developing Access Clients

2-24 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

if (sUserName != null) {
 cred.put("userid", sUserName);
 cred.put("password", sPassword);

Create a user session based on the information in the ResourceRequest structure
named resource and the hashtable cred.

 user = new UserSession(resource, cred);

If the status code for the user returns as LOGGEDIN, that user has authenticated
successfully.

 if (user.getStatus() == UserSession.LOGGEDIN) {

Determine if the user is authorized to access the target resource.

 if (user.isAuthorized(resource)) {

Create a servlet user session (which is not to be confused with an UserSession) and
add the name of the user to it.

 session = request.getSession(true);
session.putValue("user", user);

Redirect the user's browser to the target page.

 response.sendRedirect(requestedPage);

If the user is not authorized to access the target resource, report that fact.

 } else {
 out.println("<p>User " + sUserName + " not authorized
 for " + requestedPage + "\n");
 }

If the user is not properly authenticated, report that fact.

} else {
 out.println("<p>User" + sUserName + "NOT LOGGED IN\n");
}

If the user name has not been supplied, report that fact.

 } else {
out.println("<p>USERNAME PARAM REQUIRED\n");
}

If a session already exists, retrieve USER and assign it to the session variable user.

 } else {
 user = (UserSession)session.getValue("user");

If the user is logged in, which is to say, the user has authenticated successfully, report
that fact along with the user's name.

 if (user.getStatus() == UserSession.LOGGEDIN) {
 out.println("<p>User " + user.getUserIdentity() + " already
 LOGGEDIN\n");
 }
}

If the target resource is not protected by a basic authentication scheme, report that
fact.

Developing Access Clients

Introduction to the Access SDK and API 2-25

} else {
 out.println("<p>Resource Page" + requestedPage + " is not protected
 with BASIC\n");
}

If the target resource is not protected by any authentication scheme, report that fact.

} else {
 out.println("<p>Page " + requestedPage + " is not protected\n");
}

If an error occurs, report the backtrace.

 } catch (AccessException ex) {
 oe.println(ex);
}

Complete the output stream to the user's browser.

 out.println("</BODY></HTML>");
 }
}

2.6.2.4 Example Using Additional Methods: access_test_java.java
Building on the basic pattern established in the sample application JAccess
Client.java, discussed in Section 2.6.2.2, "Example of a Simple Access Client:
JAccess Client.java", the following sample program invokes several additional OAM
Server methods. For instance, it inspects the session object to determine which actions,
also named responses, are currently configured in the policy rules associated with the
current authentication scheme.

For this demonstration to take place, you must configure some actions through the
OAM Server prior to running the application. For details about authentication action
and configuring user authentication, see Oracle Fusion Middleware Administrator's Guide
for Oracle Access Manager with Oracle Security Token Service. The complete listing for this
sample application appears in Example 2–3.

An annotated version of the code is provided in Section 2.6.2.4.1, "Annotated Code:
access_test_java.java".

Example 2–3 access_test_java.java

import java.util.*;
import oracle.security.am.asdk.*;

public class access_test_java {

 public static void main(String[] arg) {
 String userid, password, method, url, configDir, type,
 location;
 ResourceRequest res;
 Hashtable parameters = null;
 Hashtable cred = new Hashtable();
 AccessClient ac = null;
 if (arg.length < 5) {
 System.out.println("Usage: EXPECTED: userid password Type
 HTTP-method"
 +" URL [Installdir [authz-parameters] [location]]]");
 return;

Developing Access Clients

2-26 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

 } else {
 userid = arg[0];
 password = arg[1];
 type = arg[2];
 method = arg[3];
 url = arg[4];
 }
 if (arg.length >= 6) {
 configDir = arg[5];
 } else {
 configDir = null;
 }
 if (arg.length >= 7 && arg[6] != null) {
 parameters = new Hashtable();
 StringTokenizer tok1 = new StringTokenizer(arg[6], "&");
 while (tok1.hasMoreTokens()) {
 String nameValue = tok1.nextToken();
 StringTokenizer tok2 = new StringTokenizer(nameValue,
 "=");
 String name = tok2.nextToken();
 String value = tok2.hasMoreTokens() ? tok2.nextToken() :
 "";
 parameters.put(name, value);
 }
 }
 location = arg.length >= 8 ? arg[7] : null;
 try {
 ac = AccessClient.createDefaultInstance(configDir ,
 AccessClient.CompatibilityMode.OAM_10G);

 } catch (AccessException ae) {
 System.out.println("OAM Server SDK Initialization
 failed");
 ae.printStackTrace();
 return;
 }
 cred.put("userid", userid);
 cred.put("password", password);
 try {
 res = new ResourceRequest(type, url, method);
 if (res.isProtected()) {
 System.out.println("Resource " + type + ":" + url + "
 protected");
 } else {
 System.out.println("Resource " + type + ":" + url + "
 unprotected");
 }
 } catch (Throwable t) {
 t.printStackTrace();
 System.out.println("Failed to created new resource
 request");
 return;
 }
 UserSession user = null;
 try {
 user = new UserSession(res, cred);
 } catch (Throwable t) {
 t.printStackTrace();
 System.out.println("Failed to create new user session");
 return;

Developing Access Clients

Introduction to the Access SDK and API 2-27

 }
 try {
 if (user.getStatus() == UserSession.LOGGEDIN) {
 if (location != null) user.setLocation(location);
 System.out.println("user status is " + user.getStatus());

 if (parameters != null ? user.isAuthorized(res,
 parameters) :
 user.isAuthorized(res)) {
 System.out.println("Permission GRANTED");
 System.out.println("User Session Token =" +
 user.getSessionToken());
 if (location != null) {
 System.out.println("Location = " +
 user.getLocation());
 }
 } else {
 System.out.println("Permission DENIED");
 if (user.getError() == UserSession.ERR_NEED_MORE_DATA)
 {
 int nParams =
 res.getNumberOfAuthorizationParameters();
 System.out.print("Required Authorization Parameters
 (" +
 nParams + ") :");
 Enumeration e =
 res.getAuthorizationParameters().keys();
 while (e.hasMoreElements()) {
 String name = (String) e.nextElement();
 System.out.print(" " + name);
 }
 System.out.println();
 }
 }
 }
 else
 {
 System.out.println("user status is " + user.getStatus());
 }
 } catch (AccessException ae)
 {
 System.out.println("Failed to get user authorization");
 }
 String[] actionTypes = user.getActionTypes();
 for(int i =0; i < actionTypes.length; i++)
 {
 Hashtable actions = user.getActions(actionTypes[i]);
 Enumeration e = actions.keys();
 int item = 0;
 System.out.println("Printing Actions for type " +
 actionTypes[i]);
 while(e.hasMoreElements())
 {
 String name = (String)e.nextElement();
 System.out.println("Actions[" + item +"]: Name " + name + "
 value " + actions.get(name));
 item++;
 }
}
 AuthenticationScheme auths;

Developing Access Clients

2-28 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

 try
 {
 auths = new AuthenticationScheme(res);
 if (auths.isBasic())
 {
 System.out.println("Auth scheme is Basic");
 }
 else
 {
 System.out.println("Auth scheme is NOT Basic");
 }
 }
 catch (AccessException ase)
 {
 ase.printStackTrace();
 return;
 }
 try
 {
 ResourceRequest resNew = (ResourceRequest) res.clone();
 System.out.println("Clone resource Name: " +
 resNew.getResource());
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 res = null;
 auths = null;
 ac.shutdown();
 }
 }

2.6.2.4.1 Annotated Code: access_test_java.java Import standard Java libraries to provide
basic utilities, enumeration, and token processing capabilities.

import java.util.*;

Import the Access SDK API libraries.

import oracle.security.am.asdk.*;

This class is named access_test_java.

public class access_test_java {

Declare seven variable strings to store the values passed through the array named arg.

public static void main(String[] arg) {
 String userid, password, method, url, configDir, type, location;

Set the current ResourceRequest to res.

ResourceRequest res;

Initialize the hashtable parameters to null, just in case they were not already empty.

Hashtable parameters = null;

Create a new hashtable named cred.

Hashtable cred = new Hashtable();

Developing Access Clients

Introduction to the Access SDK and API 2-29

Initialize AccessClient reference to null.

AccessClient ac = null;

If the array named arg contains less than five strings, report the expected syntax and
content for command-line input, which is five mandatory arguments in the specified
order, as well as the optional variables configDir, authz-parameters, and
location.

if (arg.length < 5) {
 System.out.println("Usage: EXPECTED: userid password type
 HTTP-method URL [configDir [authz-parameters] [location]]]");

Since fewer than five arguments were received the first time around, break out of the
main method, effectively terminating program execution.

 return;
} else {

If the array named arg contains five or more strings, assign the first five arguments
(arg[0] through arg[4]) to the variables userid, password, type, method, and url,
respectively.

 userid = arg[0];
 password = arg[1];
 type = arg[2];
 method = arg[3];
 url = arg[4];
}

If arg contains six or more arguments, assign the sixth string in the array to the
variable configDir.

if (arg.length >= 6)
 configDir = arg[5];

If arg does not contain six or more arguments (in other words, we know it contains
exactly five arguments, because we have already determined it does not contain fewer
than five) then set configDir to NULL.

else
 configDir = null;

If arg contains at least seven strings, and arg[6] (which has been implicitly assigned to
the variable authz-parameters) is not empty, create a new hashtable named
parameters. The syntax for the string authz-parameters is: p1=v1&p2=v2&...

if (arg.length >= 7 && arg[6] != null) {
 parameters = new Hashtable();

Create a string tokenizer named tok1 and parse arg[6], using the ampersand character
(&) as the delimiter. This breaks arg[6] into an array of tokens in the form pn=vn,
where n is the sequential number of the token.

 StringTokenizer tok1 = new StringTokenizer(arg[6], "&");

For all the items in tok1, return the next token as the variable nameValue. In this
manner, nameValue is assigned the string pn=vn, where n is the sequential number of
the token.

while (tok1.hasMoreTokens()) {

Developing Access Clients

2-30 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

 String nameValue = tok1.nextToken();

Create a string tokenizer named tok2 and parse nameValue using the equal character
(=) as the delimiter. In this manner, pn=vn breaks down into the tokens pn and vn.

 StringTokenizer tok2 = new StringTokenizer(nameValue, "=");

Assign the first token to the variable name.

 String name = tok2.nextToken();

Assign the second token to value. If additional tokens remain in tok2, return the
next token and assign it to value; otherwise, assign an empty string to value.

 String value = tok2.hasMoreTokens() ? tok2.nextToken() : "";

Insert name and value into the hashtable parameters.

 parameters.put(name, value);
 }
}

If there are eight or more arguments in arg, assign arg[7] to the variable location;
otherwise make location empty.

location = arg.length >= 8 ? arg[7] : null;

Create AccessClient instance using configDir, in case if its null provide
configuration file location using other options. For more information for creating
Access Client, see Oracle Access Manager Access SDK Java API Reference.

try {
 ac = AccessClient.createDefaultInstance(configDir ,
 AccessClient.CompatibilityMode.OAM_10G);
}

If the initialization attempt produces an error, report the appropriate error message
(ae) to the standard error stream along with the backtrace.

catch (AccessException ae) {
 System.out.println("
OAM Server SDK Initialize failed");
 ae.printStackTrace();

Break out of the main method, effectively terminating the program.

 return;
}

Read the variables, user ID, and password into the hashtable named cred.

 cred.put("userid", userid);
cred.put("password", password);

Create a ResourceRequest object named res, which returns values for the variables
type, url and method from the OAM Server.

try {
res = new ResourceRequest(type, url, method);

Determine whether the requested resource res is protected and display the
appropriate message.

if (res.isProtected())

Developing Access Clients

Introduction to the Access SDK and API 2-31

 System.out.println("Resource " + type ":" + url + " protected");
else
 System.out.println("Resource " + type + ":" + url + " unprotected");
}

If the attempt to create the ResourceRequest structure does not succeed, report the
failure along with the error message t.

catch (Throwable t) {
 t.printStackTrace();
 System.out.println("Failed to create new resource request");

Break out of the main method, effectively terminating the program.

 return;
}

Set the UserSession parameter user to empty.

UserSession user = null;

Create a UserSession structure named user so that it returns values for the
ResourceRequest structure res and the AuthenticationScheme structure cred.

try
 user = new UserSession(res, cred);

If the attempt to create the UserSession structure does not succeed, then report the
failure along with the error message t.

catch (Throwable t) {
 t.printStackTrace();
 System.out.println("Failed to create new user session");

Break out of the main method, effectively terminating the program.

 return;
}

Determine if the user is currently logged in, which is to say, authentication for this user
has succeeded.

try
{
if (user.getStatus() == UserSession.LOGGEDIN) {

If the user is logged in, determine whether the variable location is not empty. If
location is not empty, set the location parameter for AccessClient to the value
of the variable location, then report that the user is logged in along with the status
code returned by the OAM Server.

if (location != null) user.setLocation(location);
System.out.println("user status is " + user.getStatus());

Check authorization. To accomplish this, determine whether parameters exists. If it
does, determine whether the user is authorized with respect to the target resource
when the parameters stored in parameters are attached. If parameters does not
exist, simply determine whether the user is authorized for the target resource.

try {
 if (parameters != null ? user.isAuthorized(res, parameters) :
 user.isAuthorized(res)) {

Developing Access Clients

2-32 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

If the user is authorized to access the resource when all the appropriate parameters
have been specified, report that permission has been granted.

System.out.println("Permission GRANTED");

Display also a serialized representation of the user session token.

System.out.println("User Session Token =" + user.getSessionToken());

If the variable location is not empty, report the location.

if (location != null) {
 System.out.println("Location = " + user.getLocation());
}

If the user is not authorized to access the resource, report that permission has been
denied.

} else {
System.out.println("Permission DENIED");

If UserSession returns ERR_NEED_MORE_DATA, set the variable nParams to the
number of parameters required for authorization, then report that number to the user.

if (user.getError() == UserSession.ERR_NEED_MORE_DATA) {
 int nParams = res.getNumberOfAuthorizationParameters();
 System.out.print("Required Authorization Parameters (" +
 nParams + ") :");

Set e to the value of the keys parameter in the hashtable returned by the
getAuthorizationParameters method for the ResourceRequest object named
"res."

