

Oracle® Fusion Middleware
Solution Guide for Oracle TopLink

11g Release 1 (11.1.1)

E25034-02

March 2012

This document describes a number of scenarios, or use cases,
that illustrate TopLink features and typical TopLink
development processes.

Oracle Fusion Middleware Solution Guide for Oracle TopLink, 11g Release 1 (11.1.1)

E25034-02

Copyright © 1997, 2012 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xi

Audience... xi
Documentation Accessibility .. xii
Related Documents .. xii
Conventions .. xii

1 Introduction

1.1 About This Book.. 1-1
1.2 What You Need to Know First.. 1-1
1.3 The Use Cases.. 1-2

2 Using TopLink with WebLogic Server

2.1 Understanding TopLink and WebLogic Server ... 2-1
2.1.1 Advantages to Using TopLink with WebLogic Server .. 2-1
2.1.2 The Relationship of TopLink to Other Fusion Middleware Products 2-2
2.2 What You Need to Start ... 2-3
2.3 Main Tasks ... 2-4
2.3.1 Task 1: Set TopLink as the Default JPA Provider (WebLogic Server 11g)................... 2-4
2.3.2 Task 2: Apply the Patch to Support JPA 2.0 in WebLogic Server 11g.......................... 2-5
2.3.3 Task 3: Update the Version of EclipseLink in WebLogic Server 2-5
2.3.4 Task 4: Configure JMX MBean Extensions in WebLogic Server................................... 2-7
2.3.5 Task 5: Use or Reconfigure the Logging Integration.. 2-8
2.3.5.1 How the Logging Integration Works... 2-8
2.3.5.2 Viewing Persistence Unit Logging Levels in the Administration Console.......... 2-9
2.3.5.3 Overriding the Default Logging Integration .. 2-9
2.3.5.4 Configuring WebLogic Server to Expose TopLink Logging.................................. 2-9
2.3.5.5 Other Considerations .. 2-10
2.3.6 Task 6: Add Persistence to Your Java Application Using TopLink........................... 2-10
2.3.7 Task 7: Configure a Data Source... 2-11
2.3.7.1 Ways to Configure Data Sources for JPA Applications 2-11
2.3.7.2 Configure a Globally-Scoped JTA Data Source .. 2-11
2.3.7.2.1 Create the Data Source in WebLogic Server... 2-11
2.3.7.2.2 Configure persisence.xml.. 2-12
2.3.7.3 Configure an Application-Scoped JTA Data Source .. 2-12
2.3.7.3.1 Specify That the Data Source Is Application-Scoped.................................... 2-12

iv

2.3.7.3.2 Add the JDBC Module to the WebLogic Application Configuration 2-13
2.3.7.3.3 Configure the JPA Persistence Unit to Use the JTA Data Source................ 2-13
2.3.7.4 Configure a non-JTA Data Source and Manage Transactions in the Application

2-14
2.3.7.5 Make Sure the Settings Match ... 2-14
2.3.8 Task 8: Extend the Domain to Use Advanced Oracle Database Features 2-15
2.3.9 Task 10: Start WebLogic Server and Deploy the Application 2-16
2.3.10 Task 11: Run the Application.. 2-16
2.3.11 Task 12: Configure and Monitor Persistence Settings in WebLogic Server 2-16
2.4 Additional Resources .. 2-17
2.4.1 Code Samples .. 2-17
2.4.2 Related Javadoc... 2-17

3 Using TopLink with GlassFish Server

3.1 Understanding TopLink and GlassFish Server .. 3-1
3.1.1 Advantages to Using TopLink with GlassFish Server ... 3-1
3.1.2 Relationship of GlassFish Server and TopLink to Fusion Middleware Products 3-2
3.2 What You Need to Start ... 3-3
3.3 Main Tasks ... 3-4
3.3.1 Task 1: Add Object-XML (JAXB) Support to GlassFish Server (optional)................... 3-4
3.3.2 Task 2: Set Up the Datasource.. 3-5
3.3.2.1 Integrate the JDBC Driver for Oracle Database into GlassFish Server 3-5
3.3.2.2 Create a JDBC Connection Pool for the Resource.. 3-6
3.3.2.3 Create the JDBC Resource ... 3-6
3.3.3 Task 3: Create the persistence.xml File... 3-7
3.3.3.1 Specify the Persistence Provider .. 3-8
3.3.3.2 Specify an Oracle Database ... 3-8
3.3.3.3 Specify Logging .. 3-9
3.3.4 Task 4: Set Up GlassFish Server for JPA.. 3-10
3.3.5 Task 5: Create the Application.. 3-10
3.3.6 Task 6: Deploy the Application to GlassFish Server ... 3-11
3.3.7 Task 7: Run the Application.. 3-11
3.3.8 Task 8: Monitor the Application... 3-11
3.4 Additional Resources .. 3-11

4 Using Multiple Databases with a Composite Persistence Unit

4.1 Understanding the Composite Persistence Unit .. 4-1
4.1.1 Composite Persistence Unit Requirements.. 4-2
4.2 Main Tasks ... 4-2
4.2.1 Task 1: Configure the Composite Persistence Unit... 4-3
4.2.2 Task 2: Use Composite Persistence Units... 4-3
4.2.3 Task 3: Deploy Composite Persistence Units .. 4-3
4.3 Additional Resources ... 4-4
4.3.1 Javadoc .. 4-4

v

5 Scaling TopLink Applications in Clusters

5.1 Understanding Scaling TopLink Applications in Clusters... 5-1
5.2 Main Tasks ... 5-2
5.2.1 Task 1: Configure Cache Consistency... 5-2
5.2.1.1 Disabling the Shared Cache .. 5-2
5.2.1.2 Refreshing the Cache ... 5-3
5.2.1.3 Setting Cache Expiration ... 5-4
5.2.1.4 Setting Optimistic Locking.. 5-4
5.2.1.5 Using Cache Coordination .. 5-5
5.2.2 Task 2: Ensure TopLink is Enabled... 5-8
5.2.3 Task 3: Ensure All Application Servers are Part of the Cluster 5-8
5.3 Additional Resources ... 5-8
5.3.1 Code Samples ... 5-9
5.3.2 Related JavaDoc ... 5-9

6 Providing Software as a Service

6.1 Understanding Oracle TopLink as a SaaS... 6-1
6.2 Making JPA Entities Extensible .. 6-1
6.2.1 Main Tasks .. 6-2
6.2.1.1 Task 1: Configure the Entity ... 6-2
6.2.1.1.1 Annotate the Entity Class with @VirtualAccessMethods 6-2
6.2.1.1.2 Add get and set Methods to the Entity .. 6-2
6.2.1.1.3 Add a Data Structure .. 6-3
6.2.1.1.4 Use XML ... 6-3
6.2.1.2 Task 2: Design the Schema .. 6-3
6.2.1.3 Task 3: Provide Additional Mappings .. 6-4
6.2.1.4 Task 4: Configure Persistence Properties and the Data Repository...................... 6-4
6.2.1.4.1 Configure persistence.xml ... 6-4
6.2.1.4.2 Configure the EntityManagerFactory and the Metadata Repository 6-4
6.2.1.4.3 Refresh the Metadata Repository.. 6-5
6.2.2 Code Examples... 6-5
6.3 Making JAXB Beans Extensible .. 6-7
6.3.1 Main Steps... 6-7
6.3.1.1 Task 1: Configure the Bean ... 6-7
6.3.1.1.1 Annotate the Bean Class with @Xml VirtualAccessMethods 6-7
6.3.1.1.2 Add get and set Methods to the Bean .. 6-8
6.3.1.1.3 Add a Data Structure .. 6-8
6.3.1.1.4 Use XML ... 6-8
6.3.1.2 Task 2: Provide Additional Mappings .. 6-9
6.3.2 Code Examples... 6-9
6.3.2.1 Basic Setup... 6-9
6.3.2.2 Define the Tenants... 6-11
6.4 Using Single-Table Multi-Tenancy.. 6-14
6.4.1 Main Tasks ... 6-15
6.4.1.1 Task 1: Enable Single-Table Multi-Tenancy .. 6-15
6.4.1.2 Task 2: Specify Tenant Discriminator Columns.. 6-15

vi

6.4.1.3 Task 3: Use the Discriminator Column at Run Time.. 6-18
6.4.2 Additional Resources ... 6-19
6.4.2.1 Code Samples... 6-19
6.4.2.2 Related Javadoc.. 6-19
6.5 Using an External Metadata Source ... 6-19
6.5.1 Using the eclipselink-orm.xml File Externally ... 6-19
6.5.2 Main Tasks ... 6-19
6.5.2.1 Task 1: Configure the Persistence Unit... 6-20
6.5.2.1.1 Accessing a Fixed Location ... 6-20
6.5.2.1.2 Accessing an Application Context Based Location 6-20
6.5.2.2 Task 2: Configure the Server.. 6-20
6.5.3 Additional Resources ... 6-21
6.5.3.1 Javadoc .. 6-21

7 Mapping JPA to XML

7.1 Understanding JPA-to-XML Mapping Concepts ... 7-1
7.1.1 XML Binding .. 7-1
7.1.2 JAXB... 7-2
7.1.3 MOXy .. 7-2
7.1.4 XML Data Representation .. 7-2
7.2 Binding JPA Entities to XML... 7-3
7.2.1 Main Tasks for Binding JPA Relationships to XML ... 7-3
7.2.1.1 Task 1: Define the Accessor Type and Import Packages .. 7-4
7.2.1.2 Task 2: Map Privately Owned Relationships ... 7-4
7.2.1.2.1 Mapping a One-to-One and Embedded Relationship 7-4
7.2.1.2.2 Mapping a One-to-Many Relationship .. 7-5
7.2.1.3 Task 3: Map the Shared Reference Relationship.. 7-5
7.2.1.3.1 Mapping a Many-to-One Shared Reference Relationship............................... 7-6
7.2.1.3.2 Mapping a Many-to-Many Shared Reference Relationship............................ 7-6
7.2.1.4 JPA Entities .. 7-7
7.2.2 Main Tasks for Binding Compound Primary Keys to XML.. 7-9
7.2.2.1 Task1: Define the XML Accessor Type.. 7-9
7.2.2.2 Task 2: Create the Target Object... 7-9
7.2.2.3 Task 3: Create the Source Object ... 7-10
7.2.3 Main Tasks for Binding Embedded ID Classes to XML.. 7-11
7.2.3.1 Task 1: Define the XML Accessor Type.. 7-11
7.2.3.2 Task 2: Create the Target Object.. 7-11
7.2.3.3 Task 3: Implement DescriptorOrganizer as EmployeeCustomizer Class 7-12
7.2.3.4 Task 4: Create the Source Object ... 7-13
7.2.3.5 Task 5: Implement the DescriptorCustomizer as PhoneNumberCustomizer Class...

7-13
7.2.4 Using the EclipseLink XML Binding Document .. 7-14
7.3 Main Tasks for Mapping Simple Java Values to XML Text Nodes 7-14
7.3.1 Task 1: Mapping a Value to an Attribute .. 7-15
7.3.1.1 Mapping from the Java Object .. 7-15
7.3.1.2 Defining the Mapping in OXM Metadata Format .. 7-16
7.3.2 Task 2: Mapping a Value to a Text Node .. 7-16

vii

7.3.2.1 Mapping a Value to a Simple Text Node ... 7-16
7.3.2.1.1 Mapping by Using JAXB Annotations .. 7-16
7.3.2.1.2 Defining the Mapping in OXM Metadata Format... 7-17
7.3.2.2 Mapping Values to a Text Node in a Simple Sequence 7-17
7.3.2.2.1 Mapping by Using JAXB Annotations .. 7-17
7.3.2.2.2 Defining the Mapping in OXM Metadata Format... 7-18
7.3.2.3 Mapping a Value to a Text Node in a Subelement ... 7-19
7.3.2.3.1 Mapping by Using JAXB Annotations .. 7-19
7.3.2.3.2 Defining the Mapping in OXM Metadata Format... 7-20
7.3.2.4 Mapping Values to a Text Node by Position... 7-20
7.4 Main Tasks for Using XML Metadata Representation to Override JAXB Annotations 7-21
7.4.1 Task 1: Define Advanced Mappings in the XML... 7-22
7.4.2 Task 2: Configure Usage in JAXBContext ... 7-22
7.4.3 Task 3: Specify MOXy as the JAXB Implementation... 7-23
7.5 Using XPath Predicates for Mapping.. 7-23
7.5.1 Understanding XPath Predicates ... 7-23
7.5.2 Main Tasks for Mapping Based on an Attribute Value .. 7-24
7.5.2.1 Task 1: Create the Customer Class Entity .. 7-24
7.5.2.2 Task 2: Create the Address Class Entity... 7-25
7.5.2.3 Task 3: Create the PhoneNumber Class Entity ... 7-26
7.5.3 Self-Mappings ... 7-27
7.6 Using Dynamic JAXB/MOXy .. 7-27
7.6.1 Main Tasks for Using Dynamic JAXB/MOXy ... 7-28
7.6.1.1 Task 1: Bootstrap a Dynamic JAXBContext from an XML Schema 7-28
7.6.1.1.1 The XML Schema.. 7-28
7.6.1.1.2 Handling Schema Import/Includes .. 7-29
7.6.1.1.3 Implementing and Passing EntityResolver .. 7-30
7.6.1.1.4 Error Handling.. 7-30
7.6.1.1.5 Specifying a Class Loader .. 7-31
7.6.1.2 Task 2: Create Dynamic Entities and Marshal Them to XML............................. 7-31
7.6.1.3 Task 3: Unmarshal the Dynamic Entities from XML ... 7-31
7.6.1.3.1 Get Data from the DynamicEntity ... 7-32
7.6.1.3.2 Use DynamicType to Introspect Dynamic Entity.. 7-32
7.7 Additional Resources .. 7-32
7.7.1 Code Samples .. 7-32
7.7.2 Related Javadoc... 7-32
7.7.2.1 Java Architecture for XML Binding (JAXB) Specification 7-32
7.7.2.2 Mapping Objects to XML (MOXy) Specification .. 7-32

8 Testing TopLink JPA Outside a Container

8.1 Understanding JPA Deployment.. 8-1
8.1.1 Using an EntityManager... 8-1
8.2 Configuring the persistence.xml File ... 8-1
8.2.1 Main Tasks .. 8-2
8.2.1.1 Task 1: Use the persistence.xml File .. 8-2
8.2.1.2 Task 2: Instantiate the EntityManagerFactory.. 8-2
8.3 Using a Property Map .. 8-2

viii

8.3.1 Main Tasks .. 8-2
8.3.1.1 Task 1: Configure the persistence.xml File ... 8-2
8.3.1.2 Task 2: Configure the Bootstrapping API .. 8-3
8.3.1.3 Task 3: Instantiate the EntityManagerFactory.. 8-3
8.4 Additional Resources ... 8-4
8.4.1 Javadoc .. 8-4

9 Enhancing TopLink Performance

9.1 Performance Features... 9-1
9.1.1 Object Caching ... 9-1
9.1.1.1 Caching Annotations ... 9-1
9.1.1.2 Using the @Cache Annotation.. 9-2
9.1.2 Querying ... 9-2
9.1.2.1 Read-Only Queries ... 9-3
9.1.2.2 Join Fetching Feature ... 9-3
9.1.2.3 Batch Reading ... 9-3
9.1.2.4 Fetch Size ... 9-3
9.1.2.5 Pagination ... 9-4
9.1.2.6 Cache Usage .. 9-4
9.1.3 Enhancing Mapping Performance .. 9-4
9.1.3.1 Indirection ("Lazy Loading") .. 9-4
9.1.3.2 Read-Only Classes.. 9-5
9.1.3.3 Weaving ... 9-5
9.1.4 Transactions.. 9-5
9.1.5 Database .. 9-6
9.1.5.1 Connection Pooling .. 9-6
9.1.5.2 Parameterized SQL and Statement Caching .. 9-7
9.1.5.3 Batch Writing .. 9-7
9.2 Using Tools to Monitor and Optimize TopLink-Enabled Applications 9-7
9.2.1 Main Tasks .. 9-8
9.2.2 Task 1: Measure TopLink Performance with the TopLink Profiler.............................. 9-8
9.2.2.1 Enabling the TopLink Profiler .. 9-9
9.2.2.2 Accessing and Interpreting Profiler Results ... 9-9
9.2.3 Task 2: Identify Sources of Application Performance Problems 9-10
9.2.4 Task 3: Modify Poorly Performing Application Components 9-10
9.2.4.1 Identifying General Performance Optimizations ... 9-10
9.2.4.2 Schema .. 9-10
9.2.4.3 Mappings and Descriptors... 9-11
9.2.4.4 Sessions ... 9-11
9.2.4.5 Cache ... 9-12
9.2.4.6 Data Access... 9-12
9.2.4.7 Queries .. 9-12
9.2.4.8 Unit of Work... 9-13
9.2.4.9 Application Server and Database Optimization ... 9-14
9.2.5 Task 4: Measure Performance Again ... 9-14

ix

10 Migrating From Hibernate to TopLink

10.1 Understanding Hibernate... 10-1
10.2 Main Tasks .. 10-2
10.2.1 Task 1: Convert the Hibernate Entity Annotation ... 10-2
10.2.1.1 Convert the Select Before Update, Dynamic Insert and Update Attributes 10-2
10.2.1.2 Convert the Optimistic Lock Attribute... 10-3
10.2.2 Task 2: Convert the Hibernate Custom Sequence Generator Annotation................ 10-3
10.2.3 Task 3: Convert Hibernate Mapping Annotations .. 10-4
10.2.3.1 Convert the @ForeignKey Annotation ... 10-4
10.2.3.2 Convert the @Cache Annotation ... 10-4
10.2.4 Task 4: Modify the persistence.xml File .. 10-4
10.2.4.1 Modified persistence.xml ... 10-5
10.2.4.2 Drop and Create the Database... 10-5
10.2.5 Task 5: Convert Hibernate API to EclipseLink API .. 10-5
10.3 Additional Resources .. 10-6

A Installing Oracle TopLink

A.1 System Requirements and Certifications ... A-1
A.1.1 Additional Requirements .. A-1
A.2 Installing a Stand Alone Instance of Oracle TopLink... A-1
A.3 Installing Oracle TopLink and EclipseLink with Oracle WebLogic Server A-2
A.4 Installing Oracle TopLink with Oracle Containers for Java EE .. A-2
A.5 Installing EclipseLink with Oracle Containers for Java EE ... A-2

x

xi

Preface

Oracle TopLink delivers a proven standards-based enterprise Java solution for all of
your relational and XML persistence needs based on high performance and scalability,
developer productivity, and flexibility in architecture and design.