 Enumeration e = res.getAuthorizationParameters().keys();

Report the names of all the elements contained in e.

while (e.hasMoreElements()) {
 String name = (String) e.nextElement();
 System.out.print(" " + name);
}
System.out.println();
}

Otherwise, simply proceed to the next statement.

 else
 }
}

If the user is not logged in, report the current user status.

else
 System.out.println("user status is " + user.getStatus());

In the case of an error, report that the authorization attempt failed.

 catch (AccessException ae)
 System.out.println("Failed to get user authorization");
}

Now report all the actions currently set for the current user session. Do this by creating
an array named actionTypes from the strings returned by the getActionTypes

Developing Access Clients

Introduction to the Access SDK and API 2-33

method. Next, read each string in actionTypes into a hashtable named actions.
Report the name and value of each of the keys contained in actions.

String[] actionTypes = user.getActionTypes();
for(int i =0; actionTypes[i] != null; i++){
 Hashtable actions = user.getActions(actionTypes[i]);
 Enumeration e = actions.keys();
 int item = 0;
 System.out.println("Printing Actions for type " + actionTypes[i]);
 while(e.hasMoreElements()) {
String name = (String)e.nextElement();
System.out.println("Actions[" + item +"]: Name " + name + " value " +
 actions.get(name));
item++;
 }
}

Attempt to create an AuthenticationScheme object named auths for the
ResourceRequest object res.

AuthenticationScheme auths;
try
 auths = new AuthenticationScheme(res);

If the AuthenticationScheme creation attempt is unsuccessful, report the failure
along with the error message ase.

catch (AccessException ase) {
 ase.printStackTrace();

Break out of the main method, effectively terminating the program.

 return;
}

Determine if the authorization scheme is basic.

try
{
if (auths.isBasic())

If it is, report the fact.

System.out.println("Auth scheme is Basic");

It it is not basic, report the fact.

else
 System.out.println("Auth scheme is NOT Basic");

Use the copy constructor to create a new ResourceRequest object named resNEW
from the original object res.

 ResourceRequest resNew = (ResourceRequest) res.clone();

Report the name of the newly cloned object.

 System.out.println("Clone resource Name: " + resNew.getResource());

If the ResourceRequest object cannot be cloned for any reason, report the failure
along with the associated backtrace.

}

Developing Access Clients

2-34 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

catch (Exception e) {
 e.printStackTrace();
}

Set the ResourceRequest object res and the AuthenticationScheme object
auths to NULL, then disconnect the Access SDK API.

 res = null;
 auths = null;
 ac.shutdown();
 }
}

2.6.2.5 Example of Implementing Certificate-Based Authentication in Java
The following is a code snippet that demonstrates implementing an Access Client in
Java that processes an X.509 certificate. This snippet is appropriate when an
administrator configures certificate-based authentication in the Access System.

Note that the certificate must be Base 64-encoded. The OAM Server uses this certificate
only to identify the user. It does not perform validation such as the validity period, if
the root certification is trusted or not, and so on.

File oCertFile = new File("sample_cert.pem");
 FileInputStream inStream = new FileInputStream(oCertFile);
 CertificateFactory cf =
 CertificateFactory.getInstance("X.509");

// cert must point to a valid java.security.cert.X509Certificate instance.
X509Certificate cert = (X509Certificate)
cf.generateCertificate(inStream);

// Convert the certificate into a byte array
 byte[] encodecCert = cert.getEncoded();

// Encode the byte array using Base 64-encoding and convert it into a string
String base64EncodedCert = new String(Base64.encodeBase64 (encodedCert));

// Create hashtable to hold credentials
 Hashtable creds = new Hashtable();

// Store the Base 64-encoded under the key "certificate"
 cred.put("certificate", base64EncodedCert);

// Create ResourceResource request object including all information about the //
// resource being accessed
 ResourceRequest resourceRequest = new ResourceRequest(resourceType,
resourceUrl, operation);

// Create a UserSession with the requestRequest and the cred hashtable
 UserSession userSession = new UserSession(resourceRequest, creds);

// The above statement will throw an exception if the certificate cannot be mapped
// to a valid user by the OAM Server.

The following import statements are associated with the snippet:

import java.security.cert.CertificateFactory;
 import java.security.cert.X509Certificate;
 import java.io.FileInputStream;

Compatibility: 11g versus 10g Access SDK and APIs

Introduction to the Access SDK and API 2-35

 import oracle.security.am.common.nap.util.Base64;

2.7 Building and Deploying an Access Client Program
The following topics are discussed in this section:

■ Setting the Development Environment

■ Compiling a New Access Client Program

■ Configuring and Deploying a New Access Client Program

2.7.1 Setting the Development Environment
The required environment is as follows:

■ Install JDK 1.6.0 or higher.

■ Install Oracle Access Manager 11g Access SDK.

■ Define a JAVA_HOME environment variable to point to JDK installation directory.
For example, on UNIX-like operating systems, execute the following command:

setenv JAVA_HOME <JDK install dir>/bin

■ Modify the PATH environment variable to the same location where JAVA_
HOME/bin points. For example, on UNIX-like operating systems, execute the
following command:

setenv PATH $JAVA_HOME/bin:$PATH

■ Modify the CLASSPATH environment variable to point to JDK and Access SDK jar
files. For example, on UNIX-like operating systems, execute the following
command:

setenv CLASSPATH $JAVA_HOME/lib/tools.jar:$ACCESSSDK_INSTALL_
DIR/oamasdk-api.jar:$CLASSPATH

2.7.2 Compiling a New Access Client Program
After the development environment is configured (see Section 2.7.1, "Setting the
Development Environment"), you can compile your Access Client program using a
command similar to the following:

Javac –cp <location of Access SDK jar> SampleProgram.java

Modify details such as class path and Access Client program name as needed.

2.7.3 Configuring and Deploying a New Access Client Program
For information, see Section 2.5, "Configuring and Deploying Access Clients".

2.8 Compatibility: 11g versus 10g Access SDK and APIs
The following topics are discussed in this section:

■ Compatibility of the Access SDK

■ Compatibility of 10g JNI ASDK and 11g Access SDK

■ Deprecated: Oracle Access Manager 10g JNI SDK

Compatibility: 11g versus 10g Access SDK and APIs

2-36 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

The 11g Access Manager API enables developers to write custom Access Client code in
Java, which is functionally equivalent to the 10g (10.1.4.3) Java Access Client. With
Oracle Access Manager 11g, your Java code will interact with underlying Java binaries
in the API.

The automatic built-in Java garbage collector deallocates the memory for unused
objects when it (the garbage collector) deems appropriate. Garbage collectors do not
guarantee when an object will be cleaned up, but do ensure that all objects are
destroyed when they are no longer referenced, and no memory leak occurs.

10g and 11g Access Manager API functionality has been organized into seven basic
classes. Table 2–5 lists the corresponding class names for the Java language platform.

2.8.1 Compatibility of the Access SDK
The Access SDK implements the same functionality that is supported by the 10g JNI
ASDK. This functionality is implemented so that you can use it to develop custom
access gates that work seamlessly with both the Oracle Access Manager 10g server and
the Oracle Access Manager 11g server.

The Access SDK also implements some new and modified functionality that can only
be used with an Oracle Access Manager 11g server. Consequently, the Access SDK can
gracefully detect whether the application is trying to use this functionality with Oracle
Access Manager 10g server.

The new functionalities in Oracle Access Manager 11g Access SDK
(oracle.security.am.asdk) are as follows:

■ Enumerating sessions for the given user

■ Terminating the given session

■ Setting attributes in the given user session

■ Retrieving attributes set in the given session

Table 2–5 Comparison: 11g versus 10g Access API Classes

Purpose of the Class 11g Java Class 10g Java Class

Supports parameter storage structures
(lists or hashtables)

From the Java Development Kit:

java.util.Hashtable, which extends
java.util.Dictionary

java.util.Set

java.util.Hashtable, which extends
java.util.Dictionary (This is not a Com.
Oblix.Access class)

Supports iteration within lists (Java
enumerate hashtables)

From the Java Development Kit:

java.util.Hashtable, which extends
java.util.Dictionary

java.util.Set

java.util.Hashtable, which extends
java.util.Dictionary (This is not a Com.
Oblix.Access class)

Creates and manipulates structures that
handle user authentication

AuthenticationScheme class from
oracle.security.am.asdk

ObAuthenticationScheme implements
ObAuthenticationSchemeInterface

Creates and manipulates structures that
handle user requests for resources

ResourceRequest class from
oracle.security.am.asdk

ObResourceRequest implements
ObResourceRequestInterface

Creates and manipulates structures that
handle user sessions, which begin when
the user authenticates and end when the
user logs off or the session times out

UserSession class from
oracle.security.am.asdk

ObUserSession implements
ObUserSessionInterface

Retrieves and modifies Access Client
configuration information

AccessClient class from
oracle.security.am.asdk

ObConfig

Handles errors thrown by the Access
Manager API

AccessException,
OperationNotPermittedException from
oracle.security.am.asdk

ObAccessException

Compatibility: 11g versus 10g Access SDK and APIs

Introduction to the Access SDK and API 2-37

■ Validating user credentials without establishing a session

■ Validating user credentials without establishing a session and performing
authorization in the same request

Additionally, the Access SDK provides a modified implementation of the user logout
functionality for removing the server side session. This functionality is not supported
with Oracle Access Manager 10g server.

2.8.2 Compatibility of 10g JNI ASDK and 11g Access SDK
The following figure depicts the one-to-one mapping between the Oracle Access
Manager 10g JNI version and the Oracle Access Manager 11g Access SDK version of
the com.oblix.access package.

Figure 2–4 Mapping Between Versions of the com.oblix.access Package

Custom access gates developed using 10g JNI ASDK can continue to work with 11g
Access SDK without any code changes.

As shown in Figure 2–4, the following classes have been added to the Oracle Access
Manager 11g Access SDK com.oblix.access package:

■ ObPseudoUserSession: This class provides the following functionalities, which
you can only use with Oracle Access Manager 11g server:

– Validating user credentials without establishing a session.

– Validating user credentials without establishing a session and performing
authorization in the same request.

Note: The last two functions are also provided with the
com.oblix.access package in the Oracle Access Manager 11g
Access SDK.

Migrating Earlier Applications or Converting Your Code

2-38 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

■ ObAccessRuntimeException: This class indicates a runtime error while
performing operations that use ObAuthenticationScheme and
ObResourceRequest classes.

2.8.3 Deprecated: Oracle Access Manager 10g JNI SDK
The Access SDK provides support for interfaces in the 10g JNI ASDK com.oblix.access
package. However, all APIs in com.oblix.access are marked as deprecated. These
APIs will not be enhanced or supported in future Oracle Access Manager 11g Access
SDK releases.

2.9 Migrating Earlier Applications or Converting Your Code
This section describes the migration processes to follow if you want to use the Access
SDK. Migrating to the Access SDK can be necessary for the following reasons:

■ Migrate applications to replace the com.oblix.access API of Oracle Access
Manager 10g JNI ASDK with the corresponding API in Oracle Access Manager 11g
Access SDK without changing how those applications use Access SDK.

■ Migrate application code to use oracle.security.am.asdk API instead of
com.oblix.access, which is supported in Oracle Access Manager 11g Access
SDK for backward compatibility.

This section contains the following topics:

■ Modifying Your Development and Runtime Environment

■ Migrating Your Application

■ Converting Your Code

2.9.1 Modifying Your Development and Runtime Environment
Before migrating an application, ensure that your development environment is
configured. Also ensure that the Oracle Access Manager 11g Access SDK is configured
correctly. For more information, see Section 2.5, "Configuring and Deploying Access
Clients".

2.9.2 Migrating Your Application
You can migrate Access Clients and plug-ins developed with the Oracle Access
Manager 10g com.oblix.access package to operate with the OAM 11g Server. This
section describes how programs written with the Oracle Access Manager 10g JNI
ASDK can be used with Oracle Access Manager 11g.

Support for the classes and interfaces provided in Oracle Access Manager 10g JNI SDK
and in Oracle Access Manager 11g Access SDK is identical.

In general, you are not required to change or recompile any application code when
migrating applications to use com.oblix.access classes from Oracle Access
Manager 11g Access SDK.

Note: For information about the similarities and differences between
the com.oblix.access APIs in Oracle Access Manager 10g JNI and
in Oracle Access Manager 11g Access SDK, see Section 2.8.2,
"Compatibility of 10g JNI ASDK and 11g Access SDK".

Migrating Earlier Applications or Converting Your Code

Introduction to the Access SDK and API 2-39

A new runtime exception, ObAccessRuntimeException, was introduced in the
com.oblix.access package. Oracle Access Manager throws this exception when
performing operations of AuthenticationScheme and ResourceRequest classes.

Oracle recommends that you perform proper exception handling in the application
code. If this is done, the application should be recompiled with the OAM 11g Access
SDK jar file.

2.9.2.1 Configuration Specific to Migration
This discussion assumes that Oracle Access Manager 10g ASDK component is
installed and configured with the OAM Server. This scenario uses existing Access
Client applications developed using Oracle Access Manager 10g JNI ASDK. The
following assumptions are made:

■ The configuration items listed in Section 2.5.1, "Configuration Requirements" are
referenced from the Oracle Access Manager 10g ASDK installation directory
(ASDK_INSTALL_DIR).

■ ObAccessClient.xml is read from ASDK_INSTALL_DIR/access/oblix/lib.

■ password.xml is read from ASDK_INSTALL_DIR/access/oblix/config if the
transport security mode is Simple or Cert.

Simple Mode
To configure the Oracle Access Manager 10g ASDK component in Simple mode, see
the Oracle Access Manager Administration Guide for the 10g release.

Perform the following steps:

1. Import the aaa_cert.pem and aaa_key.pem files into oamclient-keystore.jks.

The aaa_cert.pem and aaa_key.pem files are located in ASDK_INSTALL_
DIR/access/oblix/config/simple.

2. Located the self-signed CA certificate used for issuing Simple mode certificates in
ASDK_INSTALL_DIR/access/oblix/tools/openssl/simpleCA.

3. Import the self-signed CA certificate into oamclient-truststore.jks.

4. Import the certificate and key files into the JKS store by following the steps in
Section 2.5.3, "SSL Certificate and Key Files".

5. Copy the JKS stores to ASDK_INSTALL_DIR/access/oblix/config/simple.

Cert Mode
To configure the Oracle Access Manager 10g ASDK component in Cert mode, see the
Oracle Access Manager Administration Guide for the 10g release.

Perform the following steps:

1. Import the aaa_cert.pem and aaa_key.pem files into oamclient-keystore.jks. Import
the aaa_chain.pem into oamclient-truststore.jks.

The aaa_cert.pem, aaa_key.pemand aa_chain.pem files are located in ASDK_
INSTALL_DIR/access/oblix/config.