Audience
A variety of engineers use Oracle TopLink. Users of Oracle TopLink are expected to be
proficient in the use of technologies and services related to Oracle TopLink (for
example, JPA). This document does not include details about related common tasks,
but focuses on Oracle TopLink functionality.

Application Developers--Users who want to develop applications using any of the
following technologies for persistence services:

■ Java Persistence Architecture (JPA) 2.x plus TopLink JPA extensions

■ Java Architecture for XML Binding 2.x (JAXB) plus TopLink Object-XML
extensions

■ TopLink Database Web Services (DBWS)

Developers should be familiar with the concepts and programming practices of Java
SE and Java EE.

Developers using TopLink JPA should be familiar with the concepts and programming
practices of JPA 2.0, as specified in the Java Persistence Architecture 2.0 specification at
http://jcp.org/en/jsr/detail?id=317.

Developers using TopLink Object-XML should be familiar with the concepts and
programming practices of JAXB 2.0, as specified in the Java Architecture for XML
Binding 2.0 specification at
http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.html.

Developers using TopLink DBWS should be familiar with the concepts and
programming practices of JAX-WS 2.0, as specified in the Java API for XML-Based
Web Services 2.0 specification at
http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.html

Administrator/Deployer--Users who want to deploy and manage applications using
TopLink persistence technologies. These users should be familiar with basic operations
of the chosen application server.

xii

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents:

■ Oracle Fusion Middleware Oracle TopLink Concepts

■ Oracle Fusion Middleware Java API Reference for Oracle TopLink

■ EclipseLink Documentation Center at
http://wiki.eclipse.org/EclipseLink/UserGuide

■ "Oracle TopLink" in Oracle Fusion Middleware Release Notes for Linux x86

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction 1-1

1Introduction

Oracle TopLink is a powerful and flexible Java persistence framework for storing Java
objects in a relational database or for converting Java objects to XML documents.
TopLink provides APIs and a run-time environment for implementing the persistence
layer of Java EE applications.

TopLink is based on (and includes) EclipseLink, the open source persistence
framework from the Eclipse Foundation. For more information about the EclipseLink
project, see "Eclipse Persistence Services Project (EclipseLink) wiki home" at
http://wiki.eclipse.org/EclipseLink. For the EclipseLink Documentation,
Center see http://wiki.eclipse.org/EclipseLink/Documentation_
Center.

1.1 About This Book
This book, Solutions Guide for Oracle TopLink, documents a number of scenarios, or use
cases, that illustrate TopLink features and typical TopLink development processes.
These are not tutorials that lead you step-by-step through every task required to
complete a project. Rather, they document general processes and key details for
solving particular problems and then provide links to other documentation for more
information.

1.2 What You Need to Know First
To make good use of this documentation, you should already be familiar with the
following:

■ The concepts and programming practices of Java SE and Java EE. In the current
release, TopLink supports Java EE 6. However, the current release of WebLogic
Server (documented in several use cases) only supports Java EE 5. For more
information, see the following:

Java

– Java home page:
http://www.oracle.com/us/technologies/java/index.html

– Java EE 5 Tutorial:
http://download.oracle.com/javaee/5/tutorial/doc/bnbpy.htm
l

– Java EE 6 Tutorial:
http://download.oracle.com/javaee/6/tutorial/doc/bnbpy.htm
l

The Use Cases

1-2 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

– Any of the thousands of books and web sites devoted to Java.

Oracle Java EE Application Servers

– Oracle WebLogic Server home page:
http://www.oracle.com/technetwork/middleware/weblogic/over
view/index.html

– Oracle Glassfish Server home page:
http://www.oracle.com/technetwork/middleware/glassfish/ove
rview/index.html

Oracle Java EE Integrated Development Environments

– Oracle JDeveloper:
http://www.oracle.com/technetwork/developer-tools/jdev/ove
rview/index.html

– Oracle Enterprise Pack for Eclipse (OEPE):
http://www.oracle.com/technetwork/developer-tools/eclipse/
overview/index.html

■ TopLink is based on EclipseLink from the Eclipse Foundation. See the following:

– EclipseLink project home: http://wiki.eclipse.org/EclipseLink

– EclipseLink Documentation Center:
http://wiki.eclipse.org/EclipseLink/Documentation_Center

■ If you are working with TopLink Java Persistence Architecture, you should be
familiar with the concepts and programming practices of JPA 2.0, as specified in
the Java Persistence API, Version 2.0 specification at
http://jcp.org/en/jsr/detail?id=317.

■ If you are working with TopLink MOXy, you should be familiar with the concepts
and programming practices of JAXB 2.0, as specified in the The Java Architecture for
XML Binding (JAXB) 2.0 specification at
http://jcp.org/en/jsr/detail?id=222.

■ Developers using TopLink DBWS should be familiar with the concepts and
programming practices of JAX-WS 2.0, as specified in the Java API for XML-Based
Web Services (JAX-WS) 2.0 specification at
http://jcp.org/en/jsr/detail?id=224.

■ Support for RESTful (Representational State Transfer) Web Services in the Java
Platform at http://jcp.org/en/jsr/detail?id=311

1.3 The Use Cases
The use cases documented in this book are as follows:

■ Chapter 2, "Using TopLink with WebLogic Server" - How to use TopLink as the
persistence provider for TopLink Java Persistence Architecture (JPA) 2.0
applications deployed to WebLogic Server.

■ Chapter 3, "Using TopLink with GlassFish Server" - How to use TopLink as the
persistence provider for TopLink Java Persistence Architecture (JPA) 2.0
applications deployed to GlassFish Server.

■ Chapter 4, "Using Multiple Databases with a Composite Persistence Unit" - How
to expose multiple persistence units (each with unique sets of entity types) as a
single persistence context.

The Use Cases

Introduction 1-3

■ Chapter 5, "Scaling TopLink Applications in Clusters" - How to configure TopLink
applications to ensure scalability in clustered application server environments.

■ Chapter 6, "Providing Software as a Service" - How to make JPA entities or JAXB
beans extensible; how to use multi-tenancy; and how to use an external metadata
source.

■ Chapter 7, "Mapping JPA to XML" - How to map JPA entities to XML using
TopLink MOXy.

■ Chapter 8, "Testing TopLink JPA Outside a Container" - How to test your TopLink
application outside the container.

■ Chapter 9, "Enhancing TopLink Performance" - Getting the best performance out
of Oracle TopLink.

■ Section 10, "Migrating From Hibernate to TopLink" - How to migrate applications
from using Hibernate JPA to using TopLink JPA.

The Use Cases

1-4 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

2

Using TopLink with WebLogic Server 2-1

2Using TopLink with WebLogic Server

This chapter introduces how TopLink can be used as the persistence provider for
TopLink Java Persistence API (JPA) 2.0 applications deployed to WebLogic Server.

This chapter contains the following sections:

■ Section 2.1, "Understanding TopLink and WebLogic Server"

■ Section 2.2, "What You Need to Start"

■ Section 2.3, "Main Tasks"

2.1 Understanding TopLink and WebLogic Server
WebLogic Server is a scalable, enterprise-ready Java Platform, Enterprise Edition (Java
EE) application server. WebLogic Server's complete implementation of the Java EE 5.0
specification provides a standard set of APIs for creating distributed Java applications
that can access a wide variety of services, such as databases, messaging services, and
connections to external enterprise systems. In addition to the Java EE implementation,
WebLogic Server enables enterprises to deploy mission-critical applications in a
robust, secure, highly available, and scalable environment. These features allow
enterprises to configure clusters of WebLogic Server instances to distribute load, and
provide extra capacity in case of hardware or other failures. For more details about
these and other WebLogic Server features, see Introduction to WebLogic Server.

2.1.1 Advantages to Using TopLink with WebLogic Server
While WebLogic Server can use other persistence providers and TopLink can be used
with other application servers, using WebLogic Server with TopLink provides a
number of advantages:

■ TopLink is included in all WebLogic Server distributions, and WebLogic Server
can be configured so that TopLink is the default persistence provider for WebLogic
Server domains, with support for JPA 2.0. See Section 2.3.1, "Task 1: Set TopLink as
the Default JPA Provider (WebLogic Server 11g),"and Section 2.3.2, "Task 2: Apply
the Patch to Support JPA 2.0 in WebLogic Server 11g."

■ Oracle WebLogic Suite includes Oracle Coherence, which is a Java-based
in-memory data-grid product that provides data caching, data replication, and
distributed computing services. WebLogic Server and Coherence are tightly
integrated and allow applications to use Coherence data caches. WebLogic Server
applications can use TopLink Grid, which is an integration between TopLink and
Coherence that allows TopLink to use Coherence as a level 2 (L2) cache and
persistence layer for entities. How to use these integrations is beyond the scope of
this documentation. See Oracle Coherence Developer's Guide and Oracle Fusion

Understanding TopLink and WebLogic Server

2-2 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

Middleware Integration Guide for Oracle TopLink with Coherence Grid for more
information.

■ TopLink logging integration in WebLogic Server provides a comprehensive,
integrated logging infrastructure. See Section 2.3.5, "Task 5: Use or Reconfigure the
Logging Integration."

■ WebLogic Server supports the Oracle Application Framework (ADF), an
end-to-end Java EE framework, based on Struts and JavaServer Faces (JSF). ADF
simplifies application development by providing infrastructure services and a
visual and declarative development experience. TopLink and ADF together
provide a complete Java EE application infrastructure. How to use ADF is beyond
the scope of this documentation. See Developing Fusion Web Applications with Oracle
Application Development Framework.

■ WebLogic Server, TopLink, and ADF are all integrated with JDeveloper, Oracle's
integrated development environment (IDE) that provides end-to-end support for
modeling, developing, debugging, optimizing, and deploying Java EE
applications, including applications that use TopLink as the persistence provider
and that are deployed to WebLogic Server. How to use JDeveloper is beyond the
scope of this documentation. See
http://www.oracle.com/technetwork/developer-tools/jdev/overvi
ew/index.html for general information about JDeveloper. For information about
JDeveloper tasks, see the JDeveloper online help in the JDeveloper IDE.

2.1.2 The Relationship of TopLink to Other Fusion Middleware Products
Figure 2–1 shows how WebLogic Server and TopLink are related to and used with
other Oracle products. You can: use JDeveloper (or Oracle Enterprise Pack for Eclipse
or NetBeans) to develop Java EE applications; use TopLink as the persistence provider;
use Oracle Coherence (via TopLink Grid integration) for data caching, data replication
and distributed computing services; use WebLogic as the application server; and use
the Oracle database for persisting data from TopLink JPA applications or XML for
persisting data from TopLink MOXy applications.

Note: You can also obtain Coherence as a separately-licensed
product to use WebLogic Server Standard Edition and WebLogic
Server Enterprise Edition. See the links above for more information.

What You Need to Start

Using TopLink with WebLogic Server 2-3

Figure 2–1 Relationship of WebLogic Server, TopLink, and Related Products

2.2 What You Need to Start
To develop and deploy TopLink applications to Oracle WebLogic Server, you need:

■ WebLogic Server. This documentation is based on Oracle WebLogic Server release
11gR1 (10.3.6).

For more information and downloads, see
http://www.oracle.com/technetwork/middleware/weblogic/overvie
w/index.html on the Oracle Technology Network.

■ Any compliant JDBC database including Oracle, Oracle Express, MySQL, etc.

For the Oracle database, see
http://www.oracle.com/technetwork/database/enterprise-edition
/overview/index.html. For Oracle Express Edition, see
http://www.oracle.com/technetwork/database/express-edition/ov
erview/index.html. For MySQL, see
http://www.oracle.com/us/products/mysql/index.html.

■ While it is not required, you may want to use a Java development environment
(IDE) for convenience during development. For example JDeveloper, Oracle
Enterprise Pack for Eclipse (OEPE), and Oracle NetBeans all provide sophisticated
Java EE development tools. Both JDeveloper and OEPE include embedded
versions of WebLogic Server, although this documentation describes a standalone
instance of WebLogic Server.

For JDeveloper, see
http://www.oracle.com/technetwork/developer-tools/jdev/downlo
ads/index.html. For OEPE, see

Main Tasks

2-4 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

http://www.oracle.com/technetwork/developer-tools/eclipse/ove
rview/index.html. For NetBeans, see
http://www.oracle.com/us/products/tools/050845.html.

2.3 Main Tasks
To run TopLink JPA applications in WebLogic server, you must configure WebLogic
Server and coordinate certain settings in the server and your application, as described
in the following steps.

■ Task 1: Set TopLink as the Default JPA Provider (WebLogic Server 11g)

■ Task 2: Apply the Patch to Support JPA 2.0 in WebLogic Server 11g

■ Task 3: Update the Version of EclipseLink in WebLogic Server

■ Task 4: Configure JMX MBean Extensions in WebLogic Server

■ Task 5: Use or Reconfigure the Logging Integration

■ Task 6: Add Persistence to Your Java Application Using TopLink

■ Task 7: Configure a Data Source

■ Task 8: Extend the Domain to Use Advanced Oracle Database Features

■ Task 10: Start WebLogic Server and Deploy the Application

■ Task 11: Run the Application

■ Task 12: Configure and Monitor Persistence Settings in WebLogic Server

2.3.1 Task 1: Set TopLink as the Default JPA Provider (WebLogic Server 11g)
You can specify in a JPA application's persistence.xml file which JPA persistence
provider to use for each entity. However, if no persistence provider is specified, the
domain-wide default provider specified in WebLogic Server is used.

Oracle TopLink is not set as the default JPA persistence provider in WebLogic Server
11g (10.3.n), so you must set it to be the default provider in those releases.

Changing the default provider does not affect applications that are already deployed.
The setting takes effect when the server is restarted or the application is manually
redeployed.

To specify TopLink as the default JPA provider in the WebLogic Server Administration
Console:

1. Start WebLogic Server and start the Administration Console.

Note: Oracle TopLink is the default JPA persistence provider in
WebLogic Server 12c, so you do not have to do anything further to use
it as the default provider in that release and later.

Note: The reason that TopLink is not the default persistence provider
is to maintain backwards-compatibility with previous versions of
WebLogic Server 10.3. This allows you to upgrade your version of
WebLogic Server to future 10.3 patch sets, without changing the
persistence provider.

Main Tasks

Using TopLink with WebLogic Server 2-5

2. If you have not already done so, in the Change Center of the Administration
Console, click Lock & Edit.

3. In the left pane of the Console, under Domain Structure, select the domain name.

4. Select Configuration > General > JPA.

5. From the Default JPA Provider list, select TopLink.

6. Click Save.

7. To activate these changes, in the Change Center of the Administration Console,
click Activate Changes.

2.3.2 Task 2: Apply the Patch to Support JPA 2.0 in WebLogic Server 11g
WebLogic Server 11gR1 (10.3.6) supports JPA 1.0 by default. However, you can apply a
patch to provide support for JPA 2.0. For complete instructions, see "Using JPA 2.0
with TopLink in WebLogic Server" in Programming Enterprise JavaBeans for Oracle
WebLogic Server.

2.3.3 Task 3: Update the Version of EclipseLink in WebLogic Server
TopLink includes all the EclipseLink libraries, which provide the support for JPA,
MOXy, DBWS, and other persistence and transformation services. The version of
EclipseLink in TopLink may not be the most current available from the Eclipse
Foundation. However, you can upgrade the EclipseLink version by using the
WebLogic Server FilteringClassLoader and the shared library feature.

For what is supported in various releases, see the following:

■ "Oracle TopLink: JPA Certification" at
http://www.oracle.com/technetwork/middleware/ias/jpa-082702.h
tml#eclipselink

■ "Oracle TopLink and WebLogic Support" at
http://www.oracle.com/technetwork/middleware/ias/weblogic-086
699.html

The FilteringClassLoader provides a mechanism for configuring deployment
descriptors to specify that certain packages are always loaded from the application,
rather than being loaded by the system classloader. You can use this mechanism to
specify that a newer version of EclipseLink be used by an application. For more
information about filtering classloader, see "Using a Filtering Classloader" in
Developing Applications for Oracle WebLogic Server.

A shared library is a Java EE module that can be shared by multiple enterprise
applications. A shared library is deployed to a WebLogic Server target, and it can then
be referenced by applications. Upon deployment, WebLogic Server merges the
contents of the shared library with the application. In addition, because shared
libraries can be packaged as standard Java EE archives, any descriptors are also
merged with the application at deployment. For more information about WebLogic

Note: JPA 2.0 is backwards compatible so it can support applications
that use the JPA 1.0 API.

Note: WebLogic Server 12c supports JPA 2.0 by default.

Main Tasks

2-6 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

Server shared libraries, see "Creating Shared Java EE Libraries and Optional Packages"
in Developing Applications for Oracle WebLogic Server.

To update the version of EclipseLink used by applications deployed to WebLogic
Server, do the following:

1. Download the eclipselink-version_no.zip for the EclipseLink version you
want from the EclipseLink web site at
http://www.eclipse.org/eclipselink/downloads/index.php.