2. Import the certificate and key files into the JKS store by following the steps in
Section 2.5.3, "SSL Certificate and Key Files".

3. Copy the JKS stores to ASDK_INSTALL_DIR/access/oblix/config/simple.

Migrating Earlier Applications or Converting Your Code

2-40 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

Configuration File Location
An Access Client application migrated to use the com.oblix.access API can
specify the Oracle Access Manager 10g JNI ASDK configuration file locations as
follows:

■ Either specify the direction location where Oracle Access Manager 10g ASDK is
installed while initializing ASDK, or

■ Set an environment variable OBACCESS_INSTALL_DIR, which points to the
directory location where Oracle Access Manager 10g JNI ASDK is installed.

Oracle Access Manager 11g Access SDK then determines the path of the required files
based on the location passed to it.

Environment
To set your environment, follow the instructions in Section 2.7.1, "Setting the
Development Environment". The Oracle Access Manager 10g JNI ASDK is named
jobaccess.jar. If jobaccess.jar is in your CLASSPATH, it must be removed.

2.9.3 Converting Your Code
This section describes how to use programs written with the Oracle Access Manager
10g JNI ASDK with Oracle Access Manager 11g.

The 11g Access SDK supports the functionality of 10g JNI ASDK APIs in the
com.oblix.access package. Implementing these functionalities in the 11g Access
SDK enables backward compatibility with the 10g JNI ASDK. However, all of the APIs
in com.oblix.access are deprecated. These APIs will not be enhanced or
supported in future 11g Access SDK releases.

The oracle.security.am.asdk package contains a new authentication and
authorization API. In addition to functionality supplied by the com.oblix.access
package, the oracle.security.am.asdk package also contains enhancements that take
advantage of OAM 11g Server functionality.

2.9.3.1 Understanding Differences Between JNI ASDK and Access SDK
The following table compares the APIs from the Oracle Access Manager 10g JNI SDK
com.oblix.access package with the APIs from the Oracle Access Manager 11g
Access SDK oracle.security.am.asdk package. Where applicable, this table also
maps the classes between Oracle Access Manager 10g ASDK and Oracle Access
Manager 11g Access SDK.

Table 2–6 Differences Between JNI ASDK com.oblix.access Package and Access SDK
oracle.security.am.asdk Package

JNI ASDK com.oblix.access Package
Access SDK oracle.security.am.asdk
Package

Interface Summary:

■ ObAuthenticationSchemeInterface

■ ObResourceRequestInterface

■ ObUserSessionInterface

Interface Summary:

None

Migrating Earlier Applications or Converting Your Code

Introduction to the Access SDK and API 2-41

Note that the Oracle Access Manager 11g Access SDK contains a new set of APIs that
are functionally similar to the Oracle Access Manager 10g JNI SDK APIs, but with new
interfaces.

2.9.3.2 Converting Code
You can migrate application code that was implemented using Oracle Access Manager
10g JNI ASDK to achieve the same functionality in Oracle Access Manager 11g Access
SDK. This section explains how to modify existing application code to use the new API
in Oracle Access Manager 11g Access SDK.

2.9.3.2.1 Initializing and Uninitializing Access SDK

In Oracle Access Manager 10g JNI SDK, the com.oblix.access.ObConfig class
provides a function to perform ASDK initialization and uninitialization. In Oracle
Access Manager 11g Access SDK, the oracle.security.am.asdk.AccessClient
provides this function.

As with Oracle Access Manager 10g JNI SDK, the Access Client application instance
can work with a given configuration.

Depending on the requirement, you can use the AccessClient class in two different
ways:

■ You can use the createDefaultInstance static function to create a single
instance of the AccessClient class. Only a single default instance of this class is
permitted. Invoking this method multiple times within a single instance of the
Access Client application causes an exception.

If you use the createDefaultInstance method, you must use the AccessClient
class instance obtained using this method when instantiating any of
AuthenticationScheme, ResourceRequest, or UserSession classes

■ You can use the createInstance static function to create a new AccessClient
class instance initialized with a given configuration. This class is required when it
is within the same running instance of an Access Client application, and the

Class Summary:

■ ObAuthenticationScheme

■ ObConfig

■ ObDiagnostic

■ ObResourceRequest

■ ObUserSession

Class Summary:

■ AuthenticationScheme

■ AccessClient

■ Supported through AccessClient

■ ResourceRequest

■ UserSession

■ PseudoUserSession

■ BaseUserSession

Exception Summary:

ObAccessException

Exception Summary:

■ AccessException

■ OperationNotPermittedException

Enumeration Summary:

None

Enumeration Summary:

AccessClient.CompatibilityMode.OAM_10G

Table 2–6 (Cont.) Differences Between JNI ASDK com.oblix.access Package and Access
SDK oracle.security.am.asdk Package

JNI ASDK com.oblix.access Package
Access SDK oracle.security.am.asdk
Package

Migrating Earlier Applications or Converting Your Code

2-42 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

application must work with different Oracle Access Manager systems or different
configurations. Each AccessClient class instance can log its messages to
different log files by passing in an appropriate logger name while constructing the
Access Client instances.

You must pass AccessClient.CompatibilityMode.OAM_10G in
compatibility mode when initializing AccessClient objects.

If you use the createInstance method, you must use the AccessClient class
instance obtained using this method when instantiating the
AuthenticationScheme, ResourceRequest, or UserSession classes.

While the application is shutting down, it should invoke the AccessClient class
shutdown method to perform uninitialization as shown in the following examples:

■ For Oracle Access Manager 10g JNI ASDK

Public static void main (String args[]) {
 try {
 ObConfig.Initialize (); // Configuration is read from the location pointed
by OBACCESS_INSTALL_DIR
 // environment variable

OR

 ObConfig.Initialize (configLocation); //Configuration is read from the
location provided
 ………..
 }catch (ObAccessException e){
 }
ObConfig.shutdown();
}//main ends here

■ For Oracle Access Manager 11g Access SDK

import java.io.*;
import java.util.*;
import oracle.security.am.asdk.*; //Import classes from OAM11g Access ASDK
…………..
Public static void main (String args[]) {
 try {
 ac = AccessClient.createDefaultInstance (“”,
AccessClient.CompatibilityMode.OAM_10G); // Refer to Oracle Access Manager
Access SDK Java API Reference

OR

 AccessClient.createInstance(“”,AccessClient.CompatibilityMode.OAM_10G); //
Refer to Oracle Access Manager Access SDK Java API Reference
 ………..
 }catch (AccessException e){
 }
ac.shutdown();
}//main ends here

2.9.3.2.2 Performing Access Operations

As shown in Table 2–6, there is a one-to-one mapping between the classes that are
used to perform access operations. The classes in oracle.security.am.asdk are
AuthenticationScheme, ResourceRequest, and UserSession.

Migrating Earlier Applications or Converting Your Code

Introduction to the Access SDK and API 2-43

Depending how the AccessClient class is instantiated, use the corresponding
constructor of these classes.

Similar to Oracle Access Manager 10g JNI ASDK, any error that occurs during
initialization or while performing access operations, is reported as an exception.
AccessException is the exception class used in Oracle Access Manager 11g Access
SDK as seen in the following examples:

■ For Oracle Access Manager 10g JNI ASDK

Public static void main (String args[]) {
 try {
 ObConfig.Initialize (); // Configuration is read from the location pointed
by OBACCESS_INSTALL_DIR
 // environment variable
 ObResourceRequest rrq = new ObResourceRequest(ms_protocol, ms_resource,ms_
method);
 if (rrq.isProtected()) {
 System.out.println("Resource is protected.");
 ObAuthenticationScheme authnScheme = new ObAuthenticationScheme(rrq);
 if (authnScheme.isForm()) {
 System.out.println("Form Authentication Scheme.");
 Hashtable creds = new Hashtable();
 creds.put("userid", ms_login);
 creds.put("password", ms_passwd);
 ObUserSession session = new ObUserSession(rrq, creds);
 if (session.getStatus() == ObUserSession.LOGGEDIN) {
 if (session.isAuthorized(rrq)) {
 System.out.println("User is logged in and authorized for the
 request at level " + session.getLevel());
 } else {
 System.out.println("User is logged in but NOT authorized");
 }
 } else {
 System.out.println("User is NOT logged in");
 }
 } else {
 System.out.println("non-Form Authentication Scheme.");
 }
} else {
 System.out.println("Resource is NOT protected.");
}
}catch (ObAccessException oe) {
 System.out.println("Access Exception: " + oe.getMessage());
}
ObConfig.shutdown();
}//main ends here

■ For Oracle Access Manager 11g Access SDK

import java.io.*;
import java.util.*;
import oracle.security.am.asdk.*; //Import classes from OAM11g Access ASDK

Public static void main (String args[]) {
 AccessClient ac;
 try {
 ac = AccessClient.createDefaultInstance(“”,
 AccessClient.CompatibilityMode.OAM_10G);

 ResourceRequest rrq = new ResourceRequest(ms_protocol,ms_resource, ms_

Best Practices

2-44 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

method);

 if (rrq.isProtected()) {
 System.out.println("Resource is protected.");
 AuthenticationScheme authnScheme =new AuthenticationScheme(rrq);
 if (authnScheme.isForm()) {
 System.out.println("Form Authentication Scheme.");
 Hashtable creds = new Hashtable();
 creds.put("userid", ms_login);
 creds.put("password", ms_passwd);
 creds.put("ip", ms_ip);
 creds.put("operation", ms_method);
 creds.put("resource", ms_resource);
 creds.put(“targethost”, ms_targethost);

 UserSession session = new UserSession(rrq, creds);
 if (session.getStatus() == UserSession.LOGGEDIN) {
 if (session.isAuthorized(rrq)) {
 System.out.println("User is logged in " +
 "and authorized for the request " +"at level " +
session.getLevel());
 } else {
 System.out.println("User is logged in but NOT authorized");
 }
 } else {
 System.out.println("User is NOT logged in");
 }
 }
 }catch (AccessException oe) {
 System.out.println("Access Exception: " + oe.getMessage());
 }
 ac.shutdown();
} //main ends here

2.10 Best Practices
This section presents a number of ways to avoid problems and to resolve the most
common problems that crop up during development.

2.10.1 Avoiding Problems
Here are some suggestions for avoiding problems with the Access Clients you create:

■ Make sure that your Access Client attempts to connect to the correct OAM Server.

■ Make sure the configuration information on your OAM Server matches the
configuration information on your Access Client. You can check the Access Client
configuration information on your OAM Server, using the Oracle Access Suite. For
details, see "Registering an Access Client" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.

■ To ensure clean connect and disconnect from the OAM Server, use the
initialize and shutdown methods in the AccessClient class.

■ The environment variable, OBACCESS_INSTALL_DIR, must be set on your
Windows or UNIX-like host computer so that you can compile and link your
Access Client. In general, you also want the variable to be set whenever your
Access Client is running.

Best Practices

Introduction to the Access SDK and API 2-45

■ Use the exception handling features (try, throw, and catch) of the language used to
write your custom Access Client code to trap and report problems during
development.

2.10.1.1 Thread Safe Code
Your Access Client represents just one thread in your entire, multi threaded
application.

To ensure safe operation within such an environment, Oracle recommends that
developers observe the following practices:

■ Use a thread safe function instead of its single thread counterpart. For instance,
use localtime_r instead of localtime.

■ Specify the appropriate build environment and compiler flags to support
multithreading. For instance, use -D_REENTRANT. Also, use -mt for UNIX-like
platforms and /MD for Windows platforms.

■ Take care to use in thread-safe fashion shared local variables such as FILE pointers.

■ If Access Client is developed using com.oblix.access API of Access SDK, the
environment variable, OBACCESS_INSTALL_DIR, must be set on your Windows
or UNIX-like host computer so that you can compile and link your Access Client.
In general, you also want the variable to be set whenever your Access Client is
running. If Access Client is developed using oracle.security.am.asdk API
of Access SDK, make sure that environment is setup correctly. Please refer
documentation of AccessClient class in Oracle Access Manager Access SDK Java API
Reference.

2.10.2 Identifying and Resolving Problems
Here are some things to look at if your Access Client fails to perform:

■ Make sure that your OAM Server is running. On Windows systems, you can check
this by navigating to Computer Management, then to Services, then to
AccessServer, where AccessServer is the name of the OAM Server to which you want
to connect your Access Client.

■ Make sure that Access Client performs user logout to ensure that OAM Server-side
sessions are deleted. An accumulation of user sessions can prevent successful user
authentication.

■ Check that the domain policies your code assumes are in place and enabled for
your Access System.

■ Read the Release Notes that accompanies the Access System product you are
working with.

■ Check that your Access Client is not being answered by a lower-level Access
System policy which overrides the one you think you are testing.

■ The Oracle Access Manager 11g Access Tester enables you to check which policy
applies to a particular resource. For details about using the Access Tester and
protecting resources with application domains, see the Oracle Fusion Middleware
Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.

Best Practices

2-46 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

3

Creating Custom Authentication Plug-ins 3-1

3Creating Custom Authentication Plug-ins

The OAM Server uses both authentication and authorization controls to limit access to
the resources that it protects. Authentication is governed by specific authenticating
schemes, which rely on one or more plug-ins that test the credentials provided by a
user when he or she tries to access a resource. The plug-ins can be taken from a
standard set provided with OAM Server installation, or custom plug-ins created by
your own Java developers.

This chapter provides the following sections:

■ Section 3.1, "Introduction to Authentication Plug-ins,"

■ Section 3.2, "Introduction to Plug-in Interfaces"

■ Section 3.3, "Sample Code: Custom Database User Authentication Plug-in"

■ Section 3.4, "Developing an Authentication Plug-in"

■ Section 3.5, "Adding Custom Plug-ins"

■ Section 3.6, "Creating a Custom Authentication Module for Custom Plug-ins"

■ Section 3.7, "Creating Authentication Schemes with Custom Authentication
Modules"

■ Section 3.8, "Configuring Logging for Custom Plug-ins"

3.1 Introduction to Authentication Plug-ins
Oracle Access Manager 11g provides authentication modules for immediate use
out-of-the-box, as well as the following:

■ Provides authentication plug-in interfaces and SDK tooling to build customized
authentication modules (plug-ins) to bridge the out-of-the-box features with
individual requirements. The new interfaces and SDK tooling:

– Provide backward compatibility to support custom Oracle Access Manager
10g plug-ins.

– Include a deterministic method to orchestrate custom plug-ins within an
authentication module.

■ Provides a mechanism that enables quick deployment of customized
authentication plug-ins into Oracle Access Manager 11g

■ Maintains the complete plug-in "State" lifecycle of Managed Server and the same
to be propagated to AdminServer

The creation of custom plug-ins for credential collection is supported for
authentication (steps you can orchestrate).

Introduction to Authentication Plug-ins

3-2 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

Figure 3–1 provides an overview of the tasks involved in custom plug-in deployment.

Figure 3–1 Custom Plug-in Deployment Workflow

The following overview identifies the tasks involved in custom plug-in deployment.

Task overview: Deploying a custom plug-in requirements
1. Planning: Identify the business requirements for this plug-in and consider the

authentication flow when a user requests a resource, as described in Section 3.1.2,
"About Planning, the Authentication Model, and Plug-ins" on page 3-4.

The security architect knows how Oracle Access Manager 11g is used and knows
the customer's user base. System architects can identify points of improvement in
a customer's implementation.

2. Development:

The developer translates what a security architect has designed into the actual
plug-in using common libraries to interface custom authentication modules.

a. Write the plug-in.

b. Write the metadata XML for the custom module.

c. Prepare the manifest.

d. Add the following jar files to the class path: felix.jar, identitystore.jar,
oam-plugin.jar, utilities.jar.

3. Deployment:

See Also: About the Plug-in Interfaces on page 3-6

Introduction to Authentication Plug-ins

Creating Custom Authentication Plug-ins 3-3

Oracle Access Manager administrators deploy and orchestrate multiple plug-ins to
work together in an authentication module and also tests and monitors plug-ins.

a. Adding Custom Plug-ins, which includes configuring the plug-in data source
or domain, distributing, and activating the plug-in.

b. Creating a Custom Authentication Module for Custom Plug-ins, which
includes adding and orchestrating steps and outcomes OnSuccess, OnFailure,
and OnError.

c. Creating Authentication Schemes with Custom Authentication Modules.

d. Configuring Logging for Custom Plug-ins.

e. Test the plug-in using the Oracle Access Manager Access Tester as described in
Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with
Oracle Security Token Service

f. Monitor the plug in and provide feedback to the security or system architects
to allow for any revisions to the business requirements and architecture.

3.1.1 About the Custom Plug-in Life Cycle
The life cycle of a plug-in centers around the ability to add plug-ins to the OAM Server
and use the plug-in to create more features. This allows users to build features and
work flows based on the standard (out-of-the-box) plug-ins and user-added plug-ins
that act as extension features to the server.

The following list outlines a typical plug-in life cycle:

■ Planning

■ Plug-in development time, includes generating the plug-in metadata artifact

■ Load and lifecycle of the plug-in

– Import: Upload the plug-in into Oracle Access Manager and use it without
restarting servers

– Distribute: Propagate the plug-in jar from one local AdminServer file system
to all manage servers in a cluster, without server downtime

– Activate: Load the plug-in implementation at run time when this plug-in is
used in any Authentication module flow

– Use the start-up parameters or configuration for the Plug-in

– "Push" and "pull" plug-in configuration data into oam-config.xml

– Maintain complete "State" life-cycle of Managed Server and the same to be
propagated to AdminServer

■ State of the deployed plug-in

■ Monitoring and auditing the plug-in

– Collect the matrix data of time taken to execute a plug-in and the number of
times the plug-in is executed

– Collect the matrix data of plug-in input and output

– Collect the matrix data of plug-in execution start time and end time

– Audit the plug-in life-cycle methods code

When a new plug-in JAR is available, the deployer can import it to AdminServer
DOMAIN_HOME/oam/plugins from the Oracle Access Suite "Import" action.

Introduction to Authentication Plug-ins

3-4 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

Table 3–1 describes the states of a plug-in life cycle that are controlled by Oracle
Access Manager administrators. For more information, see Section 3.5, "Adding
Custom Plug-ins".

3.1.2 About Planning, the Authentication Model, and Plug-ins
Plug-ins on the OAM Server are part of a custom authentication scheme. Different
types of plug-ins can be used for:

■ User Identity Mapping

Plug-ins can add functionality to deal with forms of user input not in the form of a
log-in username. Fingerprints, a series of security questions, and other methods
can be used. The plug-in translates these inputs and checks them against the
database.

■ User Authentication

Responses (not provided out-of-the-box) might be needed when authenticating the
user. Custom plug-ins can fulfill this need.

■ Custom Responses

Custom plug-ins can be used for responses and how these responses interact with
the rest of the system.

■ Other types of plug-ins are also supported

Figure 3–2 illustrates the authentication flow when a user requests a protected
resource. Remember that authentication is a process and not a protocol. The green
arrows are custom responses generated by plug-ins that are deployed on the OAM
Server.

Table 3–1 Plug-in Life Cycle States

State Description

Import Adds the plug-in JAR file to the AdminServer DOMAIN_HOME/oam/plugins and begins
plug-in validation.

Distribute Propagates the plug-in to all registered OAM Servers.

Activate After successful distribution the plug-in can be activated on all registered OAM Servers.

Deactivate Deactivation checks the plug-in entry flag in oam-config.xml.

If any OAM Server fails during the de-activation process, the "De-activation failed"
message is propagated.

Remove Removes the given plug-in (JAR) from DOMAIN_
HOME/config/fmwconfig/oam/plugins directory on AdminServer, which notifies all
OAM Servers.

Introduction to Authentication Plug-ins

Creating Custom Authentication Plug-ins 3-5

Figure 3–2 Authentication Model and Plug-ins

Before designing and developing custom authentication plug-ins, Oracle recommends
that developers analyze the Oracle Access Manager authentication decision process
closely to determine how a user should be authenticated.

When a certain request comes in, there are two possible ways to deal with it. One is to
have specific schemes be run depending on the attributes of the request, using a
decision engine to run one or multiple schemes to properly authenticate the user. This
requires less code within each scheme and allows for more modularity. The other
option is to have every scheme be hard-coded to deal with various attributes of
requests for specific purposes, not using a decision engine to piece together which
schemes need to be run (only one scheme is run).

Example: Decision Engine versus Hard-Coded Authentication
Suppose a user wants to log in to his online bank account using his home computer, at
midnight. Following overviews outline the processing differences between the
decision engine approach and the hard-coded approach. Developers must decide with
what approach best meets their requirements.

Process overview: Decision Engine Approach
The differences between the two approaches are simple but important.

1. The request comes from the user with a certain IP address at midnight.

2. The decision engine determines it has previously dealt with this IP address. It also
determines that a user trying to authenticate at midnight is suspicious and
requires the user to answer a security question, in addition to a username and
password.

3. The security question scheme is run for the specified user, and is successful. This is
the first of two authentication schemes selected by the decision engine.

4. The user-password scheme is run, and the user authenticates successfully. This is
the second authentication scheme selected by the decision engine.

Process overview: Hard-Coded Approach
1. The request comes from the user with a certain IP address at midnight.

2. The online bank account access scheme is chosen from among other authentication
schemes (credit card access scheme, new account creation and verification, and so
on).

Introduction to Plug-in Interfaces

3-6 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

3. The scheme first checks the IP address to determine if the user has previously
made attempts to connect from the computer. It determines the user has.

4. The scheme checks the time. It requires a security question to be answered, which
is answered successfully.

5. The scheme requires the user to enter his login credentials, and he authenticates
successfully.

Each approach has its own advantages and disadvantages. For the decision-engine
model, code re-use is the primary advantage, while the hard-coded approach may
result in more security. Developers will have to decide with what approach to go with.

3.2 Introduction to Plug-in Interfaces
This section provides the following topics:

■ About the Plug-in Interfaces

■ About Plug-in Hierarchies

3.2.1 About the Plug-in Interfaces
This topic introduces the hierarchy for packages, classes, interfaces, and annotations.

Custom plug-in implementation includes writing plug-in implementation class
artifacts. The plug-in implementation class must extend the
AbstractAuthenticationPlugIn class and implement initialize and
process methods. Custom plug-in implementers must implement actual custom
authentication processing logic in this method and return the final authentication
execution status.

A plug-in's configuration requirements must be given in XML format. This
configuration data (metadata) includes plug-in name, author, creation date, version,
interface class, implementation class, and configuration data in the form of Attribute /
Value pairs.

Oracle Access Manager 11g provides a generic plug-in interface and a more specific
authentication interface as described in:

■ Section 3.2.1.1, "GenericPluginService"

■ Section 3.2.1.2, "AuthnPluginService"

3.2.1.1 GenericPluginService
oracle.security.am.plugin

Table 3–2 Approach Comparison

Approach Description

Decision Engine Divides authentication schemes into smaller sequential
modules that can orchestrated to work together as needed.

Advantages:

■ Code re-use is the primary advantage.

■ Mirroring the approach of Oracle Adaptive Access
Manager is a secondary advantage.

Hard-coded Leaves nothing to be decided; resembles a complete set of
If-Else statements that the user must pass to authenticate.

Advantages: Could result in greater security.

Introduction to Plug-in Interfaces

Creating Custom Authentication Plug-ins 3-7

The public interface, oracle.security.am.plugin, is a generic plug-in interface
that provides methods to get plug-in name, plug-in implementation class name,
plug-in version, plug-in execution status, plug-in monitoring data, plug-in
configuration data, start and stop the plain.

AbstractAMPlugin

The public abstract class oracle.security.am.plugin.AbstractAMPlugin
extends java.lang.Object implements GenericPluginService,
org.osgi.framework.BundleActivator.

oracle.security.am.plugin.AbstractAMPlugin

This is a Abstract plug-in class that needs to be extended by all Access Management
plug-ins. This provides base implementations for plug-ins start and stop methods

3.2.1.2 AuthnPluginService
oracle.security.am.plugin.authn.AuthnPluginService

The public interface
oracle.security.am.plugin.authn.AuthnPluginService extends
GenericPluginService.

This is a authentication plug-in interface that provides an additional authentication
specific method to access and process all the data available in the
AuthenticationContext object and return the process execution status. Plug-in
can then set response that will be added to SESSION, request and redirect contexts.

AbstractAuthenticationPlugIn

The public abstract class
oracle.security.am.plugin.authn.AbstractAuthenticationPlugIn
extends AbstractAMPlugin implements AuthnPluginService.

oracle.security.am.plugin.authn.AbstractAuthenticationPlugIn

This is an authentication Abstract plug-in class that will be exposed to the plug-in
developers. All the custom plug-in implementations should extend this
AbstractPlugInService class. Plug-ins that needs to handle the resource cleanup
should override shutdown(Map < String, Object >
OAMEnvironmentContext) method. This will also provide an instance of
java.util.Logger to plug-ins.

3.2.2 About Plug-in Hierarchies
This topic provides a look at the hierarchies:

■ Figure 3–3, "Plug-in Package Hierarchy"

■ Figure 3–4, "Plug-in Class Hierarchy"

■ Figure 3–5, "Plug-in Interface Hierarchy"

■ Figure 3–6, "Plug-in Annotation Type Hierarchy"

■ Figure 3–7, "Plug-in Enum Hierarchy"

See Also: Oracle Fusion Middleware Oracle Access Manager Java API
Reference

See Also: Oracle Fusion Middleware Oracle Access Manager Java API
Reference

Introduction to Plug-in Interfaces

3-8 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

Figure 3–3 Plug-in Package Hierarchy

Figure 3–4 Plug-in Class Hierarchy

Sample Code: Custom Database User Authentication Plug-in

Creating Custom Authentication Plug-ins 3-9

Figure 3–5 Plug-in Interface Hierarchy

Figure 3–6 Plug-in Annotation Type Hierarchy

Figure 3–7 Plug-in Enum Hierarchy

3.3 Sample Code: Custom Database User Authentication Plug-in
This section provides snapshots of a sample implementation for a database user
authentication plug-in to illustrate developer tasks. The following topics are provided:

■ Sample Code: Database User Authentication Plug-in

Sample Code: Custom Database User Authentication Plug-in

3-10 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

■ Sample Plug-in Configuration Metadata Requirements

■ Sample Manifest for the Plug-in

■ Plug-in JAR File Structure

3.3.1 Sample Code: Database User Authentication Plug-in
Following figures illustrate a sample implementation for a Database user
authentication plug-in, which is presented in three parts:

■ Figure 3–8, "Database User Authentication Plug-in Part 1"

■ Figure 3–9, "Database User Authentication Plug-in Part 2"

■ Figure 3–10, "Database User Authentication Plug-in Part 3"

See Also: Oracle Fusion Middleware Oracle Access Manager Java API
Reference

Sample Code: Custom Database User Authentication Plug-in

Creating Custom Authentication Plug-ins 3-11

Figure 3–8 Database User Authentication Plug-in Part 1

Continued ..

Sample Code: Custom Database User Authentication Plug-in

3-12 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

Figure 3–9 Database User Authentication Plug-in Part 2

Continued...

Sample Code: Custom Database User Authentication Plug-in

Creating Custom Authentication Plug-ins 3-13

Figure 3–10 Database User Authentication Plug-in Part 3

3.3.2 Sample Plug-in Configuration Metadata Requirements
The plug-in's configuration requirements must be given in XML format.

Sample Code: Custom Database User Authentication Plug-in

3-14 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

This configuration data (metadata) includes plug-in name, plug-in author, creation
date, plug-in version, plug-in interface class, plug-in implementation class, and
plug-in configuration data in the form of Attribute / Value pairs.

Figure 3–11 shows the XML Schema Definition (XSD) file containing metadata for the
sample: Database User Authentication Plug-in implementation.

Figure 3–11 XSD Configuration Data: Database User Authentication Plug-in

Figure 3–12 shows the XML metadata for the sample: Database User Authentication
Plug-in.

Sample Code: Custom Database User Authentication Plug-in

Creating Custom Authentication Plug-ins 3-15

Figure 3–12 XML Metadata: Database User Authentication Plug-in

3.3.3 Sample Manifest for the Plug-in
Figure 3–13 illustrates the MANIFEST.MF file for the sample: Database User
Authentication Plug-in.

Figure 3–13 MANIFEST.MF for Sample Database User Authentication Plug-in

3.3.4 Plug-in JAR File Structure
The JAR file structure for the sample (Database User Authentication Plug-in) is listed
here:

■ <plugin>.xml

■ <plugin>.class (per the package structure, as shown in Section 3.2, "Introduction to
Plug-in Interfaces")

Developing an Authentication Plug-in

3-16 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

■ META-INF (MANIFEST.MF)

3.4 Developing an Authentication Plug-in
The developer translates what a security architect has designed into the actual plug-in
using common libraries to interface custom authentication modules.