2. Prepare the shared library as a standard Java EE Enterprise Archive (EAR), named,
for example, eclipselink-shared-lib.ear, containing the following items:

META-INF/weblogic-application.xml
META-INF/application.xml
lib/eclipselink.jar

For more information about creating EARs, see, for example, "Creating and
Configuring Web Applications" in Developing Web Applications, Servlets, and JSPs for
Oracle WebLogic Server.

3. In the application's weblogic-application.xml descriptor file, add a
prefer-application-packages element, with the subelement
<package-name>org.eclipse.persistence.*</package-name>, as
shown below:

<weblogic-application>
 <prefer-application-packages>
 <package-name>org.eclipse.persistence.*</package-name>
 </prefer-application-packages>
</weblogic-application>

4. Create an application.xml file for the application. This file is necessary to
support the runtime library merging. The minimum configuration is as follows:

<application>
 <display-name>eclipselink-shared-lib</display-name>
 <module>
 <java></java>
 </module>
</application>

5. Add extension name, specification version, and implementation version to the
EAR's META-INF/MANIFEST.MF file. For example, if you are using ant, you can
do the following:

<target name="package" depends="prepare">
 <jar destfile="dist/${ant.project.name}.ear">
 <metainf dir="etc" includes="*.xml"/>
 <manifest>
 <attribute name="Extension-Name" value="eclipselink"/>
 <attribute name="Specification-Version" value="2.0"/>
 <attribute name="Implementation-Version" value="2.2.0"/>
 </manifest>
 <fileset dir="build" includes="**/*"/>
 </jar>
</target>

At deployment time, WebLogic Server uses the attributes as metadata for the deployed
shared-library.

The final EAR file should look like this:

Main Tasks

Using TopLink with WebLogic Server 2-7

META-INF/
META-INF/MANIFEST.MF
META-INF/application.xml
META-INF/weblogic-application.xml
lib/
lib/eclipselink.jar

6. Deploy eclipselink-shared-lib.ear to WebLogic Server. This results in a
new library being available on the server, eclipselink#2.0@2.2.0.

7. In the weblogic-application.xml file of any applications that will use the
updated version of EclipseLink, add a reference to the shared library, as shown
below:

<weblogic-application>
 <library-ref>
 <library-name>eclipselink</library-name>
 <specification-version>2.0</specification-version>
 <implementation-version>2.2.0</implementation-version>
 </library-ref>
</weblogic-application>

2.3.4 Task 4: Configure JMX MBean Extensions in WebLogic Server
WebLogic Server uses Java Management Extensions (JMX) MBeans to configure,
monitor, and manage WebLogic Server resources. For TopLink applications, MBeans
are used to monitor and configure aspects of persistence units and are also used for
logging.

For information about how MBeans are used in WebLogic Server, see Developing
Custom Management Utilities With JMX for Oracle WebLogic Server and Developing
Manageable Applications With JMX for Oracle WebLogic Server.

For information about TopLink logging in WebLogic Server, see Section 2.3.5, "Task 5:
Use or Reconfigure the Logging Integration."

By default, when you deploy an EclipseLink application to Oracle WebLogic Server,
the EclipseLink runtime deploys the following Java Management Extensions (JMX)
MBeans to the Oracle WebLogic Server JMX service for each EclipseLink session:

■ org.eclipse.persistence.services.DevelopmentServices - This class
is meant to provide facilities for managing an EclipseLink session internal to
EclipseLink over JMX.

■ org.eclipse.persistence.services.RuntimeServices - This class is
meant to provide facilities for managing an EclipseLink session external to
EclipseLink over JMX.

Use the API that this JMX MBean exposes to access and configure your TopLink
sessions at run time, using JMX code that you write, or to integrate your TopLink
application with a third-party JMX management application, such as JConsole.

Note: When deployed to WebLogic Server, TopLink applications
deploy MBeans when they connect to the database, not at deployment
time.

Main Tasks

2-8 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

To obtain information about accessing information about custom MBeans, you must
first enable anonymous lookup and then use a separate tool to access the MBean
information.

To enable honeymooner lookup in the Administration Console, do the following:

1. If you have not already done so, in the Change Center of the Administration
Console, click Lock & Edit.

2. In the left pane, select your domain to open the Settings page for your domain.

3. Expand Security > General.

4. Select Anonymous Admin Lookup Enabled.

5. To activate these changes, in the Change Center of the Administration Console,
click Activate Changes.

For the instructions on how to access the MBean information using various tools, see
"Accessing Custom MBeans," in Developing Manageable Applications With JMX for Oracle
WebLogic Server.

For information about monitoring custom MBeans in the WebLogic Server
Administration Console, see "Monitor Custom MBeans" in Oracle WebLogic Server
Administration Console Online Help.

2.3.5 Task 5: Use or Reconfigure the Logging Integration
By default, TopLink logging is integrated into the WebLogic Server logging
infrastructure. Details about the integration works and how to override it are
described in the following sections. For detailed information about WebLogic Server
logging, see the following:

■ Using Logging Services for Application Logging for Oracle WebLogic Server

■ Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

■ The logging topics in Oracle WebLogic Server Administration Console Online Help

For information about configuring logging for JPA persistence units, see "How to
Configure Logging" in the EclipseLink documentation at
http://wiki.eclipse.org/EclipseLink/Examples/JPA/Logging.

2.3.5.1 How the Logging Integration Works
By default, the WebLogic Server logging implementation is injected into the
persistence context, which results in all TopLink logging messages being output
according to the WebLogic Server logging configuration.

As a result of this integration, TopLink logging levels are converted to WebLogic
Server logging levels as shown in Table 2–1.

Table 2–1 Mapping of TopLink Logging Levels to WebLogic Server Logging Levels

TopLink Logging Levels WebLogic Server Logging Levels

ALL, FINEST, FINER, FINE DEBUG

CONFIG INFO

INFO NOTICE

WARNING WARNING

SEVERE ALERT

Main Tasks

Using TopLink with WebLogic Server 2-9

WebLogic Server logging levels are mapped to TopLink levels as shown in Table 2–2.

2.3.5.2 Viewing Persistence Unit Logging Levels in the Administration Console
You can see the TopLink logging level defined for the persistence unit in the
Administration Console, as described in Section 2.3.11, "Task 12: Configure and
Monitor Persistence Settings in WebLogic Server." However, be aware that this logging
level, set in persistence.xml is overridden when the default WebLogic Server/ TopLink
logging integration is used. For instructions on overriding the integration, see the next
section, Section 2.3.5.3, "Overriding the Default Logging Integration."

When the default integration is used, the EJB logging options for persistence are
mapped through and control TopLink's logging output in the Administration Console.

2.3.5.3 Overriding the Default Logging Integration
You set TopLink logging levels in the persistence.xml file. However, when you
accept the default logging integration with WebLogic Sever, those settings are ignored,
and the logging configuration set in WebLogic Server is used. The TopLink logging
levels are used only when you use the native TopLink logging implementation.

You can override the default logging integration by setting
eclipselink.logging.logger property name to a different setting, for example:

To enable the default TopLink logging set the eclipselink.logging.logger
property as follows:

<property name="eclipselink.logging.logger" value="DefaultLogger"/>

You can also use java.util.logging to use a different logging implementation for
TopLink message, for example java.util.logging:

<property name="eclipselink.logging.logger" value="JavaLogger"/>

2.3.5.4 Configuring WebLogic Server to Expose TopLink Logging
If you use the native TopLink logging implementation, you can still display TopLink
logging messages in the WebLogic Server domain's log files by configuring WebLogic
Server to redirect Java Virtual Machine (JVM) output to the registered log destinations.

For more information and instructions for configuring the redirect, see "Redirecting
JVM Output" in Configuring Log Files and Filtering Log Messages for Oracle WebLogic

OFF OFF

Table 2–2 Mapping of WebLogic Server Logging Levels to TopLink Logging Levels

WebLogic Server Logging Levels TopLink Logging Levels

TRACE, DEBUG FINEST

INFO CONFIG

NOTICE INFO

WARNING WARNING

ERROR, CRITICAL, ALERT SEVERE

EMERGENCY, OFF OFF

Table 2–1 (Cont.) Mapping of TopLink Logging Levels to WebLogic Server Logging

TopLink Logging Levels WebLogic Server Logging Levels

Main Tasks

2-10 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

Server. To set this option in the Administration Console, see "Redirect JVM output" in
Oracle WebLogic Server Administration Console Online Help.

2.3.5.5 Other Considerations
You should be aware of these other considerations:

■ The message ID 2005000 is used for all TopLink log messages.

■ Some logging messages handled by WebLogic Server's integrated logger may
show up in the WebLogic Server console or the server log (depending on the
settings of logging levels) during deployment, even though at runtime the
application's entity manager factory will use only the TopLink logging
infrastructure and only the TopLink logging settings.

■ If you use a different version of EclipseLink than the version bundled in your
WebLogic Server installation (by using a filtering classloader), trying to using the
default integrated logging can lead to errors, due to classloading conflicts. To work
around this issue, explicitly set the eclipselink.logging.logger property to
something other than the integrated WebLogic Server logger.

2.3.6 Task 6: Add Persistence to Your Java Application Using TopLink
Using TopLink JPA to provide persistence for an application is the fundamental task
presumed by all the other tasks described in this chapter; yet the actual JPA
programming practice is mostly outside the scope of this documentation. WebLogic
Server imposes no special requirements on your TopLink application, other than the
details described in this chapter.

That is because TopLink is based on EclipseLink, the open source persistence project
from the Eclipse Foundation. EclipseLink 2.n is the reference implementation of the
Java Persistence API, Version 2.0 specification. TopLink includes all of the EclipseLink
jars, plus additional Oracle tools and features. Therefore, you can take advantage of
the full range of features and functionality provided by JPA and EclipseLink when
using TopLink to add the persistence layer to your Java applications.

This chapter describes features, settings, and tasks that are specific to using TopLink
(runtime and API) with WebLogic Server. For information about developing,
packaging, and deploying a Java application using JPA, see the following:

■ The EclipseLink project wiki at http://wiki.eclipse.org/EclipseLink

■ The EclipseLink Documentation Center at
http://wiki.eclipse.org/EclipseLink/Documentation_Center

■ The Java Persistence API, Version 2.0 specification at
http://jcp.org/en/jsr/detail?id=317

■ "Part V, Persistence" in "The Java EE 5 Tutorial" at
http://download.oracle.com/javaee/5/tutorial/doc/bnbpy.html

■ Any third-party book that describes programming Java applications using JPA

For more information about TopLink features and concepts, see Chapter 1,
"Introduction" and Oracle Fusion Middleware Oracle TopLink Concepts.

For related WebLogic Server programming topics, see any book in the WebLogic
Server documentation set (see Oracle Fusion Middleware Information Roadmap for Oracle
WebLogic Server), in particular the following:

■ Programming Enterprise JavaBeans for Oracle WebLogic Server

■ Developing Applications for Oracle WebLogic Server

Main Tasks

Using TopLink with WebLogic Server 2-11

■ Deploying Applications to Oracle WebLogic Server

■ Programming JDBC for Oracle WebLogic Server

2.3.7 Task 7: Configure a Data Source
In WebLogic Server, you configure database connectivity by adding JDBC data sources
to WebLogic Server domains. Each WebLogic data source contains a pool of database
connections. Applications look up the data source on the JNDI tree or in the local
application context and then reserve a database connection with the
getConnection() method. Data sources and their connection pools provide
connection management processes to keep the system running efficiently.

For information on using JDBC with WebLogic Server, see the following:

■ For complete documentation about working with JDBC in WebLogic Server, see
Configuring and Managing JDBC Data Sources for Oracle WebLogic Server, in
particular:

– "Configuring WebLogic JDBC Resources"

– "Configuring JDBC Data Sources"

■ For information about working with JDBC data sources in the WebLogic
Administration Console, see the topics under "Configure JDBC" in the Oracle
WebLogic Server Administration Console Online Help.

2.3.7.1 Ways to Configure Data Sources for JPA Applications
You can configure data sources for JPA applications deployed to WebLogic Server in a
variety of ways, including the following:

■ Configure a Globally-Scoped JTA Data Source

■ Configure an Application-Scoped JTA Data Source

■ Configure a non-JTA Data Source and Manage Transactions in the Application

2.3.7.2 Configure a Globally-Scoped JTA Data Source
The most common data source configuration is a globally-scoped JNDI data source,
using JTA for transaction management, specified in the persistence.xml file.
Configuration is straightforward, and multiple applications can access the data source.

Do the following:

■ Create the Data Source in WebLogic Server

■ Configure persisence.xml

2.3.7.2.1 Create the Data Source in WebLogic Server To set up a globally-scoped JNDI data
source in the WebLogic Server Administration Console, do the following:

1. Create a new data source, as described in "Configure JDBC generic data sources"
in the Oracle WebLogic Server Administration Console Online Help.

Note: TopLink is compatible with any WebLogic Server data source
that can be accessed using standard JNDI data source lookup by
name. These instructions describe the wizard for a generic data
source.

Main Tasks

2-12 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

2. Enter values in the Create a New JDBC data source wizard, according to your
needs. See "Create a JDBC Data Source" in Oracle WebLogic Server Administration
Console Online Help. for more information.

3. Configure connection pools, as described in "Configuring Connection Pool
Features" in Configuring and Managing JDBC Data Sources for Oracle WebLogic Server.
The connection pool configuration can affect TopLink's ability to handle
concurrent requests from the application. Properties should be tuned in the same
way any connection pool would be tuned to optimize resources and application
responsiveness.

2.3.7.2.2 Configure persisence.xml In the persistence.xml file, specify that the
transaction-type is JTA, and provide the name of the data source in the
jta-data-source element (prefaced by jdbc/ or not), as shown in Example 2–1,
below:

Example 2–1 persistence.xml File With JNDI Data Source Using JTA

...
 <persistence-unit name="example" transaction-type="JTA">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <jta-data-source>JDBC Data Source-1</jta-data-source>
 <class>org.eclipse.persistence.example.jpa.server.business.Cell</class>
 <class>org.eclipse.persistence.example.jpa.server.business.CellAttribute</class>
 </persistence-unit>

2.3.7.3 Configure an Application-Scoped JTA Data Source
To configure an application-scoped data source that use JTA for transaction
management, perform the following tasks:

1. "Specify That the Data Source Is Application-Scoped"

2. "Add the JDBC Module to the WebLogic Application Configuration"

3. "Configure the JPA Persistence Unit to Use the JTA Data Source"

2.3.7.3.1 Specify That the Data Source Is Application-Scoped To define an
application-scoped data source, create a name-jdbc.xml JDBC module file and place
it in the META-INF folder of the application's EAR archive. In that file, add
<scope>Application</scope> to the jdbc-data-source-params section, as
shown in Example 2–2.

Example 2–2 JDBC Data Source Defined in the name-jdbc.xml File

<jdbc-data-source ...>
...
 <jdbc-data-source-params>
 <jndi-name>SimpleAppScopedDS</jndi-name>
 <scope>Application</scope>
 </jdbc-data-source-params>

Important: The value used for JNDI Name (on the JDBC Datasource
Properties page must be the same as the value used for the
<jta-data-source> element in persistence.xml.

Main Tasks

Using TopLink with WebLogic Server 2-13

</jdbc-data-source>

For more information about JDBC module configuration files and
jdbc-data-source (including <jdbc-driver-params> and
<jdbc-connection-pool-params>), see "Configuring WebLogic JDBC Resources"
in Configuring and Managing JDBC Data Sources for Oracle WebLogic Server.

2.3.7.3.2 Add the JDBC Module to the WebLogic Application Configuration Add a reference
to the JDBC module in the /META-INF/weblogic-application.xml application
deployment descriptor in the EAR archive, as shown in Example 2–3. This registers the
data source for use in the application.

Example 2–3 JDBC Module Defined in weblogic-application.xml

<wls:module>
 <wls:name>SimpleAppScopedDS</wls:name>
 <wls:type>JDBC</wls:type>
 <wls:path>META-INF/simple-jdbc.xml</wls:path>
</wls:module>

For more information about weblogic-application.xml application deployment
descriptors, see "Understanding Application Deployment Descriptors" in Deploying
Applications to Oracle WebLogic Server and "Enterprise Application Deployment
Descriptor Elements" in Developing Applications for Oracle WebLogic Server.

2.3.7.3.3 Configure the JPA Persistence Unit to Use the JTA Data Source To make it possible
for TopLink runtime to lazily look up an application-scoped data source, you must
specify an additional data source property in the definition of the persistence unit in
persistence.xml. For a JTA data source, add a fully-qualified
javax.persistence.jtaDataSource property, with the value
java:/app/jdbc/data_source_name, as shown in Example 2–4.

The values of the <jta-data-source> and
<javax.persistence.jtaDataSource> properties must match.

Example 2–4 JTA Data Source Definition in persistence.xml

<?xml version="1.0" encoding="windows-1252" ?>
<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0" xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="employee" transaction-type="JTA">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <jta-data-source>java:/app/jdbc/SimpleAppScopedDS</jta-data-source>
 <properties>
 <property name="javax.persistence.jtaDataSource"

Hint: You can create the framework for the a name-jdbc.xml file
by creating a globally scoped data source from the WebLogic Server
Administration Console, as described in Section 2.3.7.2, "Configure a
Globally-Scoped JTA Data Source," with these differences:

■ Do not associate the data source with a server

■ Add the <scope> element manually

Main Tasks

2-14 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

 value="java:/app/jdbc/SimpleAppScopedDS" />
 </properties>
 </persistence-unit>
</persistence>

2.3.7.4 Configure a non-JTA Data Source and Manage Transactions in the
Application
To configure a non-JTA data source managed by the application, do the same as
described in Section 2.3.7.3, "Configure an Application-Scoped JTA Data Source," but
configure the JPA persistence unit to use a non-JTA data source by specifying a
not-JTA data source, as shown in Example 2–5:

Example 2–5 non-JTA Data Source Definition in persistence.xml

<?xml version="1.0" encoding="windows-1252" ?>
<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0" xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="employee" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <non-jta-data-source>OracleDS</non-jta-data-source>
 <properties>
 <property name="javax.persistence.nonJtaDataSource"
 value="OracleDS" />
 </properties>
 </persistence-unit>
</persistence>

Write the code in your application to handle the transactions, as described, for
example, in "Transactions in EJB Applications" in Programming JTA for Oracle WebLogic
Server.

2.3.7.5 Make Sure the Settings Match
Certain settings in the data source configuration must match certain settings in the
application's ejbModule/META-INF/persistence.xml file. For the data source
configuration in WebLogic Server, you can check the settings in the configuration files
or in the Administration Console.

In the Administration Console, review settings as follows:

1. In the Domain Structure tree, expand Services, then select Data Sources.

2. On the Summary of JDBC Data Sources page, click the name of the data source.

3. On the Settings for data_source_name > Configuration > General page, find the
value for JNDI Name, for example localDS. If using JTA, the name must match
the <jta-data-source> in persistence.xml.

4. On the Settings for data_source_name > Configuration > Connection Pool page,
review these settings:

■ The value for URL must match the javax.persistence.jdbc.url value
in persistence.xml, for example,
jdbc:oracle:thin:@127.0.0.1:1521:XE

■ The value for Driver Class Name must match the
javax.persistence.jdbc.driver value in persistence.xml, for

Main Tasks

Using TopLink with WebLogic Server 2-15

example (for a JTA data source),
oracle.jdbc.xa.client.OracleXADataSource.

The following examples show the values that must be shared in the domain's
config.xml file and the application's persistence.xml file.

Example 2–6 Server Domain config.xml File

...
<domain...>
 <jdbc-system-resource>
 <name>localJTA</name>
 <target>AdminServer,ManagedServer_1,ManagedServer_2</target>
 <descriptor-file-name>jdbc/localJTA-4636-jdbc.xml</descriptor-file-name>
 </jdbc-system-resource>
</domain>

2.3.8 Task 8: Extend the Domain to Use Advanced Oracle Database Features
To fully support Oracle Spatial and Oracle XDB mapping capabilities (in both
standalone Oracle WebLogic Server and the Oracle JDeveloper integrated WebLogic
Server), you must use the toplink-spatial-template.jar and
toplink-xdb-template.jar to extend the WebLogic Server domain to support
Oracle Spatial and XDB, respectively.

To extend your WebLogic Server domain:

1. Download the toplink-spatial-template.jar (to support Oracle Spatial)
and toplink-xdb-template.jar (to support Oracle XDB) files from:

■ http://download.oracle.com/otn/java/toplink/111110/toplink-s
patial-template.jar

■ http://download.oracle.com/otn/java/toplink/111110/toplink-x
db-template.jar

2. Copy the files, as shown in Table 2–3 and Table 2–4:

3. Launch the Config Wizard (WL_HOME/common/bin/config.sh (or .bat).

4. Select Extend an existing WebLogic domain.

5. Browse and select your WebLogic Server domain.

6. Select Extend my domain using an existing extension template.

Table 2–3 File to support Oracle Spatial

File From... To...

sdoapi.jar ORACLE_DATABASE_HOME/md/jlib WL_HOME/server/lib

Table 2–4 Files to support Oracle XDB

File From... To...

xdb.jar ORACLE_DATABASE_HOME/rdbms/jlib WL_HOME/server/lib

xml.jar ORACLE_DATABASE_HOME/lib WL_HOME/server/lib

xmlparserv2.jar ORACLE_DATABASE_HOME/lib WL_HOME/server/lib

Main Tasks

2-16 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

7. Browse and select the required template JAR
(toplink-spatial-template.jar for Oracle Spatial,
toplink-xdb-template.jar for Oracle XDB).

8. Complete the remaining pages of the wizard.

For information about using WebLogic Server domain templates, see Domain Template
Reference.

2.3.9 Task 10: Start WebLogic Server and Deploy the Application
For information about deploying to WebLogic Server see Deploying Applications to
Oracle WebLogic Server See also "Deploying Fusion Web Applications" in Developing
Fusion Web Applications with Oracle Application Development Framework.

2.3.10 Task 11: Run the Application
For instructions for starting a deployed application from the WebLogic Administration
Console, see "Start and stop a deployed Enterprise application" in Administration
Console Online Help.

2.3.11 Task 12: Configure and Monitor Persistence Settings in WebLogic Server
In the WebLogic Server Administration Console, you can configure a persistence unit
and configure JTA and non-JTA data sources of a persistence unit, as described below:

1. If you have not already done so, in the Change Center of the Administration
Console, click Lock & Edit.

2. In the left pane of the Administration Console, select Deployments.

3. In the right pane, select the application or module you want to configure

4. Select Configuration.

5. Select Persistence.

6. Select the persistence unit you want to configure from the table.

7. Review and edit properties on the configuration pages. For help on any page, click
the Help link at the top of the Administration Console.

Properties that can be viewed include:

■ Name

■ Provider

■ Description

■ Transaction type

■ Data cache time out

■ Fetch batch size

■ Default schema name

■ Name

■ Values of persistence unit properties defined in the persistence.xml file,
for example, eclipselink.session-name,
eclipselink.logging.level, and eclipselink.target-server.

Additional Resources

Using TopLink with WebLogic Server 2-17

You can also set attributes related to the transactional and non-transactional data
sources of a persistence unit, on the Data Sources configuration page.

8. To activate these changes, in the Change Center of the Administration Console,
click Activate Changes.

For links to other help topics about working with persistence in the Administration
Console, search for "Persistence" in the Table of Contents of the Administration Console
Online Help.

2.4 Additional Resources
See the following links for more information about Oracle TopLink and Oracle
WebLogic Server:

■ EclipseLink Documentation Center at

http://wiki.eclipse.org/EclipseLink/Documentation_Center

■ Oracle WebLogic Server documentation, for example,

Oracle Fusion Middleware Information Roadmap for Oracle WebLogic Server

2.4.1 Code Samples
See the following EclipseLink examples for related information:

■ http://wiki.eclipse.org/EclipseLink/Examples/JPA/WebLogic_
Web_Tutorial

■ http://wiki.eclipse.org/EclipseLink/Examples/JPA/WLS_
AppScoped_DataSource

■ http://wiki.eclipse.org/EclipseLink/Examples/Distributed

2.4.2 Related Javadoc
For more information, see the following APIs in Oracle Fusion Middleware Java API
Reference for Oracle TopLink.

■ org.eclipse.persistence

■ org.eclipse.persistence.jpa.PersistenceProvider

■ org.eclipse.persistence.services.mbean

Additional Resources

2-18 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

3

Using TopLink with GlassFish Server 3-1

3Using TopLink with GlassFish Server

This chapter describes how TopLink can be used as the persistence provider for
TopLink Java Persistence API (JPA) 2.0 applications deployed to Oracle GlassFish
Server.

This chapter contains the following sections:

■ Section 3.1, "Understanding TopLink and GlassFish Server"

■ Section 3.2, "What You Need to Start"

■ Section 3.3, "Main Tasks"

■ Section 3.4, "Additional Resources"

3.1 Understanding TopLink and GlassFish Server
Oracle GlassFish Server is the reference implementation of the Java Platform,
Enterprise Edition (Java EE) specification. Built using the GlassFish Server Open
Source Edition, Oracle GlassFish Server delivers a flexible, lightweight and
production-ready Java EE platform.

GlassFish Server is part of the Oracle Fusion Middleware application grid portfolio
and is ideally suited for applications requiring lightweight infrastructure with the
most up-to-date implementation of enterprise Java. GlassFish Server complements
Oracle WebLogic Server, which is designed to run the broader portfolio of Oracle
Fusion Middleware and large-scale enterprise applications.

3.1.1 Advantages to Using TopLink with GlassFish Server
By adding TopLink support, developers writing applications for the GlassFish
platform can achieve full Java-to-data source integration compliant with the Java
Persistence API (JPA) 2.0 specification. TopLink allows you to integrate Java
applications with any data source, without compromising ideal application design or
data integrity. In addition, TopLink gives your GlassFish platform applications the
ability to store (that is, persist) and retrieve business domain objects using a relational
database or an XML data source as a repository.

While GlassFish Server can use other persistence providers and TopLink can be used
with other application servers, using GlassFish Server with TopLink provides a
number of advantages:

■ TopLink is included in all GlassFish Server distributions and is the default JPA
provider.

■ TopLink allows applications running on GlassFish Server to use Oracle Coherence
caches. Coherence is a Java-based in-memory data-grid product that provides data

Understanding TopLink and GlassFish Server

3-2 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

caching, data replication, and distributed computing services. TopLink includes
features that allow deployed applications to use Coherence data caches and to
incorporate TopLink Grid as an object-to-relational persistence framework. How to
use this product is beyond the scope of this documentation. See Oracle Fusion
Middleware Integration Guide for Oracle TopLink with Coherence Grid for more
information.

■ TopLink logging integration in GlassFish Server provides a comprehensive,
integrated logging infrastructure.

■ GlassFish Server supports the Oracle Application Framework (ADF), an
end-to-end Java EE framework, based on Struts and JavaServer Faces (JSF). ADF
simplifies application development by providing infrastructure services and a
visual and declarative development experience. TopLink and ADF together
provide a complete Java EE application infrastructure. How to use ADF is beyond
the scope of this documentation. See Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

3.1.2 Relationship of GlassFish Server and TopLink to Fusion Middleware Products
Figure 3–1 illustrates how GlassFish Server and TopLink are related to and used with
other Oracle products. You can use TopLink as the persistence provider; use Oracle
Coherence (through TopLink Grid integration) for data caching, data replication and
distributed computing services; use GlassFish as the application server; and use the
Oracle database for persisting data.

Note: Oracle Coherence and TopLink Grid are beyond the scope of
this documentation. For information about Coherence, see Oracle
Coherence Developers Guide, and follow links to other Coherence
documentation. For information on TopLink Grid, see Oracle Fusion
Middleware Integration Guide for Oracle TopLink with Coherence Grid.

What You Need to Start

Using TopLink with GlassFish Server 3-3

Figure 3–1 Relationship of GlassFish Server and TopLink to Other Products in the
Fusion Middleware Stack

3.2 What You Need to Start
This documentation is based on the following products and tools, although the
principles apply to any supported database or development environment. It is
assumed that the software is already installed, except where noted in later sections.

To develop and deploy TopLink applications to GlassFish Server, you need:

■ GlassFish Server version 3.1.1.

For more information and downloads, see
http://www.oracle.com/technetwork/middleware/glassfish/overvi
ew/index.html on the Oracle Technology Network.

■ EclipseLink software distribution 2.3.0.

For more information and downloads, see
http://www.eclipse.org/eclipselink/ on the EclipseLink Web site.

■ Any compliant JDBC database including Oracle, Oracle Express, MySQL, and so
on.

For the Oracle database, see
http://www.oracle.com/technetwork/database/enterprise-edition
/overview/index.html.

For Oracle Express Edition, see
http://www.oracle.com/technetwork/database/express-edition/ov
erview/index.html.

Main Tasks

3-4 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

For MySQL, see
http://www.oracle.com/us/products/mysql/index.html.

■ While it is not required, you may want to use a Java EE development environment
(IDE) for convenience during development. For example JDeveloper, Oracle
Enterprise Pack for Eclipse (OEPE), and Oracle NetBeans all provide sophisticated
Java EE development tools.

For JDeveloper, see
http://www.oracle.com/technetwork/developer-tools/jdev/downlo
ads/index.html.

For OEPE, see
http://www.oracle.com/technetwork/developer-tools/eclipse/ove
rview/index.html.

For NetBeans, see
http://www.oracle.com/us/products/tools/050845.html

3.3 Main Tasks
To run TopLink JPA applications in GlassFish Server, you must configure the server
and coordinate certain server and application settings. These are described in the
following tasks.

■ Task 1: Add Object-XML (JAXB) Support to GlassFish Server (optional)

■ Task 2: Set Up the Datasource

■ Task 3: Create the persistence.xml File

■ Task 4: Set Up GlassFish Server for JPA

■ Task 5: Create the Application

■ Task 6: Deploy the Application to GlassFish Server

■ Task 7: Run the Application

■ Task 8: Monitor the Application

3.3.1 Task 1: Add Object-XML (JAXB) Support to GlassFish Server (optional)
Oracle TopLink is included with the GlassFish distribution. You can find instructions
for installing and configuring GlassFish server at this URL:

http://glassfish.java.net/docs/3.1.1/installation-guide.pdf

The TopLink modules appear as separate JAR files in the modules directory.

* \glassfish\modules
 ...
 o org.eclipse.persistence.antlr.jar
 o org.eclipse.persistence.asm.jar
 o org.eclipse.persistence.core.jar
 o org.eclipse.persistence.jpa.jar
 o org.eclipse.persistence.jpa.modelgen.jar
 o org.eclipse.persistence.oracle.jar
 ...

Main Tasks

Using TopLink with GlassFish Server 3-5

Object-XML (also known as JAXB support, or MOXy) is a TopLink component that
enables you to bind Java classes to XML schemas. Adding Object-XML support to
GlassFish Server is optional. Many applications can run on Glassfish Server without
adding Object-XML support.

Object-XML is not distributed with GlassFish 3.1.1. To get the Object-XML bundle, you
must obtain it from the EclipseLink release 2.3.0 software distribution.

1. Download and open the EclipseLink release 2.3.0 software distribution.

2. Copy the Object-XML bundle org.eclipse.persistence.moxy_
2.3.0.v20110604-r9504.jar from the distribution to the
.../glassfish/modules folder.

3. Delete the contents of the osgi-cache subfolder for each of the domains in the
.../glassfish/domains folder.

4. Restart GlassFish Server if it is already running.

3.3.2 Task 2: Set Up the Datasource
Configuring an Oracle database as a JDBC resource for a Java EE application involves
the following tasks:

1. Integrate the JDBC Driver for Oracle Database into GlassFish Server

2. Create a JDBC Connection Pool for the Resource

3. Create the JDBC Resource

3.3.2.1 Integrate the JDBC Driver for Oracle Database into GlassFish Server
To integrate the JDBC driver, copy its JAR file into the domain and then restart the
domain and instances to make the driver available.

1. Copy the JAR file for the JDBC driver into the domain's lib subdirectory, for
example:

cd /home/gfuser/glassfish3
cp oracle-jdbc-drivers/ojdbc6.jar glassfish/domains/domain1/lib

Note that there is no need to restart GlassFish Server; the drivers are picked up
dynamically.

Notes:

■ The toplink-grid.jar file, which provides support for
Coherence caches, is available only if you purchase the license for
Oracle Coherence. For more information on the functionality
provided by the toplink-grid.jar file, see Oracle Coherence
Integration Guide for Oracle TopLink with Coherence Grid.

■ The org.eclipse.persistence.oracle.jar file is available
with GlassFish and provides Oracle database-specific
functionality for TopLink. This file is used only for applications
running against an Oracle database.

Note: Beginning with release 3.1.2, Object-XML (MOXy) will be
shipped with GlassFish Server.

Main Tasks

3-6 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

If the application uses Oracle database-specific extensions provided by TopLink,
the driver must be copied to the lib/ext directory. See "Oracle Database
Enhancements" in the Oracle GlassFish Server 3.1 Application Development Guide for
more information:

http://download.oracle.com/docs/cd/E18930_
01/html/821-2418/gbxjh.html#giqbi

2. You can use the GlassFish Administration Console or the command line to restart
instances in the domain to make the JDBC driver available to them.

To use the GlassFish Server Administration Console:

In the GlassFish Server Administration Console, open the Cluster node. Select the
node for the cluster and on its General Information page, click the Instances tab.
Select the instances you want to restart. For more information, see "To Start
Clustered GlassFish Server Instances" in GlassFish Administration Console Online
Help.

To use the command line:

Run the restart-instance subcommand to restart the instances. These
commands assume that your instances are named pmd-i1 and pmd-i2.

restart-instance pmd-i1
restart-instance pmd-i2

3.3.2.2 Create a JDBC Connection Pool for the Resource
You can create a JDBC connection pool from the GlassFish Server Administration
Console or from the command line.

To use the GlassFish Server Administration Console:

In the GlassFish Server Administration Console, select the Common Tasks node, then
click the Create New JDBC Connection Pool button in the Common Tasks page.
Specify the name of the pool, the resource type, the name of the database provider, the
data source and driver class names, and other details. For more information, see "To
Create a JDBC Connection Pool" in GlassFish Administration Console Online Help.

To use the command line:

1. Use the create-jdbc-connection-pool subcommand to create the JDBC
connection pool, specifying the database connectivity values. In this command,
note the use of two backslashes (\\) preceding the colons in the URL property
value. These backslashes cause the colons to be interpreted as part of the property
value instead of as separators between property-value pairs, for example:

create-jdbc-connection-pool
 --datasourceclassname oracle.jdbc.pool.OracleDataSource
 --restype javax.sql.DataSource
 --property
User=coreora10g\\:Password=coreora10g\\:url=jdbc\\:oracle\\:thin\\:@asqe-db1.us
.oracle.com\\:1521\\:asqedb
 poolbvcallbackbmt

2. Verify connectivity to the database.

ping-connection-pool pool_name

3.3.2.3 Create the JDBC Resource
You can use the GlassFish Server Administration Console to create the JDBC resource
or you can use the command line.

Main Tasks

Using TopLink with GlassFish Server 3-7

To use the GlassFish Server Administration Console:

In the GlassFish Server Administration Console, select the Resources node, then JDBC
node, then JDBC Resources node to open the JDBC Resources page. Provide a unique
JNDI resource name and associate the resource with a connection pool. For more
information, see "To Create a JDBC Resource" in the GlassFish Administration Console
Online Help.