This section guides as you develop an authentication plug-in for use with Oracle
Access Manager 11g authentication schemes. The following topics are discussed:

■ About Writing a Custom Authentication Plug-in

■ Writing a Custom Authentication Plug-in

■ JARs Required for Compiling a Custom Authentication Plug-in

3.4.1 About Writing a Custom Authentication Plug-in
Writing the custom plug-in implementation includes writing the plug-in
implementation class to:

■ Extend AbstractAuthenticationPlugIn class (see Section 3.2.1, "About the
Plug-in Interfaces")

■ Implement initialize method

■ Implement process method

Table 3–3 describes the methods required for the plug-in’s functionality.

Table 3–3 Required Plug-in Methods

Required Method Description

initialize Gives a handle to the PluginConfig object.

The PluginConfig object can be exercised to get plug-in specific
system configuration data that is entered when the plug-in is uploaded.
This data is required for the plug-in's own functionality

process Gives a handle to the AuthenticationContext object, which can be
exercised to get plug-in specific run time configuration data that is:

■ either updated at plug-in instance level

■ or updated during plug-in orchestration steps

The AuthenticationContext object extends PluginContext object
which gives different methods to get the:

■ plug-in configuration data

■ exception data

■ plug-in environment data

In addition, the AuthenticationContext object provides methods to
get the:

■ Authentication scheme

■ Authenticated Subject

■ Credential object

■ Run time policy resource

Developing an Authentication Plug-in

Creating Custom Authentication Plug-ins 3-17

3.4.2 Writing a Custom Authentication Plug-in
This section provides steps to write a custom authentication plug-in.

The following overview describes the actions a developer must take after the system
architect identifies the business requirements for this plug-in and considers the
authentication flow when a user requests a resource. For more information, see
Section 3.1.2, "About Planning, the Authentication Model, and Plug-ins".

Prerequisites
Introduction to Authentication Plug-ins

Sample Code: Custom Database User Authentication Plug-in

Task overview: Developers write a custom authentication plug-in
1. Extend AbstractAuthenticationPlugIn class and implement the following

methods (see also Section 3.4.1, "About Writing a Custom Authentication
Plug-in"):

■ Implement initialize method

■ Implement process method

2. Develop plug-in code using appropriate Oracle Access Manager 11g interfaces and
packages. See:

■ Section 3.1, "Introduction to Authentication Plug-ins"

■ Section 3.3, "Sample Code: Custom Database User Authentication Plug-in"

3. Prepare Metadata for the Custom Plug-in. See:

■ Section 3.3.2, "Sample Plug-in Configuration Metadata Requirements"

4. Prepare the Plug-in Jar file and manifest and turn these over to your deployment
team. See:

■ Section 3.3.3, "Sample Manifest for the Plug-in"

■ Section 3.3.4, "Plug-in JAR File Structure"

5. Proceed to:

■ Section 3.4.3, "JARs Required for Compiling a Custom Authentication Plug-in"

■ Section 3.5, "Adding Custom Plug-ins"

3.4.3 JARs Required for Compiling a Custom Authentication Plug-in
Several JAR files are required to compile a custom authentication plug-in. Those jars
can be found under:

■ extensibility_lifecycle.jar

■ . felix.jar

■ .felix-service.jar

■ oam-plugin.jar

Note: Custom plug-in developers must implement actual custom
authentication processing logic in this method and return the final
authentication execution status.

Adding Custom Plug-ins

3-18 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

These JAR files are located in the following path:

DOMAIN_HOME/servers/MANAGED_INSTANCE_NAME/tmp/_WL_user/oam_server/RANDOM_STRING
/APP-INF/lib

3.5 Adding Custom Plug-ins
This section provides the following topics:

■ About Managing Custom Plug-ins

■ Adding Custom Plug-ins

■ Deleting Custom Authentication Plug-ins

3.5.1 About Managing Custom Plug-ins
Custom authentication plug-ins can be created and used in custom authentication
modules, and, in turn, used in authentication schemes.

After development, the plug-in must be deployed on the admin server, as a JAR file,
which is validated automatically. After validation, an administrator can configure and
distribute the plug-in using the Oracle Access Suite.

The server processes the XML configuration file within the plug-in JAR file to extract
data about the plug-in. After the plug-in is imported, an administrator can see and
modify the various plug-in states based on information available from the
AdminServer.

Figure 3–14 illustrates the Plug-ins Node under the Common Configuration section of
the System Configuration tab, and the Plugins page. This page includes a tool bar with
command buttons, most of which operate on the plug-in that is selected in the table.
The table provides information about the existing custom plug-ins and their state. The
Plugin Details section at the bottom of the page reflects configuration details for the
selected plug-in the table.

Adding Custom Plug-ins

Creating Custom Authentication Plug-ins 3-19

Figure 3–14 Plug-ins Node Under Common Configuration and the Plugins Page

Administrators control plug-in states using the command buttons across the table at
the top of the Plugins page, as described in Table 3–4.

Adding Custom Plug-ins

3-20 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

Table 3–4 Managing Custom Plug-ins Actions

Action Description

Import Plugin... Adds the plug-in JAR file to the AdminServer DOMAIN_HOME/oam/plugins and
begins plug-in validation.

■ Same JAR Name: If the new plug-in JAR name (in DOMAIN_
HOME/oam/plugins) matches an existing plug-in JAR name (in DOMAIN_
HOME/config/fmwconfig/oam/plugins), Oracle Access Manager extracts new
configuration metadata from the XML file in the JAR (in DOMAIN_
HOME/oam/plugins) and checks the version of the new plug-in.

■ XML Version: If the new plug-in XML version (in DOMAIN_
HOME/oam/plugins) is greater than the existing XML version (in DOMAIN_
HOME/config/fmwconfig/oam/plugins), validation is successful. Otherwise,
"invalid plugin name with invalid version" is returned and the new plug-in JAR is
removed (from DOMAIN_HOME/oam/plugins).

■ Different JAR Name: If the new plug-in JAR name (in DOMAIN_
HOME/oam/plugins) is different then existing plug-in JAR names (in DOMAIN_
HOME/config/fmwconfig/oam/plugins), the new plug-in JAR is uploaded and
validation is successful.

On Success: Status is reported as "Uploaded" (even if an OAM Server is down). If all
registered OAM Servers report "Uploaded", then the status on AdminServer is also
"Uploaded".

On Failure: Status is reported as "Upload Failed"

See Also: "About the Custom Plug-in Life Cycle" in the Oracle Fusion Middleware
Developer's Guide for Oracle Access Manager and Oracle Security Token Service

Distribute Selected ... ■ Propagates the plug-in to all registered OAM Servers.

■ Sets the plug-in flag in oam-config.xml to "Distribute=true".

■ Starts the distribution listener and notification mechanism between AdminServer
and OAM Servers

■ Distributes the plug-in JAR from AdminServer node to each OAM Server node
under DOMAIN_HOME/config/fmwconfig/oam/plugins

On Success: Status is reported as "Distributed" (even if an OAM Server is down). If all
registered OAM Servers report "Distributed", then the status on AdminServer is also
"Distributed".

On Failure: Status is reported as "Distribution Failed"

Adding Custom Plug-ins

Creating Custom Authentication Plug-ins 3-21

Table 3–4 describes elements in the Plugins status table.

Activate Selected ... After successful distribution the plug-in can be activated on all registered OAM
Servers.

Activation:

■ Updates the plug-in flag in oam-config.xml to "Activate=true"

■ Starts the Message listener and notification mechanism between AdminServer
and OAM Servers

■ AdminServer sends message "Activate" to all registered OAM Servers

On Success: Status is reported as "Activated" (even if an OAM Server is down). If all
registered OAM Servers report "Activated", then the status on AdminServer is also
"Activated".

On Failure: Status is reported as "Activation Failed"

Following activation on all OAM Servers, the plug-in can be used and executed in any
authentication module construction or orchestration.

Deactivate Selected ... Following plug-in activation, an administrator can choose to deactivate the plug-in: if
the plug-in is not used in any authentication module or scheme, for example. The
selected plug-in from all registered OAM Servers.

Deactivate:

■ Updates the plug-in flag in oam-config.xml to "De-activate=true"

■ Starts the Distribution listener and notification mechanism between AdminServer
and OAM Servers

■ Removes the plug-in JAR from AdminServer and each registered OAM Server
(DOMAIN_HOME/config/fmwconfig/oam/plugins)

■ AdminServer sends message "De-activation" to all registered OAM Servers

■ OAM Servers send status message to AdminServer using the "Message" listeners
on both AdminServer and OAM Server

On Success: Status is reported as "De-activation" (even if an OAM Server is down). If
all registered OAM Servers report "De-activation", then the status on AdminServer is
also "De-activation". Plug-in configuration is removed from oam-config.xml.

Note: After deactivation, the plug-in cannot be used or executed in any authentication
module or orchestration.

On Failure: Status is reported as "De-activation Failed"

Remove Selected ... Following plug-in deactivation, an administrator can delete the selected plug-in.
During this process, Oracle Access Manager:

Delete:

■ Updates the plug-in flag in oam-config.xml to "Remove=true"

■ Starts the Distribution listener and notification mechanism between AdminServer
and OAM Servers

■ Removes the plug-in JAR from AdminServer and each registered OAM Server
(DOMAIN_HOME/config/fmwconfig/oam/plugins)

■ AdminServer sends message "Activate" to all registered OAM Servers

On Success: Status is reported as "Removed" (even if an OAM Server is down). If all
registered OAM Servers report "Removed", then the status on AdminServer is also
"Removed". Plug-in configuration is removed from oam-config.xml.

On Failure: Status is reported as "Removal Failed"

Table 3–4 (Cont.) Managing Custom Plug-ins Actions

Action Description

Adding Custom Plug-ins

3-22 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

In the Plugin Details section of the page, the Activation Status is maintained by the
AdminServer, as shown in Table 3–6.

Figure 3–15 Activation Status of the Selected Plug-in

Depending on your plug-in, various configuration details are extracted from the
configuration element of the XML metadata file to populate Configuration Parameters
in the Plugin Details section. Examples are shown in Table 3–6.

Table 3–5 Elements in the Plugins Status Table

Element Description

Plugin Name Extracted from the Plugin name element of the XML metadata file.

Description Extracted from the description element of the XML metadata file.

Activation Status Reported activation status based on information from AdminServer.

Type Extracted from the type element of the XML metadata file.

Last Updated on Extracted from the creation date element of the XML metadata file.

Last Updated by Extracted from the author element of the XML metadata file.

Adding Custom Plug-ins

Creating Custom Authentication Plug-ins 3-23

Table 3–6 Example of Plugin Details Extracted from XML Metadata File

Configuration
Element Description

DataSource

Kerberos Details Defines Kerberos details for his plug-in to use.

Adding Custom Plug-ins

3-24 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

3.5.2 Adding Custom Plug-ins
Users with valid administrator credentials can perform the following task to add,
validate, distribute, and activate a custom plug-in.

Prerequisites
Developing an Authentication Plug-in

To add the custom authentication plug-in
1. Import the Plug-in:

a. Go to the Oracle Access Suite and log in, as usual. For example:

https://hostname:port/oamconsole/

b. From the System Configuration tab, Common Configuration section, click
Plugins and then click Open from the Actions menu.

c. Click the Import Plugin button.

d. In the Import Plugin dialog box, click Browse and select the name of your
plug-in JAR file.

User Identification
Details

Defines the User Identity Store and filter details for this plug-in to use.

User Authentication
Details

Defines the User Identity Store for this plug-in to use.

X.509 Details Defines the certificate details for this plug-in to use.

Table 3–6 (Cont.) Example of Plugin Details Extracted from XML Metadata File

Configuration
Element Description

Adding Custom Plug-ins

Creating Custom Authentication Plug-ins 3-25

e. Review the message in the dialog box, then click Import.

The JAR file is validated as described in Oracle Fusion Middleware
Administrator's Guide for Oracle Access Manager with Oracle Security Token
Service.

2. Configure Parameters: Expand the Plugin Details section, click Configuration
Parameters, and enter appropriate information as needed. For example:

3. Distribute the Plug-in to OAM Servers:

a. In the Plugins table, click your plug-in name to select it.

b. Click the Distribute Selected button, then check its Activation Status.

4. Activate the Plug-in (and the custom plugin implementation class) so it is ready to
be used by OAM Server:

a. In the Plugins table, click your plug-in name to select it.

b. Click the Activate Selected button, then check its Activation Status.

Adding Custom Plug-ins

3-26 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

5. Perform the following tasks as needed:

■ Section 3.5.3, "Checking a Plug-in’s Activation Status"

■ Section 3.5.4, "Deleting Custom Authentication Plug-ins"

■ Section 3.6, "Creating a Custom Authentication Module for Custom Plug-ins"

3.5.3 Checking a Plug-in’s Activation Status
Users with valid administrator credentials can perform the following task to add,
validate, distribute, and activate a custom plug-in.

Prerequisites
Developing an Authentication Plug-in

To check the activation status of a custom authentication plug-i
1. From the System Configuration tab, Common Configuration section, click Plugins

and then click Open from the Actions menu.

2. In the Plugins table, click the desired plug-in name to select it.

3. Server Instance Name: Expand the Plugin Details section and click Activation
Status to display the location and status of the plug-in. For example:

4. Perform the following tasks as needed:

■ Section 3.5, "Adding Custom Plug-ins"

■ Section 3.5.4, "Deleting Custom Authentication Plug-ins"

■ Section 3.6, "Creating a Custom Authentication Module for Custom Plug-ins"

3.5.4 Deleting Custom Authentication Plug-ins
Users with valid administrator credentials can use the following procedure to
deactivate and then delete a custom plug-in.

When an administrator deletes a custom authentication plug-in, its name is not
removed from the list of plug-ins. To delete the plug-in (for the purpose of
re-importing the same plug-in later), the Administration must stop the WebLogic
Server and edit the oam-config.xml manually.

Prerequisites
Adding Custom Plug-ins

To delete a custom authentication plug-in
1. Go to the Oracle Access Suite and log in, as usual. For example:

https://hostname:port/oamconsole/

Creating a Custom Authentication Module for Custom Plug-ins

Creating Custom Authentication Plug-ins 3-27

2. From the System Configuration tab, Common Configuration section, click Plugins
and then click Open from the Actions menu.

3. Deactivate the Plug-in: You must perform this before removing a plug-in.

a. In the Plugins table, click your plug-in name to select it.

b. Click the Deactivate Selected button, then check the plug-ins Activation
Status.

4. Delete a Deactivated Plug-in:

a. In the Plugins table, click your plug-in name to select it.

b. Click the Delete Selected button.

c. Stop the WebLogic Administration Server, locate and edit oam-config.xml
manually to remove the deactivated plug-in, and then restart the WebLogic
Administration Server.

5. Perform the following tasks as needed:

■ Section 3.5, "Adding Custom Plug-ins"

■ Section 3.5.3, "Checking a Plug-in’s Activation Status"

■ Section 3.6, "Creating a Custom Authentication Module for Custom Plug-ins"

3.6 Creating a Custom Authentication Module for Custom Plug-ins
This section provides the following topics:

■ About Creating Custom Authentication Modules

■ Creating a Custom Authentication Module

3.6.1 About Creating Custom Authentication Modules
The Access Manager Settings section of the System Configuration navigation tree
includes the Authentication Modules node. When you create a custom authentication
module, you are presented with subtabs for each type of information required for the
module:

■ General

■ Steps

■ Step Orchestration

Figure 3–16 shows the Authentication Modules node in the Access Manager Settings
section of the System Configuration navigation tree, as well as the three subtabs where
you enter information for the module.

Creating a Custom Authentication Module for Custom Plug-ins

3-28 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

Figure 3–16 Custom Authentication Modules Node and General Subtab

The General subtab provides space for the module Name and an optional description.
The name can be up to 60 characters. The optional description can be up to 250
characters.

Figure 3–17 illustrates the Steps subtab and Details section for a custom authentication
module. Only valid values are accepted for each step as Plugin Parameters under Step
Details. Invalid values result in an error when you attempt to save the custom
authentication module. When adding Steps, there is no data to display in the table.
However, once there are one or more Steps the table and Details sections are
populated.

Creating a Custom Authentication Module for Custom Plug-ins

Creating Custom Authentication Plug-ins 3-29

Figure 3–17 Custom Authentication Module Steps Subtab and Details Section

When you add a new Step, the following dialog box appears. Information that you
enter is used to populate the table and Details sections of the page, as described in
Table 3–7.

Figure 3–18 Adding a Step

Table 3–7 describes the information required for adding a new step.

Table 3–7 Add New Step Entries, Steps Results Table, and Details Section

Element Description

Step Name The name that was entered when this step was added.

Description The optional description for this step, entered when this step was added.

Plugin Name The plug-in name that was selected when this step was added.

Creating a Custom Authentication Module for Custom Plug-ins

3-30 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

Figure 3–19 illustrates the Steps Orchestration subtab of a custom authentication
module, which is populated by information for each defined step (and the action you
choose for each operational condition).

Figure 3–19 Custom Authentication Module Steps Orchestration Subtab

Table 3–8 describes the elements on the Steps Orchestration subtab. The lists available
for OnSuccess, OnFailure, and OnError include the following choices:

■ success

■ failure

■ StepName (any step in the module can be selected as the action for an operational
condition)

3.6.2 Creating a Custom Authentication Module
Users with valid administrator credentials can use the following procedure to create
an authentication module that uses one or more custom authentication plug-ins that
were imported and activated in the Oracle Access Suite.

Step Details Details of the selected step in the results table, and Plugin configuration
details that were set when the plug-in was added and activated.

See Also: Table 3–6, " Example of Plugin Details Extracted from XML
Metadata File".

Table 3–8 Steps Orchestration Subtab

Element Description

Step Name The name that was entered when this step was added.

Description The optional description for this step, entered when this step
was added.

OnSuccess The action selected for successful operation of this step.

OnFailure The action selected for failure of this step.

OnError The action selected for an error when executing this step.

Note: You cannot duplicate an existing custom module to use as a
template.

Table 3–7 (Cont.) Add New Step Entries, Steps Results Table, and Details Section

Element Description

Creating a Custom Authentication Module for Custom Plug-ins

Creating Custom Authentication Plug-ins 3-31

Prerequisites
Developing an Authentication Plug-in

Adding Custom Plug-ins

To create a custom authentication module to use custom plug-ins
1. From System Configuration tab, Access Manager Settings section, expand the

Authentication Modules node.

2. From the navigation tree, click Custom Authentication Module.

3. Click the Create button in the tool bar.

4. Add General Information: Name and optional Description.

5. Add a Step to The Module:

a. Click the Steps subtab.

b. Click the Add button above the Steps table.

c. In the Add New Step dialog box, enter the Step Name and optional
Description.

d. Browse for and select the desired custom plug-in name and click OK.

e. Confirm information in the results table.

f. Repeat b through e to add other steps until you have listed all required
plug-ins for this module.

6. Configure Each Step: Use appropriate values for requested parameters:

a. Click a StepName in the table to reveal required details.

b. Enter valid values for the requested parameters.

c. Click the Save button.

d. Repeat a through c to configure each step appropriately.

7. Orchestrate Step Usage:

a. Click the Steps Orchestration subtab.

b. From the InitialStep list, choose the name of the first step to use.

c. Select a StepName in the table.

d. From the OnSuccess List, choose a condition (success or failure) or a step name
name.

e. From the OnFailure List, choose the desired condition or a StepName.

f. From the OnError List, choose the desired condition or a StepName.

g. Repeat c through e to orchestrate operations for each plug-in this module.

h. Review your orchestration.

8. Initiate Strategy Validation: Click Apply to initiate validation of your
orchestration strategy:

■ Successful Strategy: The orchestration strategy is applied and the module is
ready to include in an authentication scheme. Continue with Steps 9 and 10.

■ Invalid Strategy: Click OK in the Error box, then edit your OnSuccess,
OnFailure, OnError strategies (or add or remove plug-ins) to correct the
problem. Repeat this step until your strategy is successful.

Creating Authentication Schemes with Custom Authentication Modules

3-32 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

9. In the navigation tree, confirm the new Custom Authentication Module is listed,
and then close the page when you finish.

10. "Creating Authentication Schemes with Custom Authentication Modules".

3.7 Creating Authentication Schemes with Custom Authentication
Modules

Users with valid administrator credentials can use the following procedure to create a
new authentication scheme that includes a custom authentication module.

This is essentially the same procedure that you would use when creating an
authentication scheme with a standard authentication module. The only difference is
that you can choose authentication modules with orchestrated steps that are defined to
use custom plug-ins.

Prerequisites
Creating a Custom Authentication Module for Custom Plug-ins

To create a custom authentication scheme
1. From the Policy Configuration tab, navigation tree, expand the Shared

Components node.

2. Click the Authentication Schemes node, then click the Create button in the tool
bar.

3. Fill in the fresh Authentication Scheme page:

a. Name

b. Description

c. Authentication Level

d. Default

e. Challenge Method

f. Challenge Redirect

g. Authentication Module (includes those with custom plug-ins)

4. Click Apply to submit the new scheme (or close the page without applying
changes).

5. Dismiss the Confirmation window.

6. Optional: Click the Set as Default button to automatically use this with new
application domains, then close the Confirmation window.

7. In the navigation tree, confirm the new scheme is listed, and then close the page

3.8 Configuring Logging for Custom Plug-ins
Oracle Access Manager with Oracle Security Token Service uses the WebLogic Server
container’s logging defaults. To designate a custom Oracle Access Manager-specific

See Also: Oracle Fusion Middleware Administrator's Guide for Oracle
Access Manager with Oracle Security Token Service for details about
authentication schemes

Configuring Logging for Custom Plug-ins

Creating Custom Authentication Plug-ins 3-33

logger and log handler with required attributes for custom plug-ins, you can use
WLST commands as described here.

To modify the logger and handler for a custom plug-in
1. Confirm that the OAM Server is running.

2. Acquire the custom WLST script for Oracle Access Manager. For example:

<ORACLE_HOME>/common/bin/wlst.sh

3. Connect to the WebLogic Server and log in as the WebLogic administrator. For
example:

sh wlst.sh wls:/offline> connect ('adminID','password','adminURL')

4. List available loggers for the custom plug-in. For example:

wls:/base_domain/serverConfig> listLoggers(pattern="oracle.oam.*",target="oam_
server1")

Here pattern= represents the oam.controller component and target= represents the
desired OAM Server as it was specified during registration.

5. View the list of Oracle Access Manager loggers associated with this OAM Server.
For example:

Logger | Level
--+-----------------
oracle.oam | <Inherited>
oracle.oam.commonutil | <Inherited>
oracle.oam.config | <Inherited>
oracle.oam.controller | <Inherited>
...

6. Modify the oracle.oam.controller log level based on your requirements. For
example, TRACE:32 with no persistence:

wls:/base_domain/serverConfig> domainRuntime()
wls:/base_domain/domainRuntime> setLogLevel(logger="oracle.oam.controller",
level="TRACE:32", persist="0", target="oam_server1")

7. Repeat step 4 to list the loggers again and verify the log level change. For example:

wls:/base_domain/serverConfig> listLoggers(pattern="oracle.oam.*",target="oam_
server1")

Logger | Level
--+-----------------
oracle.oam | <Inherited>
oracle.oam.commonutil | <Inherited>
oracle.oam.config | <Inherited>
oracle.oam.controller | TRACE:32
...

8. Verify the generated log file to confirm the controller is logged at the designated
level:

DOMAIN_HOME/server/SERVER_INSTNCE_NAME/logs/

See Also: Oracle Fusion Middleware Administrator's Guide for Oracle
Access Manager with Oracle Security Token Service

Configuring Logging for Custom Plug-ins

3-34 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

9. Add a custom Oracle Access Manager-specific logger and log handler to specify a
log file path and required attributes, as follows:

a. Add oam logger, as follows:

wls:/base_domain/serverConfig> domainRuntime>
wls:/base_domain/domainRuntime> setLogLevel(logger="oracle.oam",level="WAR
NING", persist="0", target="oam_server1")

b. Add a custom log handler and associate it with oam logger, as shown here:

wls:/base_domain/domainRuntime> configureLogHandler(name="oam-log-handler",
target="oam_server1", rotationFrequency="daily", retentionPeriod="week",
path="${domain.home}/oamlogs", maxFileSize ="10485760", maxLogSize =
"104857600",addHandler="true", handlerType="oracle.core.ojdl.logging.ODLHan
dlerFactory", addToLogger="oracle.oam")

wls:/base_domain/domainRuntime>configureLogHandler(name="oam-log-handler",
addProperty="true", propertyName="supplementalAttributes",
propertyValue="OAM.USER, OAM.COMPONENT", target="oam_server1")

c. Verify that all the OAM logs appear in the DOMAIN_HOME/oamlogs folder.

10. Verify the generated log file to confirm the controller is logged at the TRACE:32
level:

DOMAIN_HOME/server/SERVER_INSTNCE_NAME/logs/

4

Writing Oracle Security Token Service Module Classes 4-1

4Writing Oracle Security Token Service
Module Classes

This chapter discusses Oracle Access Manager 11g and Oracle Security Token Service
custom token options. It includes the following sections:

■ Section 4.1, "Introduction to Oracle Security Token Service Custom Token Module
Classes"

■ Section 4.2, "Writing a TokenValidatorModule Class"

■ Section 4.3, "Writing a TokenIssuanceModule Class"

■ Section 4.4, "Making Custom Classes Available"

■ Section 4.5, "Managing a Custom Oracle Security Token Service Configuration"

4.1 Introduction to Oracle Security Token Service Custom Token Module
Classes

When Oracle Security Token Service does not support the token that you want to
validate or issue out-of-the-box, you can write your own validation and issuance
module classes. One of the two (validation or issuance class) is required for custom
tokens:

■ Oracle Security Token Service uses the custom validation class to validate a
custom token.

■ Oracle Security Token Service uses the custom issuance class to issue a custom
token.

The following overview outlines the tasks you must perform.

Task overview: Deploying custom token module classes
1. Writing a TokenValidatorModule Class to validate a custom token with Oracle

Security Token Service, if needed.

2. Writing a TokenIssuanceModule Class to issue a custom token with Oracle
Security Token Service, if needed.

Note: One of the two (validation or issuance class) is required for
custom tokens.

Writing a TokenValidatorModule Class

4-2 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

3. Making Custom Classes Available to create a Custom Token module that will
allow the user to create Validation Templates and Issuance Templates for their
custom token.

4. Managing a Custom Oracle Security Token Service Configuration to create
Validation and Issuance Templates for the custom token, and use the custom
templates in Endpoints and Partner Profiles as you would use the templates of
standard tokens.

4.2 Writing a TokenValidatorModule Class
This section provides the following topics:

■ About Writing a TokenValidatorModule Class

■ Writing a TokenValidatorModule Class

4.2.1 About Writing a TokenValidatorModule Class
The Oracle Security Token Service Validation module class implements the
oracle.security.fed.sts.token.tpe.TokenValidatorModule
interface. The following properties can be fetched from the TokenContext during
the validation process:

■ XML_TOKEN: The bytes of the XML message that contains the token that must be
validated.

■ BST_VALUE_TYPE: If the custom token is sent as a Binary Security Token, this
will contain the Binary Security Token value type.

■ BST_ENCODING: If the token is sent as a Binary Security Token, this will contain
the encoding.

■ BST_CONTENT: If the token is sent as a Binary Security Token, this will contain
the Binary Security Token content.

■ TOKEN_ELEMENT: If the token is not a binary security token and does not have a
jaxb representation in the Oracle Security Token Service internal classes, this will
contain the XML element or custom JAXB class representing the token.

■ XML_DOM: This is the DOM representation of the incoming message. This will be
present only if a DOM object was created as a part of Oracle Security Token
Service processing thus far.

The token should be validated using the information in the properties in the
TokenContext and a TokenResult should be returned. The following properties
can be set on a TokenResult object to return information to Oracle Security Token
Service:

■ TPE_RESULT_FAILURE_CODE: The failure code if there was a failure.

■ TPE_RESULT_FAILURE_STRING: A string describing the failure.

■ Any other properties that are set in the result are available in the context to be
used for token mapping. Usually, validators set STS_SUBJECT_ID property to the
name ID and use this to map to a user record.

See the following figures contain examples for the full implementation of
EmailTokenValidatorModuleImplforBinary.java:

■ Figure 4–1, "Part 1: EmailTokenValidatorModuleImplforBinary.java"

■ Figure 4–2, "Part 2: EmailTokenValidatorModuleImplforBinary.java"

Writing a TokenValidatorModule Class

Writing Oracle Security Token Service Module Classes 4-3

Figure 4–1 Part 1: EmailTokenValidatorModuleImplforBinary.java

Writing a TokenValidatorModule Class

4-4 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

Figure 4–2 Part 2: EmailTokenValidatorModuleImplforBinary.java

The following overview outlines development highlights for this module class.