To use the command line:

Use the create-jdbc-resource subcommand to create the JDBC resource, making
sure to name it so that the application can discover it using JNDI lookup, for example:

create-jdbc-resource --connectionpoolid poolbvcallbackbmt jdbc/bvcallbackbmt

3.3.3 Task 3: Create the persistence.xml File
Example 3–1 illustrates a sample persistence.xml file which specifies the default
persistence provider for TopLink,
org.eclipse.persistence.jpa.PersistenceProvider. For more information
on this file, see "Configuring Persistence Units Using persistence.xml" in the
EclipseLink documentation:

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Configuration/JPA/persistence.xml

If you are using the default persistence provider, you can specify additional database
properties listed at "How to Use EclipseLink JPA Extensions for JDBC Connection
Communication" in the EclipseLink documentation:

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#How_to_Use_EclipseLink_JPA_Extensions_for_JDBC_
Connection_Communication

Several of the values you enter in the file must match the values you chose when you
defined the cluster, connection, and connection pool properties in GlassFish Server, as
noted below:

JDBC Datasource Properties:

■ Name: The name of the data source, which is typically the same as the JNDI name
(below), for example jdbc/bvcallbackbmt.

■ JNDI Name: The JNDI path to where this data source is bound. This must be the
same name as the value for the <jta-data-source> element in
persistence.xml, for example jdbc/bvcallbackbmt.

■ Database Type: Oracle

■ Database Driver: (default) Oracle's Driver (Thin XA) for Instance connections;
Versions: 9.0.1 and later

Connection Properties:

■ Database Name: The name of the database, for example, XE for Oracle Database
Express samples.

■ Host Name: The IP address of the database server, for example 127.0.0.1 for a
locally hosted database.

■ Port: The port number on which your database server listens for connection
requests, for example, 1521, the default for Oracle Database Express 11g.

Main Tasks

3-8 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

■ Database User Name: The database account user name used to create database
connections, for example hr for Oracle Database Express 11g samples.

■ Password: Your password.

Select Targets:

■ Servers / Clusters: Select the Administration Server, managed server(s), or
cluster(s) to which you want to deploy the data source. You can choose one or
more.

The sample persistence.xml file in Example 3–1 highlights the properties defining
the persistence provider, the JTA data source, and logging details. In this example,
logging level is set to FINE. At this level, SQL code generated by EclipseLink is logged
to server.log. For more information on these properties, see these sections:

■ Section 3.3.3.1, "Specify the Persistence Provider."

■ Section 3.3.3.2, "Specify an Oracle Database."

■ Section 3.3.3.3, "Specify Logging."

Example 3–1 Sample persistence.xml File

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="2.0">
 <persistence-unit name="pu1" transaction-type="JTA">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <jta-data-source>jdbc/bvcallbackbmt</jta-data-source>
 <properties>
 <property name="eclipselink.logging.level" value="FINE"/>
 <property name="eclipselink.ddl-generation"
 value="drop-and-create-tables"/>
 </properties>
 </persistence-unit>
</persistence>

3.3.3.1 Specify the Persistence Provider
The persistence provider defines the implementation of JPA. It is defined in the
provider element of the persistence.xml file. Persistence providers are
vendor-specific. The persistence provider for Oracle TopLink is
org.eclipse.persistence.jpa.PersistenceProvider.

3.3.3.2 Specify an Oracle Database
You specify the database connection details in the persistence.xml file. GlassFish
Server uses the bundled Java DB (Derby) database by default, named jdbc/__
default. To use a non-default database, such as the Oracle database, either specify a
value for the jta-data-source element, or set the transaction-type element to
RESOURCE_LOCAL and specify a value for the non-jta-data-source element.

If you are using the default persistence provider,
org.eclipse.persistence.jpa.PersistenceProvider, the provider attempts
to automatically detect the database type based on the connection metadata. This
database type is used to issue SQL statements specific to the detected database type.
You can specify the optional eclipselink.target-database property to
guarantee that the database type is correct.

See "Specifying the Database" in the Oracle GlassFish Server 3.1 Application Development
Guide for more information on specifying database properties in a persistence.xml
file for GlassFish Server:

Main Tasks

Using TopLink with GlassFish Server 3-9

http://download.oracle.com/docs/cd/E18930_
01/html/821-2418/gbwmj.html

This topic also contains a discussion about using the Java Persistence API outside the
EJB container (in Java SE mode). The eclipselink.jdbc.* properties are specified
only when using GlassFish Server in Java SE mode, for example:

 ...
 <property name="eclipselink.jdbc.url"
value="jdbc:oracle:thin://localhost:1521:xe;retrieveMessagesFromServerOnGetMessage
=true;create=true;"/>
 <property name="eclipselink.jdbc.user" value="APP"/>
 <property name="eclipselink.jdbc.password" value="APP"/>
 ...

The following are typical connection details for an Oracle database:

■ Driver: oracle.jdbc:OracleDriver

■ SID (database name): xe

■ Host: localhost

■ Port Number: 1521

■ username: name of the database user

■ password: database password

■ Connection URL: jdbc:oracle:thin:@localhost:1521:xe

For more information on these properties and other extensions for JDBC datasource
connectivity, see "Using EclipseLink JPA Extensions for JDBC" and
PersistenceUnitProperties API in the EclipseLink documentation:

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#Using_EclipseLink_JPA_Extensions_for_JDBC

Also see PersistenceUnitProperties in Oracle Fusion Middleware Java API
Reference for Oracle TopLink.

3.3.3.3 Specify Logging
TopLink provides a logging utility even though logging is not part of the JPA
specification. Hence, the information provided by the log is TopLink JPA-specific. With
TopLink, you can enable logging to view the following information:

■ configuration details

■ information to facilitate debugging

■ the SQL that is being sent to the database

You can specify logging in the persistence.xml file. TopLink logging properties let
you specify the level of logging and whether the log output goes to a file or standard
output. Because the logging utility is based on java.util.logging, you can specify
a logging integration to use.

The logging utility provides nine levels of logging control over the amount and detail
of the log output. Use the eclipselink.logging.level to set the logging level,
for example:

<property name="eclipselink.logging.level" value="FINE"/>

Main Tasks

3-10 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

By default, the log output goes to System.out or to the console. To configure the
output to be logged to file, set the property eclipselink.logging.file, for
example:

<property name="eclipselink.logging.file" value="output.log"/>

TopLink's logging utility is pluggable, and several different logging integrations are
supported, including java.util.logging. To enable java.util.logging, set the
property eclipselink.logging.logger, for example:

<property name="eclipselink.logging.logger" value="JavaLogger"/>

While running inside GlassFish Server, TopLink is configured by GlassFish to use
JavaLogger by default. The log is always redirected to the GlassFish server.log
file. For more information, see "Setting the Logging Level" in Oracle GlassFish Server 3.1
Application Development Guide:

http://download.oracle.com/docs/cd/E18930_
01/html/821-2418/gdpwu.html

For more information on TopLink logging and the levels of logging available in the
logging utility, see "EclipseLink/Examples/JPA/Logging" in the EclipseLink
documentation:

http://wiki.eclipse.org/EclipseLink/Examples/JPA/Logging

3.3.4 Task 4: Set Up GlassFish Server for JPA
The GlassFish Server Application Development Guide describes server-specific
considerations on setting up GlassFish server to run applications that employ JPA.

http://download.oracle.com/docs/cd/E18930_
01/html/821-2418/gbxjk.html

The Application Development Guide provides more information on these topics:

■ "Specifying the Database," for information on database connection properties

■ "Additional Database Properties," for information on database properties if you
are using the default persistence provider

■ "Configuring the Cache," for caching properties for the default persistence
provider

■ "Setting the Logging Level," for setting the logging properties for the default
persistence provider

3.3.5 Task 5: Create the Application
To create an application that uses TopLink as its JPA provider, you may want to use a
Java EE development environment for convenience during development. For example,
Oracle JDeveloper, Oracle Enterprise Pack for Eclipse (OEPE) and Oracle NetBeans all
provide sophisticated Java EE development tools, including support for TopLink. See
"Development Tools for TopLink" in Oracle TopLink Concepts.

For guidance in writing your application see these topics from the "Using the Java
Persistence API" chapter in Oracle GlassFish Server 3.1 Application Development Guide:

http://download.oracle.com/docs/cd/E18930_
01/html/821-2418/gbxjk.html

Additional Resources

Using TopLink with GlassFish Server 3-11

3.3.6 Task 6: Deploy the Application to GlassFish Server
For information about deploying to GlassFish Server see "Deploy Applications or
Modules," "To Deploy an Enterprise Application," and "To Deploy a Web Application"
in the GlassFish Server Administration Console Online Help. See also Oracle GlassFish
Server 3.1 Application Deployment Guide:

http://download.oracle.com/docs/cd/E18930_
01/html/821-2417/index.html

3.3.7 Task 7: Run the Application
For instructions for starting a deployed application from the GlassFish Administration
Console, see "Application Client Launch" and "To Launch an Application" in GlassFish
Server Administration Console Online Help.

3.3.8 Task 8: Monitor the Application
GlassFish Server provides a monitoring service to track the health and performance of
an application. For information on monitoring an application from the console, see the
"Monitoring" and "Monitoring Data" topics in GlassFish Server Administration Console
Online Help. For information on monitoring the application from the command line,
see "Administering the Monitoring Service" in Oracle GlassFish Server 3.1 Application
Deployment Guide:

http://download.oracle.com/docs/cd/E18930_
01/html/821-2416/ablur.html

3.4 Additional Resources
See the following links for more information about Oracle TopLink and Oracle
GlassFish Server.

■ EclipseLink documentation

http://www.eclipse.org/eclipselink/

■ Oracle GlassFish Server 3.1 Application Deployment Guide

http://download.oracle.com/docs/cd/E18930_
01/html/821-2417/index.html

■ Oracle GlassFish Server Application Development Guide

http://download.oracle.com/docs/cd/E18930_
01/html/821-2418/gbxjk.html

■ Oracle GlassFish Server 3.1 - 3.1.1 Documentation Library

http://download.oracle.com/docs/cd/E18930_01/index.html

Additional Resources

3-12 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

4

Using Multiple Databases with a Composite Persistence Unit 4-1

4Using Multiple Databases with a
Composite Persistence Unit

With TopLink, you can expose multiple persistence units (each with unique sets of
entity types) as a single persistence context by using a composite persistence unit.
Individual persistence units that are part of a composite persistence unit are called
composite member persistent units.

This chapter includes the following sections:

■ Section 4.1, "Understanding the Composite Persistence Unit"

■ Section 4.2, "Main Tasks"

■ Section 4.3, "Additional Resources"

4.1 Understanding the Composite Persistence Unit
With a composite persistence unit, you can:

■ Map relationships among any of the entities in the composite persistence unit

■ Access entities stored in multiple databases and different data sources

■ Easily perform queries and transactions across the complete set of entities

Example 4–1 shows how you can persist data from a single context into two different
databases:

Example 4–1 Using Multiple Databases

em.persist(new A(..));
em.persist(new B(..));
// You can insert A into database1 and insert B into database2.
// The two databases can be from different vendors.

em.flush();

Main Tasks

4-2 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

Figure 4–1 Simple Composite Persistence Unit

Figure 4–1 illustrates a simple composite persistence unit. The EntityManager
(passing them to Persistence.createEntityManagerFactory method)
instantiates the composite persistence unit, which contains two composite member
persistence units:

■ Class A is mapped by a persistence unit named memberPu1 located in
member1.jar.

■ Class B is mapped by a persistence unit named memberPu2 located in
member2.jar.

4.1.1 Composite Persistence Unit Requirements
When using composite persistence units, be aware of the following requirements:

■ The name of each composite member persistence unit must be unique within the
composite.

■ The transaction-type and other properties that correspond to the entire
persistence unit (such as target server, logging, transactions, and so on) should be
defined in the composite persistence unit. If not, the application uses the defaults."

■ All composite members persistence units should use the same transaction-type as
the composite persistence unit.

4.2 Main Tasks
This section includes the following tasks:

■ Task 1: Configure the Composite Persistence Unit

■ Task 2: Use Composite Persistence Units

Main Tasks

Using Multiple Databases with a Composite Persistence Unit 4-3

■ Task 3: Deploy Composite Persistence Units

4.2.1 Task 1: Configure the Composite Persistence Unit
Because the composite persistence unit is a regular persistence element, it requires a
persistence.xml file. Example 4–2 illustrates a sample persistence.xml file:

Example 4–2 The persistence.xml File for a Composite Persistence Unit

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence persistence_1_0.xsd"
version="1.0">

<persistence-unit name="compositePu" transaction-type="JTA">
<provider>

org.eclipse.persistence.jpa.PersistenceProvider
</provider>

<jar-file>member1.jar</jar-file>
<jar-file>member2.jar</jar-file>
<properties>

<property name="eclipselink.composite-unit" value="true"/>
<property name="eclipselink.target-server" value="WebLogic_10"/>

</properties>
</persistence-unit>

</persistence>

Use the <property name="eclipselink.composite-unit" value="true"/>
property to identify persistence unit as a composite.

Use the <jar-file> element to specify the JAR files containing the composite
member persistent units. The composite persistence unit will contain all the
persistence units found in the JAR files specified.

4.2.2 Task 2: Use Composite Persistence Units
You can use a composite persistence unit as you would any other persistence unit; the
EntityManager could be injected, as shown here:

@PersistenceUnit(unitName="compositePu")
EntityManagerFactory entityManagerFactory;

@PersistenceUnit(unitName="compositePu")
EntityManager entityManager;

Or create it manually:

EntityManagerFactory entityManagerFactory =
Persistence.createEntityManagerFactory("compositePu", properties);

4.2.3 Task 3: Deploy Composite Persistence Units
To deploy multiple persistence units, deploy all of the JARs (the composite and its
members) on he same class loader.

■ When deploying to Oracle WebLogic Server, package the JARs in an EAR file.

■ When running as a standalone application, add the JARs to the class path.

Additional Resources

4-4 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

See Section 4.1.1, "Composite Persistence Unit Requirements" for important
information and limitations.

4.3 Additional Resources
See http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advanced_
JPA_Development/Composite_Persistence_Units in the EclipseLink
documentation for additional information on composite persistence units including:

■ Limitations of composite persistence units.

■ Configuring composite member persistence units that contain dependencies to
each other.

■ All persistence unit properties used by composite persistence units and composite
member persistence units

■ How to pass persistence unit properties to composite member persistence units
with the Persistence.createEntityManagerFactory method, while
creating a composite persistence unit EntityManagerFactory

■ All entity manager properties used by composite persistence unit and composite
member persistence units

■ How to pass entity manager properties to composite member persistence units
with the emf.createEntityManager method for composite persistence unit
EntityManagerFactory.

4.3.1 Javadoc
For more information, see the following APIs in Oracle Fusion Middleware Java API
Reference for Oracle TopLink.

■ PersistenceUnitProperties class

■ Persistence.createEntityManger class

■ EntityManagerFactory interface

5

Scaling TopLink Applications in Clusters 5-1

5Scaling TopLink Applications in Clusters

This chapter provides instructions for configuring TopLink applications to ensure
scalability in clustered application server environments. The instructions are generic
and can be applied to any clustered application server environment; however,
additional content is provided for WebLogic server and GlassFish server. Consult your
vendor's documentation as required.

This chapter contains the following sections:

■ Section 5.1, "Understanding Scaling TopLink Applications in Clusters"

■ Section 5.2, "Main Tasks"

■ Section 5.3, "Additional Resources"

5.1 Understanding Scaling TopLink Applications in Clusters
TopLink applications that are deployed to clustered application server environments
benefit from cluster scalability, load balancing, and failover. These capabilities ensure
that TopLink applications are highly available and can scale as application demand
increases. TopLink applications are deployed the same way in clustered server
environments as they are in standalone server environments. However, TopLink
applications must consider cache consistency in clustered environments.

TopLink utilizes a shared (L2) object cache that avoids database access for objects and
their relationships. The cache is enabled by default and enhances application
performance. In clustered environments, caching can result in consistency issues (such
as stale data) as changes made on one server are not reflected on objects cached in
other servers. Cache consistency is only problematic for objects that are frequently
updated. Read-only objects are not affected by cache consistency. See the EclipseLink
documentation for detailed information on caching:

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Caching/Caching_Overview

Various options are available for addressing cache consistency:

■ Use distributed caching. TopLink includes an integration with Oracle Coherence
that addresses many cache consistency issues that result from operating in a
distributed environment. The integration is beyond the scope of this
documentation. See Oracle Coherence Integration Guide for Oracle TopLink with
Coherence Grid for additional details.

■ Use cache coordination to broadcast changes between the servers in the cluster to
update or invalidate changed objects.

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_Development/Caching/Caching_Overview
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_Development/Caching/Caching_Overview

Main Tasks

5-2 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

■ Use optimistic locking to prevent updates to stale objects and trigger the objects to
be invalidated in the cache.

■ Use object/query refreshing when fresh data is required

■ Disable the shared cache or only cache read-only objects

5.2 Main Tasks
The tasks in this section provide general instructions for ensuring that a TopLink
application can scale in an application server cluster environment. These tasks must be
completed prior to deploying an application.