Development highlights: Writing a TokenValidatorModule class
1. Implement the init(Map options) method, called when the

TokenValidatorModule is initialized. The init method is passed in a map
containing the parameters defined in the validation template.

2. Implement the validate(TokenContext context) method, called when a
particular incoming custom token must be validated.

a. Fetch token information from the properties in the TokenContext object.

b. Validate the token and return a TokenResult object:

On Success, return:

TokenResultImpl result = new TokenResultImpl(0, TokenResult.SUCCESS,
token);

On Failure, return:

TokenResultImpl result = new TokenResultImpl(0, TokenResult.FAILURE,
token);
result.setTokenProperty("TPE_RESULT_FAILURE_CODE", failureCode);
result.setTokenProperty("TPE_RESULT_FAILURE_STRING", "validation failed");

c. Confirm the validated token result returns the NameId in the token and any
attributes that are parsed from the token, in the following format:

result.setTokenProperty(TPEConstants.NAMEID_VALUE, emailAddress);

 //attributes
List attributeList = new ArrayList();
Return any other properties that should be available in the context for :
token mapping and issuance by setting the properties on the result
result.setTokenProperty(name, value);
Return any other properties that should be available in the context for
token mapping and issuance by setting the properties on the result as
follows: result.setTokenProperty(name, value);
emailAttribute.put(TPEConstants.SAML_ATTRIBUTE_NAMESPACE, null);
List attributeValues = new ArrayList();
attributeValues.add(emailAddress);
emailAttribute.put(TPEConstants.SAML_ATTRIBUTE_VALUES, attributeValues);
attributeList.add(emailAttribute);

Writing a TokenIssuanceModule Class

Writing Oracle Security Token Service Module Classes 4-5

result.setTokenProperty(TPEConstants.TOKEN_ATTRIBUTES, attributeList);

4.2.2 Writing a TokenValidatorModule Class
Perform the following tasks to write a custom TokenValidatorModule class.

Task overview: Writing a TokenValidatorModule class
1. Develop your own module class while referring to:

■ Section 4.2.1, "About Writing a TokenValidatorModule Class"

■ Oracle Security Token Service Java API Reference

2. Proceed as needed:

■ Section 4.3, "Writing a TokenIssuanceModule Class"

■ Section 4.4, "Making Custom Classes Available"

4.3 Writing a TokenIssuanceModule Class
This section provides the following topics:

■ About Writing a TokenIssuanceModule Class

■ Writing a TokenIssuanceModule Class

4.3.1 About Writing a TokenIssuanceModule Class
The EmailTokenIssuerModuleImpl.java class should implement the
oracle.security.fed.sts.token.tpe.TokenIssuerModule interface and
attributes in the TokenContext.

See Figure 4–3 for an example. The overview that follows outlines development
highlights for this module class.

Writing a TokenIssuanceModule Class

4-6 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

Figure 4–3 EmailTokenIssuerModuleImpl.java

Writing a TokenIssuanceModule Class

Writing Oracle Security Token Service Module Classes 4-7

Development highlights: Writing a TokenIssuanceModule class
1. Implement the public void init(Map options)throws

TokenProcessingException method.

The init() method is called when the issuer module is initialized. The init
method is passed a map contain the parameters defined in the issuance template.

2. Implement the public TokenResult issue(TokenContext context)
throws TokenProcessingException method.

This method is called when a custom outgoing token must be created.

a. Create, within the issue method, the token using the attributes in the
issuance template and the attributes passed in the TokenContext. Attributes
in the TokenContext are accessed in the following way:

List attributes =
(List)context.getOtherProperties().get(TPEConstants.TOKEN_ATTRIBUTES);
String emailAddress = null;
HashMap attributes = (HashMap)context.getOtherProperties().get("STS_TOKEN_
ATTRIBUTES");
Object valueObj = attributes.get("mail"); //valuesObj will be a list if
mail has more than 1 value;
if(attributes != null)
attrIter = attributes.iterator();
if(attrIter != null){
HashMap attributes = (HashMap)context.getOtherProperties().get("STS_TOKEN_
ATTRIBUTES");
Object valueObj = attributes.get("mail"); //valuesObj will be a list if
mail has more than 1 value.
Map<String, Object> attribute = attrIter.next();
String attributeName = (String)attribute.get(TPEConstants.SAML_ATTRIBUTE_
NAME);
if("mail".equals(attributeName)){
{Object valuesObj = attribute.get(TPEConstants.SAML_ATTRIBUTE_VALUES);
if(valuesObj instanceof List) { Iterator iter =
((List)valuesObj).iterator(); while(iter.hasNext())
{Object valueObj = iter.next(); if(valueObj instanceof String)

}
}else if(valuesObj instanceof String)
Unknown macro: { emailAddress = (String)valuesObj; }
}

b. Create a result object and set the bytes of the token and the Document Object
Model (DOM) representation of the token (only if the DOM representation
was created during the processing in this class):

token.setTokenDocument(null);--> if you have a doc object that can be
reuse.d set it here
token.setTokenBytes(tokenBytes);
TokenResult result = new TokenResultImpl(0, TokenResult.SUCCESS, token);

c. Set the key identifier information into the token properties, as follows:

Map resultMap = new HashMap();
 resultMap.put("STS_KEY_IDENTIFIER_VALUE", emailAddress);
 resultMap.put("STS_KEY_IDENTIFIER_VALUE_TYPE", "EmailAddress");
 result.setTokenProperties(resultMap);

Making Custom Classes Available

4-8 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

4.3.2 Writing a TokenIssuanceModule Class

Task overview: Writing an Issuance Module class
1. Write the issuance module class as you refer to Section 4.3.1, "About Writing a

TokenIssuanceModule Class" and Oracle Security Token Service Java API Reference.

2. Proceed to Section 4.4, "Making Custom Classes Available"

4.4 Making Custom Classes Available
This section describes how to make custom classes available to Oracle Access Manager
11g using the console.

The information here can be applied when you have:

■ WS-Security User Name Token

■ WS-Trust Custom Token

■ Issuing Custom Token

This section provides the following topics:

■ About Making Classes Available

■ About Narrowing a Search for Custom Tokens

■ Managing Custom Tokens

4.4.1 About Making Classes Available
After writing the custom token validation and/or issuance classes, you must add
Custom Token Configuration to Oracle Security Token Service to indicate when and
how these classes should be used.

On the New Custom Token page only the Token Type Name is required (identified
with an asterisk, *), as shown in Figure 4–4. Not all elements apply to all custom
tokens. However, if you submit information that is incomplete, a dialog box appears to
identify what is missing.

Note: You can also write a script that includes WebLogic Scripting
Tool commands for any operation that you can accomplish through
the console. For more information, see Oracle Fusion Middleware
WebLogic Scripting Tool Command Reference.

Making Custom Classes Available

Writing Oracle Security Token Service Module Classes 4-9

Figure 4–4 New Custom Token Page

After successful submission of new custom token details, the saved page is available
for editing as shown in Figure 4–5.

Figure 4–5 Custom Token Definition: email

For the custom token, you must decide on the XML Element Name, XML Element
Namespace, Binary Security Token Type, and so on. Table 4–1 describes the elements
on a Custom Token page based on the examples in this chapter.

Making Custom Classes Available

4-10 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

Table 4–1 New Custom Token Elements

Element Description

Token Type Name The unique name you choose for this custom token. For
example:

email_token

Note: After you save a new custom token configuration, you
cannot edit this name.

Default Token URI The URI for this custom token. This URI can then be used in
the RST to request that a custom token of this type should be
issued. For the example in this chapter, the value would be:

oracle.security.fed.sts.customtoken.email

XML Element Name The name you decide on, which will be associated with the
Token Type Name. For example:

email

If you specify email as the XML Element Name, each time the
element name, email, appears in an incoming token it will be
associated with the Token Type Name (in this case email_
token).

Note: Minimally, you need either an XML Element Name or
Binary Security Token Type.

Validation Classname The name of the custom token validation class that you made
available to Oracle Security Token Service. For example:

oracle.security.fed.sts.tpe.providers.email.EmailToken
ValidatorModuleImpl

Note: Minimally, you need either an issuance class name or
validation class name, depending on whether you want to
issue or validate a custom token.

XML Element Namespace The namespace of the custom token element name. For
example:

http://email.example.com

Issuance Classname The name of the custom token issuance class that you made
available to Oracle Security Token Service. For example:

oracle.security.fed.sts.tpe.providers.email.EmailToken
IssuerModuleImpl

Note: Minimally, you need either an Issuance classname or
Validation classname, depending on whether you want to
issue or validate a custom token.

Binary Security Token Type Enables the class to validate a custom token sent in as a
BinarySecurityToken.

The ValueType of the BinarySecurityToken for this custom
token. If Oracle Security Token Service receives a Binary
Security Token with this valuetype, it will be forwarded to this
custom token's Validation class for validation.

Validation Attributes This section enables you to add (or remove) validation
attributes. The table displays existing validation attributes, if
any. For this example:

■ Attribute Name: testsetting

■ Attribute Type: String

Note: You will add a value to the attribute when creating a
Token Validation Template.

Making Custom Classes Available

Writing Oracle Security Token Service Module Classes 4-11

Task overview: Adding custom tokens for custom classes
1. Create a JAR file containing only your custom TokenIssuerModule or

TokenValidatorModule classes (or both). No XML metadata or manifest is
needed.

2. Review information in Figure 4–5 and Table 4–1.

3. Add the JAR to the OAM Server hosting Oracle Security Token Service and create
a new custom token, as described in Section 4.4.3, "Managing Custom Tokens".

4.4.2 About Narrowing a Search for Custom Tokens
Figure 4–6 illustrates the Custom Tokens Search controls and Results table. These
appear when you double-click the Custom Tokens node in the navigation tree. By
default, all currently defined custom tokens are listed when the Search Results table is
displayed.

Figure 4–6 Custom Tokens Search Page and Controls

Table 4–2 describes the Custom Tokens Search elements and controls. No wild cards (*)
are allowed in Custom Token searches.

Issuance Attributes This section enables you to add (or remove) issuance
attributes. The table displays the following information for
existing issuance attributes.

■ Attribute Name: testsetting

■ Attribute Type: String

Note: You will add a value to the attribute when creating a
Token Issuance Template.

Save Click this button on the New Custom Tokens page to save your
configuration information.

Cancel Click this button to dismiss your configuration details.

Apply Click this button to submit your changes.

Revert Click this button to dismiss your changes.

Table 4–1 (Cont.) New Custom Token Elements

Element Description

Making Custom Classes Available

4-12 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

Table 4–2 Custom Tokens Search Elements and Controls

Element Description

Default Token URI The URI that was defined for the custom token. You can enter
the entire URI or only part of it. For instance, if you enter "ai"
the Search Results table will display all custom tokens defined
with a token URI that includes the letters "ai".

Note: Wild cards are not allowed in Custom Token searches.

Search Initiates the Search function using criteria provided in the
form.

Reset Resets the Search form with defaults only.

Search Results Provides the results of your search based on your choices in
the View menu.

Actions menu Provides the following functions that can be performed on a
selection in the results table:

Note: Actions menu functions mirror command buttons above
the results table. For example:

■ New Custom Token: Click the New Custom Token button
at the top of the Search page, or select New Custom
Token from the menu, or click the + button above the
table.

■ Edit: Double-click a name in the Token Type Name
column of the Search Results table, or select Edit from the
Actions menu, or click the Edit (pencil icon) command
button above the Results Table.

■ Create Like: Select the desired row in the table and either
select Create Like from the Actions menu, or click the
Create Like command button above the table

■ Remove: Select the desired row in the table and either
select Delete from the Actions menu, or click the Delete
(X) command button above the table.

View menu Provides functions you can use to display various information
in the results table:

Making Custom Classes Available

Writing Oracle Security Token Service Module Classes 4-13

4.4.3 Managing Custom Tokens
Users with valid administrator credentials can use the procedure in this section to
manage custom tokens for custom Token Module classes.

The following procedure includes steps to add, edit, and delete custom tokens or
attributes of a custom token. Skip any steps that you do not need.

Prerequisites
Writing a TokenValidatorModule Class

Writing a TokenIssuanceModule Class

To make custom classes available
1. Create and add the JAR containing your Issuance and Validation classes to the

OAM Server hosting Oracle Security Token Service using one of these methods:

■ Add the custom token jar and the sts-common.jar that is available in
DOMAIN_HOME/config/fmwconfig/mbeans/oam to the Managed Server
classpath by editing the startup script.

■ Add the custom token jar and the sts-common.jar that is available in
DOMAIN_HOME/config/fmwconfig/mbeans/oam to the DOMAIN_
HOME/lib directory to automatically add these jars to the Managed Server
classpath.

■ Restart the OAM Server.

2. New Custom Token: From the Oracle Access Suite System Configuration tab,
open the Security Token Services section and:

a. Double-click the Custom Tokens node to open the page.

b. Click the New Custom Token button.

c. Fill in the New Custom Token page with details for your custom classes
(Table 4–1).

d. Click Save and dismiss the confirmation window (or click Cancel to dismiss
the page without submitting it).

e. Close the page (or edit as described in Step 4).

f. Proceed to Step 4, if needed, or to Section 4.5, "Managing a Custom Oracle
Security Token Service Configuration".

3. Find Custom Tokens: From the Security Token Service section of the System
Configuration tab:

Controls affecting the ordering of items listed in the results
table:

■ Ascending

■ Descending

See Also:

■ Section 4.4.1, "About Making Classes Available"

■ Section 4.4.2, "About Narrowing a Search for Custom Tokens"

Table 4–2 (Cont.) Custom Tokens Search Elements and Controls

Element Description

Managing a Custom Oracle Security Token Service Configuration

4-14 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

a. Find All: Double-click the Custom Tokens node to display a results table with
all custom tokens listed.

b. Narrow the Search: Enter some or all characters in the desired Default Token
URI, click the Search Button, and review the results table.

c. Reset the Search Form: Click the Reset button.

4. Edit Custom Token Configuration: Start with the saved page you just created.

Alternatively: Use Step 3 to find the desired Custom Token, then double-click the
name in the Search Results table to open the page.

a. In the named Custom Token page, click the appropriate field and edit as
needed.

b. Add Attributes: Click the Add (+) icon for the Attributes table, enter the
Attribute Name and an Attribute Type (Table 4–1).

c. Remove Attributes: From the Attributes table, click the row containing the
attribute to remove, click the Delete (X) icon for the table, and dismiss the
Confirmation window.

d. Apply Changes: Click the Apply button at the top of the page to submit
changes.