This section contains the following tasks:

■ Task 1: Configure Cache Consistency

■ Task 2: Ensure TopLink is Enabled

■ Task 3: Ensure All Application Servers are Part of the Cluster

5.2.1 Task 1: Configure Cache Consistency
This task includes different configuration options that mitigate the possibility or
chance that an application might use stale data when deployed to an application
server cluster environment. The cache coordination option is specifically designed for
clustered applications; however, evaluate all the options and use them together (if
applicable) to create a solution that results in the best application performance.
Properly configuring a cache can, in some cases, eliminate the need to use cache
coordination. For additional details on these options, see:

http://wiki.eclipse.org/Introduction_to_Cache_
%28ELUG%29#Handling_Stale_Data

The following topics are included in this section:

■ Section 5.2.1.1, "Disabling the Shared Cache"

■ Section 5.2.1.2, "Refreshing the Cache"

■ Section 5.2.1.3, "Setting Cache Expiration"

■ Section 5.2.1.4, "Setting Optimistic Locking"

■ Section 5.2.1.5, "Using Cache Coordination"

5.2.1.1 Disabling the Shared Cache
Cache consistency can be avoided by disabling the shared cache if an application does
not require shared caching. To disable the shared cache for all objects, use the
<shared-cache-mode> element in the persistence.xml file. For example:

<shared-cache-mode>NONE</shared-cache-mode>

To selectively enable or disable the shared cache, use the shared attribute of the
@Cache annotation when defining an entity. For example:

Note: Oracle provides a TopLink and Coherence integration that
allows TopLink to use Coherence as the L2 cache. The integration is
beyond the scope of this documentation. See Oracle Coherence
Integration Guide for Oracle TopLink with Coherence Grid for additional
details.

http://wiki.eclipse.org/Introduction_to_Cache_%28ELUG%29#Handling_Stale_Data
http://wiki.eclipse.org/Introduction_to_Cache_%28ELUG%29#Handling_Stale_Data

Main Tasks

Scaling TopLink Applications in Clusters 5-3

...
@Entity
@Cache(shared=false)
public class Employee {
 ...
}

5.2.1.2 Refreshing the Cache
Refreshing a cache reloads the cache from the database to ensure that an application is
using current data. This section describes different ways to refresh a cache.

The @cache annotation provides the alwaysRefresh and refreshOnlyIfNewer
attributes which force all queries that go to the database to refresh the cache:

...
@Entity
@Cache(
 alwaysRefresh=true,
 refreshOnlyIfNewer=true)
public class Employee {
 ...
}

The org.eclipse.persistence.jpa.JpaCache interface includes several
methods that remove stale objects if the cache is out of date:

■ The evictAll method invalidates all of the objects in the cache. For example:

em.getEntityManagerFactory().getCache().evictAll();

■ Use the evict method to invalidate specific classes.

em.getEntityManagerFactory().getCache().evict(MyClass);

■ The clear method also refreshes a cache; however, clearing the cache can cause
object identity issues if any of the cached objects are in use. Use this method only if
the application knows that it no longer has references to objects held in the cache.

The preceding methods are passive and only refresh objects the next time the cache is
accessed. To actively refresh an object, use the EntityManager.refresh method.
The method refreshes a single object at a time.

Any of the following APIs also refresh a cache:

■ Session.refreshObject

■ DatabaseSession and UnitOfWork: refreshAndLockObject methods

■ ObjectLevelReadQuery: refreshIdentityMapResult and
refreshRemoteIdentityMapResult methods

The ClassDescriptor class also provides methods that refresh a cache:

■ setShouldAlwaysRefreshCache

■ setShouldAlwaysRefreshCacheOnRemote

■ setShouldDisableCacheHits

■ setShouldDisableCacheHitsOnRemote

■ setShouldOnlyRefreshCacheIfNewerVersion

Use these methods in a descriptor amendment method. For example:

Main Tasks

5-4 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

public void addToDescriptor(ClassDescriptor descriptor) {
 descriptor.setShouldRefreshCacheOnRemote(true);
 descriptor.setShouldDisableCacheHitsOnRemote(true);
}

Lastly, a query hint triggers a query to refresh the cache. For example:

Query query = em.createQuery("Select e from Employee e");
query.setHint("javax.persistence.cache.storeMode", "REFRESH");

5.2.1.3 Setting Cache Expiration
Cache expiration makes a cached object instance invalid after a specified amount of
time. Any attempt to use the object causes the most up-to-date version of the object to
be reloaded from the data source. Expiration can help ensure that an application is
always using the most recent data. This section describes different ways to set
expiration.

The @cache annotation provides the expiry and expiryTimeOfDay attributes
which remove cache instances after a specific amount of time. The expiry attribute is
entered in milliseconds. The default value if no value is specified is -1 which indicates
that expiry is disabled. The expiryTimeOfDay attribute is an instance of the
org.eclipse.persistence.annotations.TimeOfDay interface. The following
example sets the object to expire after 5 minutes:

...
@Entity
@Cache(expiry=300000)
public class Employee {
 ...
}

At the descriptor level, use the
ClassDescriptor.setCacheInvalidationPolicy method to set a
CacheInvalidationPolicy instance. The following invalidation policies are
available:

■ DailyCacheInvalidationPolicy: the object is automatically flagged as
invalid at a specified time of day.

■ NoExpiryCacheInvalidationPolicy: the object can only be flagged as
invalid by explicitly calling IdentityMapAccessor.invalidateObject
method.

■ TimeToLiveCacheInvalidationPolicy: the object is automatically flagged as
invalid after a specified time period has elapsed since the object was read.

5.2.1.4 Setting Optimistic Locking
Optimistic locking prevents one user from writing over another user's work. Locking
is important when multiple servers or multiple applications access the same data and
is relevant in both single-server and multiple-server environments. In a
multiple-server environment, locking is still required if an application uses cache
refreshing or cache coordination. This section describes different ways to set optimistic
locking.

The @OptimisticLocking annotation specifies the type of optimistic locking to use
when updating or deleting entities. Optimistic locking is supported on an @Entity or
@MappedSuperclass annotation. The following attributes are available:

Main Tasks

Scaling TopLink Applications in Clusters 5-5

■ ALL_COLUMNS: This policy compares every field in the table in the WHERE clause
when doing an update or a delete.

■ CHANGED_COLUMNS: This policy compares only the changed fields in the WHERE
clause when doing an update. A delete operation will only compare the primary
key.

■ SELECTED_COLUMNS: This policy compares selected fields in the WHERE clause
when doing an update or a delete. The fields specified must be mapped and not be
primary keys.

■ VERSION_COLUMN: (default) This policy allows a single version number to be
used for optimistic locking. The version field must be mapped and not be the
primary key. To automatically force a version field update on a parent object when
its privately owned child object's version field changes, use the cascaded method
set to true. The method is set to false by default.

At the descriptor level, configure optimistic locking by using the
ClassDescriptor.setOptimisticLockingPolicy method to set an optimistic
FieldsLockingPolicy instance. As with the annotation, the following policies are
included:

■ AllFieldsLockingPolicy: This policy compares every field in the table in the
WHERE clause when doing an update or a delete.

■ ChangedFieldsLockingPolicy: This policy compares only the changed fields
in the WHERE clause when doing an update. A delete operation will only compare
the primary key.

■ SelectedFieldsLockingPolicy: This policy compares selected fields in the
WHERE clause when doing an update or a delete. The fields specified must be
mapped and not be primary keys.

■ VersionLockingPolicy: This policy is used to allow a single version number to
be used for optimistic locking. To automatically force a version field update on a
parent object when its privately owned child object's version field changes, use the
VersionLockingPolicy.setIsCascaded method set to true.

■ TimestampLockingPolicy: This policy is used to allow a single version
timestamp to be used for optimistic locking.

5.2.1.5 Using Cache Coordination
Cache coordination synchronizes changes among distributed sessions. Cache
coordination is most useful in application server clusters where the need to maintain
consistent data for all applications can be challenging. Moreover, cache consistency
becomes increasingly more difficult as the number of servers within an environment
increases.

Cache coordination works by broadcasting notifications of transactional object changes
among sessions (ServerSession or persistence unit) in the cluster. Cache
coordination is most useful for application that are primarily read-based and when
changes are performed by the same application operating with multiple, distributed
sessions.

Cache coordination significantly minimizes stale data, but does not completely
eliminate the possibility that stale data might occur. In addition, cache coordination
reduces the number of optimistic lock exceptions encountered in a distributed
architecture, and decreases the number of failed or repeated transactions in an
application. However, cache coordination in no way eliminates the need for an

Main Tasks

5-6 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

effective locking policy. To ensure the most current data, use cache coordination with
optimistic or pessimistic locking; optimistic locking is preferred.

Cache coordination is supported over RMI and JMS and can be configured either
declaratively by using persistence properties in a persistence.xml file or by using
the cache coordination API. System properties that match the persistence properties
are available as well.

For additional details on cache coordination see:

http://wiki.eclipse.org/Introduction_to_Cache_%28ELUG%29#Cache_
Coordination_2

Configuring JMS Cache Coordination Using Persistence Properties
The following example demonstrates how to configure cache coordination in the
persistence.xml file and uses JMS for broadcast notification. For JMS, provide a
JMS topic JNDI name and topic connection factory JNDI name in addition to the
protocol. The JMS topic should not be JTA enabled and should not have persistent
messages.

<property name="eclipselink.cache.coordination.protocol" value="jms" />
<property name="eclipselink.cache.coordination.jms.topic"
 value="jms/EmployeeTopic" />
<property name="eclipselink.cache.coordination.jms.factory"
 value="jms/EmployeeTopicConnectionFactory" />

Applications that run in a cluster generally do not require a URL as the topic is enough
to locate and use the resource. For applications that run outside the cluster, a URL is
required. The following example is a URL for a WebLogic server cluster:

<property name="eclipselink.cache.coordination.jms.host"
 value="t3://myserver:7001/" />

A user name and password for accessing the servers can also be set if required. For
example:

<property name="eclipselink.cache.coordination.jndi.user" value="user" />
<property name="eclipselink.cache.coordination.jndi.password" value="password" />

Configuring RMI Cache Coordination Using Persistence Properties
The following example demonstrates how to configure cache coordination in the
persistence.xml file and uses RMI for broadcast notification.

<property name="eclipselink.cache.coordination.protocol" value="rmi" />

Applications that run in a cluster generally do not require a URL because JNDI is
replicated and each server can look up each others listener. If an application runs
outside of a cluster, or if JNDI is not replicated, then each server must provide its URL.
This could be done through the persistence.xml file; however, different
persistence.xml files (thus JAR or EAR) for each server is required, which is
normally not desirable. A second option is to set the URL programmatically using the
cache coordination API. See "Configuring Cache Coordination Using the Cache
Coordination API" on page 5-7. The final option is to set the URL as a system property
on each application server. The following example sets the URL for a WebLogic server
cluster using a system property:

-Declipselink.cache.coordination.jms.host=t3://myserver:7001/

http://wiki.eclipse.org/Introduction_to_Cache_%28ELUG%29#Cache_Coordination_2
http://wiki.eclipse.org/Introduction_to_Cache_%28ELUG%29#Cache_Coordination_2

Main Tasks

Scaling TopLink Applications in Clusters 5-7

A user name and password for accessing the servers can also be set if required; for
example:

<property name="eclipselink.cache.coordination.jndi.user" value="user" />
<property name="eclipselink.cache.coordination.jndi.password" value="password" />

RMI cache coordination can use either asynchronous or synchronous broadcasting;
asynchronous is the default. Synchronous broadcasting ensures that all of the servers
are updated before the request returns. The following example configures synchronous
broadcasting.

<property name="eclipselink.cache.coordination.propagate-asynchronously"
 value="false" />

If multiple applications on the same server or network use cache coordination a
separate channel can be used for each application. For example:

<property name="eclipselink.cache.coordination.channel" value="EmployeeChannel" />

Lastly, if required, change the default RMI multicast socket address that allows servers
to find each other. The following example explicitly configures the multicast settings:

<property name="eclipselink.cache.coordination.rmi.announcement-delay"
 value="1000" />
<property name="eclipselink.cache.coordination.rmi.multicast-group"
 value="239.192.0.0" />
<property name="eclipselink.cache.coordination.rmi.multicast-group.port"
 value="3121" />
<property name="eclipselink.cache.coordination.packet-time-to-live" value="2" />

Configuring Cache Coordination Using the Cache Coordination API
Use the CommandManager interface to programmatically configure cache coordination
for a session. The following example configures RMI cache configuration:

Session.getCommandManager().setShouldPropagateAsynchronously(boolean)

Session.getCommandManager().getDiscoveryManager().
 setAnnouncementDelay()
 setMulticastGroupAddress()
 setMulticastPort()
 setPacketTimeToLive()

Session.getCommandManager().getTransportManager().
 setEncryptedPassword()
 setInitialContextFactoryName()
 setLocalContextProperties(Hashtable)
 setNamingServiceType() //passing in one of:
 TransportManager.JNDI_NAMING_SERVICE
 TransportManager.REGISTRY_NAMING_SERVICE
 setPassword()
 setRemoteContextProperties(Hashtable)
 setShouldRemoveConnectionOnError()
 setUserName()

Setting Cache Synchronization
Cache synchronization determines how objects changes are broadcast among session
members. The following synchronization modes are available:

Additional Resources

5-8 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

■ SEND_OBJECT_CHANGES: (Default) This option sends a list of changed objects
including data about the changes. This data is merged into the receiving cache.

■ INVALIDATE_CHANGED_OBJECTS: This option sends a list of the identities of the
objects that have changed. The receiving cache invalidates the objects rather than
changing any of the data.

■ SEND_NEW_OBJECTS_WITH_CHANGES: This option is the same as the SEND_
OBJECT_CHANGES option except it also includes any newly created objects from
the transaction.

■ NONE: This option does no cache coordination.

The @cache annotation coordinationType attribute is used to specify the
synchronization mode. For example:

...
@Entity
@Cache(CacheCoordinationType.SEND_NEW_OBJECTS_CHANGES)
public class Employee {
 ...
}

The ObjectChangeSet.setCacheSynchronizationType method can also be
used to set the synchronization mode. For example

setCacheSynchronizationType() // passing in one of:
 ClassDescriptor.DO_NOT_SEND_CHANGES
 ClassDescriptor.INVALIDATE_CHANGED_OBJECTS
 ClassDescriptor.SEND_NEW_OBJECTS_WITH_CHANGES
 ClassDescriptor.SEND_OBJECT_CHANGES

5.2.2 Task 2: Ensure TopLink is Enabled
Ensure the TopLink JAR files are included on the classpath of each application server
in the cluster to which the TopLink application is deployed and configure TopLink as
the persistence provider. See Chapter 2, "Using TopLink with WebLogic Server," and
Chapter 3, "Using TopLink with GlassFish Server," for detailed instructions on setting
up TopLink with WebLogic server and GlassFish, respectively.

5.2.3 Task 3: Ensure All Application Servers are Part of the Cluster
Configure an application server cluster that includes each application server that hosts
the TopLink application:

■ For WLS clustering see Using Clusters for Oracle WebLogic Server.

■ For GlassFish clustering, see:

http://download.oracle.com/docs/cd/E18930_
01/html/821-2426/index.html

5.3 Additional Resources
The following additional resources are available:

■ Section 5.3.1, "Code Samples"

■ Section 5.3.2, "Related JavaDoc"

Additional Resources

Scaling TopLink Applications in Clusters 5-9

5.3.1 Code Samples
http://wiki.eclipse.org/EclipseLink/Examples/JPA/CacheCoordinati
on

http://wiki.eclipse.org/EclipseLink/Examples/JPA/Caching

5.3.2 Related JavaDoc
For more information, see the following APIs in Oracle Fusion Middleware Java API
Reference for Oracle TopLink.

■ org.eclipse.persistence.annotations.OptimisticLocking

■ org.eclipse.persistence.annotations.Cache

■ org.eclipse.persistence.descriptors.ClassDescriptor

■ org.eclipse.persistence.sessions.coordination

Additional Resources

5-10 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

6

Providing Software as a Service 6-1

6Providing Software as a Service

This chapter provides instructions for creating shared TopLink applications that run in
software as a service (SaaS) environments.

This chapter includes the following sections:

■ Section 6.1, "Understanding Oracle TopLink as a SaaS"

■ Section 6.2, "Making JPA Entities Extensible"

■ Section 6.3, "Making JAXB Beans Extensible"

■ Section 6.4, "Using Single-Table Multi-Tenancy"

■ Section 6.5, "Using an External Metadata Source"

6.1 Understanding Oracle TopLink as a SaaS
The Oracle Platform for SaaS includes TopLink, part of Oracle Fusion Middleware.
This allows you to build, deploy, and manage SaaS applications. With TopLink you can
manage persistence in a cloud-enabled applications and services. Developing
more-flexible SaaS solutions that address multi-tenancy and extensibility while still
maintaining high performance and scalability makes the persistence layer of these
applications a critical component.

TopLink supports providing software as a service by supporting extensibility,
multi-tenancy, and the ability to use external metadata sources, as explained in the
following sections:

■ Section 6.2, "Making JPA Entities Extensible"

■ Section 6.3, "Making JAXB Beans Extensible"

■ Section 6.4, "Using Single-Table Multi-Tenancy"

■ Section 6.5, "Using an External Metadata Source"

6.2 Making JPA Entities Extensible
Use the @VirtualAccessMethods annotation to specify that an entity is extensible.
By using virtual properties in an extensible entity, you can specify mappings external
to the entity. This allows you to modify the mappings without modifying the entity
source file and without redeploying the entity's persistence unit.

Extensible entities are useful in a multi-tenant (or SaaS) environment where a shared,
generic application can be used by multiple clients (tenants). Tenants have private
access to their own data, and to data shared with other tenants.

Making JPA Entities Extensible

6-2 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

Using extensible entities, you can:

■ Build an application where some mappings are common to all users and some
mappings are user-specific.

■ Add mappings to an application after it is made available to a customer (even
post-deployment).

■ Use the same EntityManagerFactory to work with data after mappings have
changed.

■ Provide an additional source of metadata to be used by an application.

6.2.1 Main Tasks
To create and support an extensible JPA entity:

■ Task 1: Configure the Entity

■ Task 2: Design the Schema

■ Task 3: Provide Additional Mappings

■ Task 4: Configure Persistence Properties and the Data Repository

6.2.1.1 Task 1: Configure the Entity
Configuring the entity consists of annotating the entity class with
@VirtualAccessMethods, adding get and set methods for the property values,
and adding a data structure to store the extended attributes and values.

6.2.1.1.1 Annotate the Entity Class with @VirtualAccessMethods Annotate the entity with
@VirtualAccessMethods to specify that it is extensible and to define virtual
properties.

Table 6–1 describes the attributes available to the @VirtualAccessMethods
annotation.