5. Remove a Custom Token:

a. Click the desired name in the Search Results table to select the item to remove.

b. From the Actions menu, click Delete (or click the Delete (X) command button
above the table.

c. Click the Delete button in the Confirmation window (or click No to cancel the
operation).

4.5 Managing a Custom Oracle Security Token Service Configuration
This tasks consists of the following procedures:

■ Creating the Validation Template

■ Creating the Issuance Template for a Custom Token

■ Adding the Custom Token to a Requester Profile

■ Adding the Custom Token to the Relying Party Profile

■ Mapping the Token to a Requestor

■ Creating an /wssuser EndPoint

4.5.1 Creating the Validation Template
Users with valid Oracle Access Manager administrator credentials can perform the
following task to create a Validation Template with a Token Protocol of Webservice
Trust to map the token to the requester.

The template in this example can be used for the module classes described earlier in
this chapter. Full implementation details are shown in the following figures. As you
review these, notice how specifications for this template reference the module class
code:

■ Figure 4–7, "General Details: email-wstrust-valid-temp"

Managing a Custom Oracle Security Token Service Configuration

Writing Oracle Security Token Service Module Classes 4-15

■ Figure 4–8, "Token Mapping: email-wstrust-valid-temp"

Figure 4–7 General Details: email-wstrust-valid-temp

Figure 4–8 Token Mapping: email-wstrust-valid-temp

To create the validation template for the custom module classes
1. Display the list of existing Token Validation Templates.

 Oracle Access Suite
 System Configuration
 Security Token Services
 Token Validation Templates

2. Click the New Validation Template button in the upper-right corner (or click the
Add (+) command button above the Search Results table).

3. General: Set the following for use with the custom token.

See Also: Oracle Fusion Middleware Administrator's Guide for Oracle
Access Manager with Oracle Security Token Service

Managing a Custom Oracle Security Token Service Configuration

4-16 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

Validation Template Name: email-wstrust-valid-temp

Token Protocol: Webservice Trust

Token Type: email

Default Partner Profile: requester-profile

Custom Validation Attributes: testsetting: hello

4. Token Mapping: Set the following for use with the custom token in this chapter.

Check the box beside Map Token To User (to enable it).

Check the box beside Enable Simple User Mapping and enter:

 User Token Attribute: STS_SUBJECT_ID
 Datastore Attribute: mail

5. Click Save and dismiss the confirmation window.

6. Proceed to "Creating the Issuance Template for a Custom Token".

4.5.2 Creating the Issuance Template for a Custom Token
This is a server side configuration. Users with valid Oracle Access Manager
administrator credentials can perform the following task to create a Token Issuance
Template.

Each Token Issuance Template indicates how to construct a token, and which signing
or encryption to use when constructing a token. Each Token Issuance Template also
defines the attributes to be sent as part of the outbound token for mapping, and
filtering data. However, Issuance Templates do not list mapping or filtering rules,
which are defined in the Relying Party Partner Profile.

The template in this example can be used for the email custom token described earlier
in this chapter. Implementation details are shown in the following figures, and
described in the accompanying procedure. As you review these, notice how
specifications for this template reference the module class code:

■ Figure 4–9, "General Details: email-issuance-temp"

■ Figure 4–10, "Issuance Properties: email-issuance-temp"

Figure 4–9 General Details: email-issuance-temp

Managing a Custom Oracle Security Token Service Configuration

Writing Oracle Security Token Service Module Classes 4-17

When you have a custom token type deployed, the Issuance Properties are tailored to
accommodate the custom token. For instance, the custom email token type was chosen
for the issuance template show in Figure 4–10.

Figure 4–10 Issuance Properties: email-issuance-temp

This procedure produces a companion Issuance Template for the custom module
classes in this chapter. For the example:

■ Ignore the Token Encryption Algorithm, which is not used for the custom token
type: email.

■ Fill in a value for the Custom Token Attribute, which is populated from the
custom token code.

To create the Issuance Template for the custom module classes
1. Go to the list of existing Token Issuance Templates.

 Oracle Access Suite
 System Configuration
 Security Token Services
 Token Issuance Templates

2. New Token Issuance Template:

a. Click the New Issuance Template button in the upper-right corner (or click the
Add (+) command button above the Search Results table).

b. General: Set the following for use with the custom token in this chapter.

 Issuance Template Name: email-issuance-temp
 Token Type: email

c. Click Save and dismiss the confirmation window (or click Cancel without
saving).

d. Issuance Properties: Set the following for use with the custom token in this
chapter.

 Custom Token Attribute Value: world

e. Click Apply and dismiss the confirmation window (or click Revert without
saving it).

See Also: Oracle Fusion Middleware Administrator's Guide for Oracle
Access Manager with Oracle Security Token Service

Managing a Custom Oracle Security Token Service Configuration

4-18 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

f. Close the definition (or edit it as described in Step 4).

3. Edit a Template: Start with the saved page you just created.

Alternatively: Use Step 3 to find the desired template and click the name in the
Search Results table to display the definition.

a. Edit details as needed.

b. Click the Apply button at the top of the page to submit changes (or Revert to
undo your changes).

4.5.3 Adding the Custom Token to a Requester Profile
You can either edit an existing requester profile to add your custom token to the Token
Type Configuration table, or create a new requester profile to use with the custom
token. Either way, configure:

■ Token Type: email (your custom token)

■ Validation Template: email-wstrust-valid-temp

Prerequisites
Your Custom Token and Validation Template must be defined.

To create or edit a requester profile for the custom token
1. From the Oracle Access Suite System Configuration tab, open the Security Token

Services section.

2. In the navigation tree, open the Partner Profiles node and double-click the
Requestor Profiles node to display a list of existing profiles

3. Existing Profile:

a. In the Search Results table of the Requester Profiles page, click the name of the
desired profiles.

b. Token and Attributes: Fill in the following details for the custom token in this
chapter and then click the Save button at the top of the page.

 Token type: email
 Validation Template: email-wstrust-valid-temp

c. Click Save, dismiss the confirmation window, and close the page (or click
Cancel to dismiss the page without submitting it).

d. Proceed to Section 4.5.4, "Adding the Custom Token to the Relying Party
Profile".

4. New Profile: Click the New Requester Profile button to display the New Partner
Profile page where you enter details:

a. General: Fill in the following details for the custom token in this chapter and
then click the Next button at the top of the page.

 Profile ID: unique_requesterprofile_name
 Default Relying Party Profile: unique_relyingparty_name

b. Add Token Type Configuration: Fill in the following details for the custom
token in this chapter and then click the Save button at the top of the page.

 Token type: email
 Validation Template: email-wstrust-valid-temp

Managing a Custom Oracle Security Token Service Configuration

Writing Oracle Security Token Service Module Classes 4-19

c. Proceed to Section 4.5.4, "Adding the Custom Token to the Relying Party
Profile".

4.5.4 Adding the Custom Token to the Relying Party Profile
You can either edit an existing Relying Party profile, or create a new one to issue the
custom token by default, and refer to the Issuance Template and related information.
Either way, configure:

■ Default token to issue: email (your custom token)

■ Issuance Template: email-issuance-temp

Prerequisites
Your Custom Token and Issuance Template must be defined.

To edit the requester profile for the custom module classes
1. From the Oracle Access Suite System Configuration tab, open the Security Token

Services section.

2. In the navigation tree, open the Partner Profiles node and double-click the Relying
Party Profiles node to display a list of existing profiles.

3. Existing Profile:

a. In the Search Results table of the Relying Party Profiles page, click the name of
the desired profile.

b. Click the Token and Attributes tab.

c. Token Type Configuration: Click the Add (+) button above the Token Type
Configuration table and enter the following details:

 Token type: email
 Issuance Template: email-issuance-temp

d. Attributes: Click the Add (+) button above the Attributes table and define the
following:

 Attribute name: mail
 Store Type: Userstore
 Include in Token: (check to enable)
 Encryption (leave blank)
 Value (leave blank)

e. Click Apply, dismiss the confirmation window, and close the page (or click
Cancel to dismiss the page without submitting it).

4. New Profile: Click the New Relying Party Profile button to display the New
Partner Profile page where you enter details:

a. General: Fill in the following details for the custom token in this chapter and
then click the Next button at the top of the page.

 Profile ID: unique_relyingparty-name
 Default Token: email

b. Click the Token and Attributes tab and perform Steps 2c and 2d, then click
Apply.

Managing a Custom Oracle Security Token Service Configuration

4-20 Developer's Guide for Oracle Access Manager and Oracle Security Token Service

4.5.5 Mapping the Token to a Requestor
If you don't have a Username Validation Template (username-wss-valid-template), use
the Oracle Access Suite to create one to map the token to the requester.

Validation Template Name: username-wss-valid-template

Token Type: Username

Proceed to Section 4.5.6, "Creating an /wssuser EndPoint"

4.5.6 Creating an /wssuser EndPoint

Prerequisites
"Mapping the Token to a Requestor"

To create an endpoint
1. From the Oracle Access Suite System Configuration tab, open the Security Token

Services section.

2. Double-click the Endpoints node to display a list of existing Endpoints.

3. New Endpoint:

a. Click the Add (+) button above the table (or choose New Endpoint from the
Actions menu).

b. Enter the new Endpoint URI: /wssuser

c. Choose the Oracle WSM policy: sts/wss_username_service_policy

d. Choose the Validation Template: username-wss-validation-template.

e. Click Apply to submit the definition and dismiss the confirmation window (or
click Revert to dismiss the page without submitting it).

f. Close the page.

	Content
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	Product and Component Name Changes
	Oracle Access Manager 11g Software Developer Kit

	1 Introduction to this Book
	1.1 Chapter 2: Introduction to the Access SDK and API
	1.2 Chapter 3: Creating Custom Authentication Plug-ins
	1.3 Chapter 4: Writing Oracle Security Token Service Module Classes
	1.4 Introduction to Java API References

	2 Introduction to the Access SDK and API
	2.1 Introduction to the Access SDK
	2.2 Locating Access SDK Packages and Resources
	2.3 Uses, Functionality, and New Features
	2.4 Messages, Exceptions and Logging
	2.4.1 Messages
	2.4.2 Exceptions
	2.4.3 Logging

	2.5 Configuring and Deploying Access Clients
	2.5.1 Configuration Requirements
	2.5.2 Generating the Required Configuration Files
	2.5.3 SSL Certificate and Key Files
	2.5.3.1 Simple Transport Security Mode
	2.5.3.2 Cert Transport Security Mode

	2.6 Developing Access Clients
	2.6.1 Introduction to Access Clients
	2.6.1.1 When to Create a Custom Access Client
	2.6.1.2 Access Client Architecture
	2.6.1.3 Overview of Access Client Request Processing

	2.6.2 Structure of an Access Client
	2.6.2.1 Typical Access Client Execution Flow
	2.6.2.2 Example of a Simple Access Client: JAccess Client.java
	2.6.2.3 Example: Java Login Servlet
	2.6.2.4 Example Using Additional Methods: access_test_java.java
	2.6.2.5 Example of Implementing Certificate-Based Authentication in Java

	2.7 Building and Deploying an Access Client Program
	2.7.1 Setting the Development Environment
	2.7.2 Compiling a New Access Client Program
	2.7.3 Configuring and Deploying a New Access Client Program

	2.8 Compatibility: 11g versus 10g Access SDK and APIs
	2.8.1 Compatibility of the Access SDK
	2.8.2 Compatibility of 10g JNI ASDK and 11g Access SDK
	2.8.3 Deprecated: Oracle Access Manager 10g JNI SDK

	2.9 Migrating Earlier Applications or Converting Your Code
	2.9.1 Modifying Your Development and Runtime Environment
	2.9.2 Migrating Your Application
	2.9.2.1 Configuration Specific to Migration

	2.9.3 Converting Your Code
	2.9.3.1 Understanding Differences Between JNI ASDK and Access SDK
	2.9.3.2 Converting Code

	2.10 Best Practices
	2.10.1 Avoiding Problems
	2.10.1.1 Thread Safe Code

	2.10.2 Identifying and Resolving Problems

	3 Creating Custom Authentication Plug-ins
	3.1 Introduction to Authentication Plug-ins
	3.1.1 About the Custom Plug-in Life Cycle
	3.1.2 About Planning, the Authentication Model, and Plug-ins

	3.2 Introduction to Plug-in Interfaces
	3.2.1 About the Plug-in Interfaces
	3.2.1.1 GenericPluginService
	3.2.1.2 AuthnPluginService

	3.2.2 About Plug-in Hierarchies

	3.3 Sample Code: Custom Database User Authentication Plug-in
	3.3.1 Sample Code: Database User Authentication Plug-in
	3.3.2 Sample Plug-in Configuration Metadata Requirements
	3.3.3 Sample Manifest for the Plug-in
	3.3.4 Plug-in JAR File Structure

	3.4 Developing an Authentication Plug-in
	3.4.1 About Writing a Custom Authentication Plug-in
	3.4.2 Writing a Custom Authentication Plug-in
	3.4.3 JARs Required for Compiling a Custom Authentication Plug-in

	3.5 Adding Custom Plug-ins
	3.5.1 About Managing Custom Plug-ins
	3.5.2 Adding Custom Plug-ins
	3.5.3 Checking a Plug-in’s Activation Status
	3.5.4 Deleting Custom Authentication Plug-ins

	3.6 Creating a Custom Authentication Module for Custom Plug-ins
	3.6.1 About Creating Custom Authentication Modules
	3.6.2 Creating a Custom Authentication Module

	3.7 Creating Authentication Schemes with Custom Authentication Modules
	3.8 Configuring Logging for Custom Plug-ins

	4 Writing Oracle Security Token Service Module Classes
	4.1 Introduction to Oracle Security Token Service Custom Token Module Classes
	4.2 Writing a TokenValidatorModule Class
	4.2.1 About Writing a TokenValidatorModule Class
	4.2.2 Writing a TokenValidatorModule Class

	4.3 Writing a TokenIssuanceModule Class
	4.3.1 About Writing a TokenIssuanceModule Class
	4.3.2 Writing a TokenIssuanceModule Class

	4.4 Making Custom Classes Available
	4.4.1 About Making Classes Available
	4.4.2 About Narrowing a Search for Custom Tokens
	4.4.3 Managing Custom Tokens

	4.5 Managing a Custom Oracle Security Token Service Configuration
	4.5.1 Creating the Validation Template
	4.5.2 Creating the Issuance Template for a Custom Token
	4.5.3 Adding the Custom Token to a Requester Profile
	4.5.4 Adding the Custom Token to the Relying Party Profile
	4.5.5 Mapping the Token to a Requestor
	4.5.6 Creating an /wssuser EndPoint