6.2.1.1.2 Add get and set Methods to the Entity Add get(String) and set(String,
Object) methods to the entity. The get() method returns a value by property name
and the set() method stores a value by property name. The default names for these
methods are get and set, and they can be overridden with the
@VirtualAccessMethods annotation.

EclipseLink weaves these methods if weaving is enabled, which provides support for
lazy loading, change tracking, fetch groups, and internal optimizations. You must use

Table 6–1 Attributes for the @VirtualAccessMethods Annotation

Attribute Description

get The name of the getter method to use for the virtual property. This method
must take a single java.lang.String parameter and return a
java.lang.Object.

Default: get

Required? No

set The name of the setter method to use for the virtual property. This method
must take a java.lang.String and a java.lang.Object parameter and
return a java.lang.Object parameter.

Default: set

Required? No

Making JPA Entities Extensible

Providing Software as a Service 6-3

the get(String) and set(String, Object) signatures, or else weaving will not
work.

6.2.1.1.3 Add a Data Structure Add a data structure to store the extended attributes and
values, that is, the virtual mappings. These can then be mapped to the database. See
Section 6.2.1.3, "Task 3: Provide Additional Mappings."

A common way to store the virtual mappings is in a Map (as shown in Example 6–1),
but you can also use other strategies. For example you could store the virtual
mappings in a directory system.

When using field-based access, annotate the data structure with @Transient so the
structure cannot be used for another mapping. When using property-based access,
@Transient is unnecessary.

Example 6–1 illustrates an entity class that uses property access.

Example 6–1 Entity Class that Uses Property Access

@Entity
@VirtualAccessMethods
public class Customer{

 @Id
 private int id;
 ...

 @Transient
 private Map<String, Object> extensions;

 public <T> T get(String name) {
 return (T) extentions.get(name);
 }

 public Object set(String name, Object value) {
 return extensions.put(name, value);
 }

6.2.1.1.4 Use XML As an alternative to, or in addition to, using
@VirtualAccessMethods, you can use the <access> and <access-methods>
elements, for example:

<access>VIRTUAL</access>
<access-methods set-method="get" get-method="set"/>

6.2.1.2 Task 2: Design the Schema
Provide database tables with extra columns for storing flexible mapping data. For
example, the following Customer table includes two predefined columns, ID and
NAME, and three flexible columns, FLEX_COL1, FLEX_COL2, FLEX_COL3:

■ CUSTOMER

■ INTEGER ID

■ VARCHAR NAME

Note: Weaving is not supported when using virtual access methods
with OneToOne mappings. If attempted, an exception will be thrown.

Making JPA Entities Extensible

6-4 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

■ VARCHAR FLEX_COL1

■ VARCHAR FLEX_COL2

■ VARCHAR FLEX_COL3

You can then specify which of the flex columns should be used to persist an extended
attribute, as described in "Task 3: Provide Additional Mappings".

6.2.1.3 Task 3: Provide Additional Mappings
To provide additional mappings, add the mappings with the column and
access-methods attributes to the eclipselink-orm.xml file, for example:

<basic name="idNumber" attribute-type="String">
 <column name="FLEX_COL1"/>
 <access-methods get-method="get" set-method="set"/>
</basic>

6.2.1.4 Task 4: Configure Persistence Properties and the Data Repository
Configure persistence unit properties to indicate that the application should retrieve
the flexible mappings from the eclipselink-orm.xml file. You can set persistence
unit properties using persistence.xml or by setting properties on the
EntityManagerFactory, as described in the following sections.

For more information about external mappings, see "External Mappings" in the
EclipseLink documentation.

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advanced_JPA_
Development/External_Mappings

6.2.1.4.1 Configure persistence.xml In persistence.xml file, use the
eclipselink.metadata-source property to use the default
eclipselink-orm.xml file. Use the eclipselink.metadata-source.xml.url
property to use a different file at the specified location, for example:

<property name="eclipselink.metadata-source" value="XML"/>
<property name="eclipselink.metadata-source.xml.url" value="foo://bar"/>

6.2.1.4.2 Configure the EntityManagerFactory and the Metadata Repository Extensions are
added at bootstrap time through access to a metadata repository. The metadata
repository is accessed through a class that provides methods to retrieve the metadata it
holds. The current release includes a metadata repository implementation that
supports XML repositories.

Specify the class to use and any configuration information for the metadata repository
through persistence unit properties. The entity manager factory integrates additional
mapping information from the metadata repository into the metadata it uses to
bootstrap.

You can provide your own implementation of the class to access the metadata
repository. Each metadata repository access class must specify an individual set of
properties to use to connect to the repository.

You can subclass either of the following classes:

■ org.eclipse.persistence.internal.jpa.extensions.MetadataReposit
ory

■ org.eclipse.persistence.internal.jpa.extensions.XMLMetadataRepo
sitory

Making JPA Entities Extensible

Providing Software as a Service 6-5

In the following example, the properties that begin with com.foo are defined by the
developer.

<property name="eclipselink.metadata-source" value="com.foo.MetadataRepository"/>
<property name="com.foo.MetadataRepository.location" value="foo://bar"/>
<property name="com.foo.MetadataRepository.extra-data" value="foo-bar"/>

6.2.1.4.3 Refresh the Metadata Repository If you change the metadata and you want an
EntityManager based on the new metadata, you must call refreshMetadata()
on the EntityManagerFactory to refresh the data. The next EntityManager will
be based on the new metadata.

The refreshMetadata method takes a Map of properties, and that map of properties
can be used to override the properties previously defined for the metadata-source.

6.2.2 Code Examples
Example 6–2 illustrates the following:

■ Field access is used for non-extension fields.

■ Virtual access is used for extension fields, using defaults (get(String) and
set(String, Object)).

■ The get(String) and set(String, Object) methods will be woven, even if
no mappings use them, because of the presence of @VirtualAccessMethods.

■ Extensions are mapped in a portable way by specifying @Transient.

Example 6–2 Virtual Access Using Default get and set Method Names

@Entity
@VirtualAccessMethods
public class Address {

 @Id
 private int id;

 @Transient
 private Map<String, Object> extensions;

 public int getId(){
 return id;
 }

 public <T> T get(String name) {
 return (T) extentions.get(name);
 }

 public Object set(String name, Object value) {
 return extensions.put(name, value);
 }

 ...

Example 6–3 illustrates the following:

■ Field access is used for non-extension fields.

■ The @VirtualAccessMethods annotation overrides methods to be used for
getting and setting.

Making JPA Entities Extensible

6-6 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

■ The get(String) and set(String, Object) methods will be woven, even if
no mappings use them, because of the presence of @VirtualAccessMethods.

■ Extensions are mapped in a portable way by specifying @Transient.

■ The XML for extended mapping indicates which get() and set() method to
use.

Example 6–3 Overriding Get and Set Methods

@Entity
@VirtualAccessMethods(get="getExtension", set="setExtension")
public class Address {

 @Id
 private int id;

 @Transient
 private Map<String, Object> extensions;

 public int getId(){
 return id;
 }

 public <T> T getExtension(String name) {
 return (T) extensions.get(name);
 }

 public Object setExtension(String name, Object value) {
 return extensions.put(name, value);
 }

 ...

 <basic name="name" attribute-type="String">
 <column name="FLEX_1"/>
 <access-methods get-method="getExtension" set-method="setExtension"/>
 </basic>

Example 6–4 illustrates the following:

■ Property access is used for non-extension fields.

■ Virtual access is used for extension fields, using defaults (get(String) and
set(String, Object)).

■ The extensions are mapped in a portable way. @Transient is not required,
because property access is used.

■ The get(String) and set(String, Object) methods will be woven, even if
no mappings use them, because of the presence of @VirtualAccessMethods.

Example 6–4 Using Property Access

@Entity
@VirtualAccessMethods
public class Address {

 private int id;

 private Map<String, Object> extensions;

Making JAXB Beans Extensible

Providing Software as a Service 6-7

 @Id
 public int getId(){
 return id;
 }

 public <T> T get(String name) {
 return (T) extensions.get(name);
 }

 public Object set(String name, Object value) {
 return extensions.put(name, value);
 }

...

6.3 Making JAXB Beans Extensible
Use the @XmlVirtualAccessMethods annotation to specify that a JAXB bean is
extensible. By using virtual properties in an extensible bean, you can specify mappings
external to the bean. This allows you to modify the mappings without modifying the
bean source file and without redeploying the bean's persistence unit.

In a multi-tenant (or SaaS) architecture, a single application runs on a server, serving
multiple client organizations (tenants). Good multi-tenant applications allow
per-tenant customizations. When these customizations are made to data, it can be
difficult for the binding layer to handle them. JAXB is designed to work with domain
models that have real fields and properties. EclipseLink Object-XML 2.3 (also known
as MOXy) introduces the concept of virtual properties which can easily handle this use
case. Virtual properties are defined by the Object-XML metadata file, and provide a
way to extend a class without modifying the source.

This section has the following subsections:

■ Section 6.3.1, "Main Steps"

■ Section 6.3.2, "Code Examples"

6.3.1 Main Steps
To create and support an extensible JAXB bean:

■ Task 1: Configure the Bean

■ Task 2: Provide Additional Mappings

6.3.1.1 Task 1: Configure the Bean
Configuring the bean consists of annotating the bean class with the
@XmlVirtualAccessMethods, adding get and set methods for the property
values, and adding a data structure to store the extended attributes and values.

6.3.1.1.1 Annotate the Bean Class with @Xml VirtualAccessMethods Annotate the bean with
@XmlVirtualAccessMethods to specify that it is extensible and to define virtual
properties.

Table 6–2 describes the attributes available to the @XmlVirtualAccessMethods
annotation.

Making JAXB Beans Extensible

6-8 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

6.3.1.1.2 Add get and set Methods to the Bean Add get(String) and set(String,
Object) methods to the bean. The get() method returns a value by property name
and the set() method stores a value by property name. The default names for these
methods are get and set, and they can be overridden with the
@XmlVirtualAccessMethods annotation.

EclipseLink weaves these methods if weaving is enabled, which provides support for
lazy loading, change tracking, fetch groups, and internal optimizations.

6.3.1.1.3 Add a Data Structure Add a data structure to store the extended attributes and
values, that is, the virtual mappings. These can then be mapped to the database. See
"Task 2: Provide Additional Mappings".

A common way to store the virtual mappings is in a Map, but you can use other ways,
as well. For example you could store the virtual mappings in a directory system.

When using field-based access, annotate the data structure with @XmlTransient so it
cannot use it for another mapping. When using property-based access,
@XmlTransient is unnecessary.

6.3.1.1.4 Use XML As an alternative to, or in addition to, using
@XmlVirtualAccessMethods, you can use the <access> and
<access-methods> elements, for example:

<access>VIRTUAL</access>
<access-methods set-method="get" get-method="set"/>

XML to enable virtual access methods using get and set:

<xml-virtual-access-methods/>

XML to enable virtual access methods using put instead of set (default):

<xml-virtual-access-methods set-method="put"/>

XML to enable virtual access methods using retrieve instead of get (default):

<xml-virtual-access-methods get-method="retrieve"/>

XML to enable virtual access methods using retrieve and put instead of get and
set (default):

<xml-virtual-access-methods get-method="retrieve" set-method="put"/>

Table 6–2 Attributes for the @XmlVirtualAccessMethods Annotation

Attribute Description

get The name of the getter method to use for the virtual property.
This method must take a single java.lang.String parameter
and return a java.lang.Object.

Default: get

Required? No

set The name of the setter method to use for the virtual property.
This method must take a java.lang.String and a
java.lang.Object parameter and return a
java.lang.Object parameter.

Default: set

Required? No

Making JAXB Beans Extensible

Providing Software as a Service 6-9

6.3.1.2 Task 2: Provide Additional Mappings
To provide additional mappings, add the mappings to the eclipselink-oxm.xml
file, for example:

<xml-element java-attribute="idNumber"/>

6.3.2 Code Examples
The examples in this section illustrate how to use extensible JAXB beans. The example
begins with the creation of a base class that other classes can extend. In this case the
extensible classes are for Customers and PhoneNumbers. Mapping files are created
for two separate tenants. Even though both tenants share several real properties, they
will define virtual properties that are unique to their requirements.

6.3.2.1 Basic Setup
Example 6–5 illustrates a base class, ExtensibleBase, which other extensible classes
can extend. In the example, the use of the @XmlTransient annotation prevents
ExtensibleBase from being mapped as an inheritance relationship. The real
properties represent the parts of the model that will be common to all tenants. The
per-tenant extensions will be represented as virtual properties.

Example 6–5 A Base Class for Extensible Classes

package examples.virtual;

import java.util.HashMap;
import java.util.Map;

import javax.xml.bind.annotation.XmlTransient;

import org.eclipse.persistence.oxm.annotations.XmlVirtualAccessMethods;

@XmlTransient
@XmlVirtualAccessMethods(setMethod="put")
public class ExtensibleBase {

 private Map<String, Object> extensions = new HashMap<String, Object>();

 public <T> T get(String property) {
 return (T) extensions.get(property);
 }

 public void put(String property, Object value) {
 extensions.put(property, value);
 }
}

Example 6–6 illustrates the definition of a Customer class. The Customer class is
extensible because it inherits from a domain class that has been annotated with
@XmlVirtualAccessMethods.

Example 6–6 An Extensible Customer Class

package examples.virtual;

import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement

Making JAXB Beans Extensible

6-10 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

public class Customer extends ExtensibleBase {

 private String firstName;
 private String lastName;
 private Address billingAddress;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public Address getBillingAddress() {
 return billingAddress;
 }

 public void setBillingAddress(Address billingAddress) {
 this.billingAddress = billingAddress;
 }

}

Example 6–7 illustrates an Address class. It is not necessary for every class in your
model to be extensible. In this example, the Address class does not have any virtual
properties.

Example 6–7 A Nonextensible Address Class

package examples.virtual;

public class Address {

 private String street;

 public String getStreet() {
 return street;
 }

 public void setStreet(String street) {
 this.street = street;
 }

}

Example 6–8 illustrates a PhoneNumber class. Like Customer, PhoneNumber will be
an extensible class.

Example 6–8 An Extensible PhoneNumber Class

package examples.virtual;

Making JAXB Beans Extensible

Providing Software as a Service 6-11

import javax.xml.bind.annotation.XmlValue;

public class PhoneNumber extends ExtensibleBase {

 private String number;

 @XmlValue
 public String getNumber() {
 return number;
 }

 public void setNumber(String number) {
 this.number = number;
 }

}

6.3.2.2 Define the Tenants
The examples in this section define two separate tenants. Even though both tenants
share several real properties, the corresponding XML representation can be quite
different due to virtual properties.

Tenant 1
The first tenant is an online sporting goods store that requires the following extensions
to its model:

■ Customer ID

■ Customer's middle name

■ Shipping address

■ A collection of contact phone numbers

■ Type of phone number (that is, home, work, or cell)

The metadata for the virtual properties is supplied through Object-XML's XML
mapping file. Virtual properties are mapped in the same way as real properties. Some
additional information is required, including type (since this cannot be determined
through reflection), and for collection properties, a container type. The virtual
properties defined below for Customer are middleName, shippingAddress, and
phoneNumbers. For PhoneNumber, the virtual property is the type property.

Example 6–9 illustrates the binding-tenant1.xml mapping file.

Example 6–9 Defining Virtual Properties for Tenant 1

<?xml version="1.0"?>
<xml-bindings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
 package-name="examples.virtual">
 <java-types>
 <java-type name="Customer">
 <xml-type prop-order="firstName middleName lastName billingAddress
shippingAddress phoneNumbers"/>
 <java-attributes>
 <xml-attribute
 java-attribute="id"
 type="java.lang.Integer"/>
 <xml-element

Making JAXB Beans Extensible

6-12 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

 java-attribute="middleName"
 type="java.lang.String"/>
 <xml-element
 java-attribute="shippingAddress"
 type="examples.virtual.Address"/>
 <xml-element
 java-attribute="phoneNumbers"
 name="phoneNumber"
 type="examples.virtual.PhoneNumber"
 container-type="java.util.List"/>
 </java-attributes>
 </java-type>
 <java-type name="PhoneNumber">
 <java-attributes>
 <xml-attribute
 java-attribute="type"
 type="java.lang.String"/>
 </java-attributes>
 </java-type>
 </java-types>
</xml-bindings>

The get and set methods are used on the domain model to interact with the real
properties and the accessors defined on the @XmlVirtualAccessMethods
annotation are used to interact with the virtual properties. The normal JAXB
mechanisms are used for marshal and unmarshal operations. Example 6–10 illustrates
the Customer class code for tenant 1 to obtain the data associated with virtual
properties.

Example 6–10 Tenant 1 Code to Provide the Data Associated with Virtual Properties

...
Customer customer = new Customer();

//Set Customer's real properties
customer.setFirstName("Jane");
customer.setLastName("Doe");

Address billingAddress = new Address();
billingAddress.setStreet("1 Billing Street");
customer.setBillingAddress(billingAddress);

//Set Customer's virtual 'middleName' property
customer.put("middleName", "Anne");

//Set Customer's virtual 'shippingAddress' property
Address shippingAddress = new Address();
shippingAddress.setStreet("2 Shipping Road");
customer.put("shippingAddress", shippingAddress);

List<PhoneNumber> phoneNumbers = new ArrayList<PhoneNumber>();
customer.put("phoneNumbers", phoneNumbers);

PhoneNumber workPhoneNumber = new PhoneNumber();
workPhoneNumber.setNumber("555-WORK");
//Set the PhoneNumber's virtual 'type' property
workPhoneNumber.put("type", "WORK");
phoneNumbers.add(workPhoneNumber);

PhoneNumber homePhoneNumber = new PhoneNumber();

Making JAXB Beans Extensible

Providing Software as a Service 6-13

homePhoneNumber.setNumber("555-HOME");
//Set the PhoneNumber's virtual 'type' property
homePhoneNumber.put("type", "HOME");
phoneNumbers.add(homePhoneNumber);

Map<String, Object> properties = new HashMap<String, Object>();
properties.put(JAXBContextFactory.ECLIPSELINK_OXM_XML_KEY,
"examples/virtual/binding-tenant1.xml");
JAXBContext jc = JAXBContext.newInstance(new Class[] {Customer.class,
Address.class}, properties);

Marshaller marshaller = jc.createMarshaller();
marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);
marshaller.marshal(customer, System.out);
...

Example 6–11 illustrates the XML output from the Customer class for tenant 1.

Example 6–11 XML Output from the Customer Class for Tenant 1

<?xml version="1.0" encoding="UTF-8"?>
<customer>
 <firstName>Jane</firstName>
 <middleName>Anne</middleName>
 <lastName>Doe</lastName>
 <billingAddress>
 <street>1 Billing Street</street>
 </billingAddress>
 <shippingAddress>
 <street>2 Shipping Road</street>
 </shippingAddress>
 <phoneNumber type="WORK">555-WORK</phoneNumber>
 <phoneNumber type="HOME">555-HOME</phoneNumber>
</customer>

Tenant 2
The second tenant is a streaming media provider that offers on-demand movies and
music to its subscribers. It requires a different set of extensions to the core model:

■ A single contact phone number

For this tenant, the mapping file is also used to customize the mapping of the real
properties.

Example 6–12 illustrates the binding-tenant2.xml mapping file.

Example 6–12 Defining Virtual Properties for Tenant 2

<?xml version="1.0"?>
<xml-bindings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
 package-name="examples.virtual">
 <xml-schema namespace="urn:tenant1" element-form-default="QUALIFIED"/>
 <java-types>
 <java-type name="Customer">
 <xml-type prop-order="firstName lastName billingAddress phoneNumber"/>
 <java-attributes>
 <xml-attribute java-attribute="firstName"/>
 <xml-attribute java-attribute="lastName"/>
 <xml-element java-attribute="billingAddress" name="address"/>
 <xml-element

Using Single-Table Multi-Tenancy

6-14 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

 java-attribute="phoneNumber"
 type="examples.virtual.PhoneNumber"/>
 </java-attributes>
 </java-type>
 </java-types>
</xml-bindings>

Example 6–13 illustrates the tenant 2 Customer class code to obtain the data
associated with virtual properties.

Example 6–13 Tenant 2 Code to Provide the Data Associated with Virtual Properties

...
Customer customer = new Customer();
customer.setFirstName("Jane");
customer.setLastName("Doe");

Address billingAddress = new Address();
billingAddress.setStreet("1 Billing Street");
customer.setBillingAddress(billingAddress);

PhoneNumber phoneNumber = new PhoneNumber();
phoneNumber.setNumber("555-WORK");
customer.put("phoneNumber", phoneNumber);

Map<String, Object> properties = new HashMap<String, Object>();
properties.put(JAXBContextFactory.ECLIPSELINK_OXM_XML_KEY,
"examples/virtual/binding-tenant2.xml");
JAXBContext jc = JAXBContext.newInstance(new Class[] {Customer.class,
Address.class}, properties);

Marshaller marshaller = jc.createMarshaller();
marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);
marshaller.marshal(customer, System.out);
...

Example 6–14 illustrates the XML output from the Customer class for tenant 2.

Example 6–14 XML Output from the Customer Class for Tenant 2

<?xml version="1.0" encoding="UTF-8"?>
<customer xmlns="urn:tenant1" firstName="Jane" lastName="Doe">
 <address>
 <street>1 Billing Street</street>
 </address>
 <phoneNumber>555-WORK</phoneNumber>
</customer>

6.4 Using Single-Table Multi-Tenancy
A key element to implementing SaaS is the ability for multiple application tenants to
use a shared persistence schema while ensuring that the tenant only works on its own
data. Single-table multi-tenancy uses a single-table for all application tenants and
differentiates application tenants based on tenant discriminator columns with specific
application context values. Applications can configure as many discriminator columns
as needed or rely on default behavior. For additional details on single-table
multi-tenancy, see:

Using Single-Table Multi-Tenancy

Providing Software as a Service 6-15

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advanced_JPA_
Development/Single-Table_Multi-Tenancy

The following topics are included in this section:

■ Section 6.4.1, "Main Tasks"

■ Section 6.4.2, "Additional Resources"

6.4.1 Main Tasks
The tasks in this section provide instructions for using single-table multi-tenancy
when creating applications that are designed to run in SaaS environments.

The following tasks are included in this section:

■ Task 1: Enable Single-Table Multi-Tenancy

■ Task 2: Specify Tenant Discriminator Columns

■ Task 3: Use the Discriminator Column at Run Time

6.4.1.1 Task 1: Enable Single-Table Multi-Tenancy
Single-table multi-tenancy can be enabled declaratively using the @Multitenant
annotation; or in an ORM XML file using the <multitenant> element; or using
annotations and XML together.

Using the @Multitenant Annotation
To use the @Multitenant annotation, include the annotation with an @Entity or
@MappedSuperclass annotation and include the SINGLE_TABLE attribute. For
example:

@Entity
@Multitenant(SINGLE_TABLE)
public class Employee {
}

The SINGLE_TABLE attributes states that the table or tables (Table and
SecondaryTable) associated with the given entity can be shared among tenants.

Using the <multitenant> Element
To use the <multitenant> element, include the element within an <entity>
element. For example:

<entity class="model.Employee">
 <multitenant type="SINGLE_TABLE">
 ...
 </multitenant>
 ...
</entity>

6.4.1.2 Task 2: Specify Tenant Discriminator Columns
Discriminator columns are used together with an associated application context to
indicate which rows in a table an application tenant can access. Multiple tenant
discriminator columns can be specified. If no tenant discriminator column is specified
a default column named TENANT_ID is used along with the default
eclipselink.tenant-id context property. The tenant discriminator column is

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advanced_JPA_Development/Single-Table_Multi-Tenancy
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advanced_JPA_Development/Single-Table_Multi-Tenancy

Using Single-Table Multi-Tenancy

6-16 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

assumed to be on the primary table unless a table or secondary table is explicitly
specified. To change the default behavior, see:

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advanced_JPA_
Development/Single-Table_Multi-Tenancy#Defining_Persistence_
Unit_and_Entity_Mappings_Defaults

Tenant discriminator columns can be specified declaratively using the
@TenantDiscriminatorColumn or @TenantDiscriminatorColumns
annotations; or in an ORM XML file using the <tenant-discriminator-column>
element.

Using the @TenantDiscriminatorColumn Annotation
To use the @TenantDiscriminatorColumn annotation, include the annotation with
an @Entity or @MappedSuperclass annotation and include the name and
contextProperty attributes. For example:

@Entity
@Multitenant(SINGLE_TABLE)
@TenantDiscriminatorColumn(name = "TENANT", contextProperty = "multi-tenant.id")
public class Employee {
}

To specify multiple columns, include multiple @TenantDiscriminatorColumn
annotations within the @TenantDiscriminatorColumns annotation and include
the table where the column is located if it is not located on the primary table. For
example:

@Entity
@Table(name = "EMPLOYEE")
@SecondaryTable(name = "RESPONSIBILITIES")
@Multitenant(SINGLE_TABLE)
@TenantDiscriminatorColumns({
 @TenantDiscriminatorColumn(name = "TENANT_ID",
 contextProperty = "employee-tenant.id", length = 20)
 @TenantDiscriminatorColumn(name = "TENANT_CODE",
 contextProperty = "employee-tenant.code", discriminatorType = STRING,
 table = "RESPONSIBILITIES")
 }
)
public Employee() {
 ...
}

Using the <tenant-discriminator-column> Element
To use the <tenant-discriminator-column> element, include the element within
a <multitenant> element and include the name and context-property
attributes. For example:

<entity class="model.Employee">
 <multitenant>
 <tenant-discriminator-column name="TENANT"
 context-property="multi-tenant.id"/>
 </multitenant>
 ...
</entity>

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advanced_JPA_Development/Single-Table_Multi-Tenancy#Defining_Persistence_Unit_and_Entity_Mappings_Defaults
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advanced_JPA_Development/Single-Table_Multi-Tenancy#Defining_Persistence_Unit_and_Entity_Mappings_Defaults
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advanced_JPA_Development/Single-Table_Multi-Tenancy#Defining_Persistence_Unit_and_Entity_Mappings_Defaults

Using Single-Table Multi-Tenancy

Providing Software as a Service 6-17

To specify multiple columns, include additional
<tenant-discriminator-column> elements and include the table where the
column is located if it is not located on the primary table. For example:

<entity class="model.Employee">
 <multitenant type="SINGLE_TABLE">
 <tenant-discriminator-column name="TENANT_ID"
 context-property="employee-tenant.id" length="20"/>
 <tenant-discriminator-column name="TENANT_CODE"
 context-property="employee-tenant.id" discriminator-type="STRING"
 table="RESPONSIBILITIES"/>
 </multitenant>
 <table name="EMPLOYEE"/>
 <secondary-table name="RESPONSIBILITIES"/>
 ...
</entity>

Mapping Tenant Discriminator Columns
Tenant discriminator columns can be mapped to a primary key or another column.
The following example maps the tenant discriminator column to the primary key on
the table during DDL generation:

@Entity
@Table(name = "ADDRESS")
@Multitenant
@TenantDiscriminatorColumn(name = "TENANT", contextProperty = "tenant.id",
 primaryKey = true)
public Address() {
 ...
}

To have the discriminator column mapped to the primary key as part of the object
entity, the column must be mapped. For example

@Id
@Column("TENANT")
public int tenant;

The following example maps the tenant discriminator column to a primary key in the
ORM XML file:

<entity class="model.Address">
 <multitenant>
 <tenant-discriminator-column name="TENANT"
 context-property="multi-tenant.id" primary-key="true"/>
 </multitenant>
 <table name="ADDRESS"/>
 ...
</entity>

The following example maps the tenant discriminator column to another column
name AGE.

@Entity
@Table(name = "Player")
@Multitenant
@TenantDiscriminatorColumn(name = "AGE", contextProperty = "tenant.age")
public Player() {
 ...

Using Single-Table Multi-Tenancy

6-18 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

 @Basic
 @Column(name="AGE", insertable="false", updatable="false")
 public int age;
}

Or, in the ORM XML file as follows:

<entity class="model.Player">
 <multi-tenant>
 <tenant-discriminator-column name="AGE" context-property="tenant.age"/>
 </multi-tenant>
 <table name="PLAYER"/>
 ...
 <attributes>
 <basic name="age" insertable="false" updatable="false">
 <column name="AGE"/>
 </basic>
 ...
 </attributes>
 ...
</entity>

Specifying a context property at Run Time
At runtime, the context property configuration can be specified using a persistence
unit definition that is passed to a create entity manager factory call or set on an
individual entity manager. For example

<persistence-unit name="multi-tenant">
 ...
 <properties>
 <property name="tenant.id" value="707"/>
 ...
 </properties>
</persistence-unit>

Or, alternatively in code as follows:

HashMap properties = new HashMap();
properties.put(PersistenceUnitProperties.MULTITENANT_PROPERTY_DEFAULT, "707");
EntityManager em = Persistence.createEntityManagerFactory("multi-tenant-pu",
 properties).createEntityManager();

An entity manager property definition follows:

EntityManager em =
 Persistence.createEntityManagerFactory("multi-tenant-pu").createEntityManager();
em.beginTransaction();
em.setProperty("other.tenant.id.property", "707");
em.setProperty(EntityManagerProperties.MULTITENANT_PROPERTY_DEFAULT, "707");
...

6.4.1.3 Task 3: Use the Discriminator Column at Run Time
The tenant discriminator column can be used at run time through entity manager
operations and querying. The tenant discriminator column and value are supported
through the following entity manager operations:

■ persist()

■ find()

Using an External Metadata Source

Providing Software as a Service 6-19

■ refresh()

The tenant discriminator column and value are supported through the following
queries:

■ Named queries

■ Update all

■ Delete all

6.4.2 Additional Resources
The following additional resources are available:

■ Section 6.4.2.1, "Code Samples"

■ Section 6.4.2.2, "Related Javadoc"

6.4.2.1 Code Samples
http://wiki.eclipse.org/EclipseLink/Examples/JPA/Multitenant

http://wiki.eclipse.org/EclipseLink/Examples/MySports

http://wiki.eclipse.org/EclipseLink/Examples/JPA/Multitenant/VPD

6.4.2.2 Related Javadoc
For more information, see the following APIs in Oracle Fusion Middleware Java API
Reference for Oracle TopLink.

■ org.eclipse.persistence.annotations.Multitenant

■ org.eclipse.persistence.annotations.TenantDiscriminatorColumn

■ org.eclipse.persistence.annotations.TenantDiscriminatorColumns

6.5 Using an External Metadata Source
With TopLink, you can store your mapping information in a metadata source that is
external to the running application. Because the mapping information is retrieved
when the application creates the persistence unit, you can dynamically override or
extend mappings in a deployed application.

6.5.1 Using the eclipselink-orm.xml File Externally
With TopLink, you can use the eclipselink-orm.xml file to support advanced
mapping types and options. This file can override the standard JPA orm.xml mapping
configuration file.

6.5.2 Main Tasks
This section includes the following tasks:

■ Task 1: Configure the Persistence Unit

Note: Multi-tenancy is not supported through named native queries.
To use named native queries in a multi-tenant environment, manually
handle any multi-tenancy issues directly in the query. In general, it is
best to avoid named native queries in a multi-tenant environment.

Using an External Metadata Source

6-20 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

■ Task 2: Configure the Server

6.5.2.1 Task 1: Configure the Persistence Unit
You can configure your persistence unit to use the external metadata by:

■ Section 6.5.2.1.1, "Accessing a Fixed Location"

■ Section 6.5.2.1.2, "Accessing an Application Context Based Location"

6.5.2.1.1 Accessing a Fixed Location The easiest way to access an external file, such as
the eclipselink-orm.xml file with additional mapping information, is by making
the file available from a fixed URL on the web server.

Use the eclipselink.metadata-source.xml.url property, as shown in
Example 6–15, to specify the location:

Example 6–15 Fixed Location

<property name="eclipselink.metadata-source" value="XML"/>
<property name="eclipselink.metadata-source.xml.url"
value="http://myserverlocation/"/>

6.5.2.1.2 Accessing an Application Context Based Location For more complex
requirements, such as providing tenant-specific extensions in a multi-tenant
application, you can specify the location of the external metadata based on the
application context.

Implement the MetadataSource interface, as shown in Example 6–16, to specify the
location:

Example 6–16 Fixed Location

<property name="eclipselink.metadata-source" value="mypackage.MyMetadataSource"/>
<property name="eclipselink.metadata-source.xml.url" value="foo://bar"/>

Example 6–17 illustrates how to return a specific mapping file, based on tenant:

Example 6–17 Tenant-specific Mapping File

public class AdminMetadataSource extends XMLMetadataSource {

@Override
public XMLEntityMappings getEntityMappings(Map<String, Object> properties,

ClassLoader classLoader, SessionLog log) {
String leagueId = (String) properties.get(LEAGUE_CONTEXT);
properties.put(PersistenceUnitProperties.METADATA_SOURCE_XML_URL,

"http://myserverlocation/rest/" + leagueId + "/orm");
return super.getEntityMappings(properties, classLoader, log);

}
}

6.5.2.2 Task 2: Configure the Server
To access the metadata file, the server must provide URL access to the mapping file by
using:

■ Static file serving,

Using an External Metadata Source

Providing Software as a Service 6-21

■ A server-based solution with its own mapping file or a mapping file built
on-demand from stored mapping information,

■ Or some other web technology.

6.5.3 Additional Resources
For additional information on JPA deployment, see the following sections of the JPA
Specification (http://jcp.org/en/jsr/detail?id=317):

■ Section 7.2, "Bootstrapping in Java SE Environments"

■ Chapter 7, "Container and Provider Contracts for Deployment and Bootstrapping"

6.5.3.1 Javadoc
For more information, see the following APIs in Oracle Fusion Middleware Java API
Reference for Oracle TopLink.

■ PersistenceUnitProperties class

Using an External Metadata Source

6-22 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

7

Mapping JPA to XML 7-1

7Mapping JPA to XML

You can use the Java Architecture for XML Binding (JAXB) and its Mapping Objects to
XML (MOXy) extensions to map JPA entities to XML. Mapping JPA entities to XML is
useful when you want to create a data access service with Java API for RESTful Web
Services (JAX-RS), Java API for XML Web Services (JAX-WS), or Spring.

This chapter demonstrates some typical techniques for mapping JPA entities to XML.
It contains the following sections:

■ Section 7.1, "Understanding JPA-to-XML Mapping Concepts"

■ Section 7.2, "Binding JPA Entities to XML"

■ Section 7.3, "Main Tasks for Mapping Simple Java Values to XML Text Nodes"

■ Section 7.4, "Main Tasks for Using XML Metadata Representation to Override
JAXB Annotations"

■ Section 7.5, "Using XPath Predicates for Mapping"

■ Section 7.6, "Using Dynamic JAXB/MOXy"

7.1 Understanding JPA-to-XML Mapping Concepts
Working with the examples that follow requires some understanding of such
high-level JPA-to-XML mapping concepts, such as JAXB, MOXy, XML binding, and
how to override JAXB annotations. The following sections will give you a basic
understanding of these concepts:

■ Section 7.1.1, "XML Binding"

■ Section 7.1.2, "JAXB"

■ Section 7.1.3, "MOXy"

■ Section 7.1.4, "XML Data Representation"

7.1.1 XML Binding
XML binding is how you represent information in an XML document as an object in
computer memory. This allows applications to access the data in the XML from the
object rather than using the Domain Object Model (DOM), the Simple API for XML
(SAX) or the Streaming API for XML (StAX) to retrieve the data from a direct
representation of the XML itself. When binding, JAXB applies a tree structure to the
graph of JPA entities. Multiple tree representations of a graph are possible and will
depend on the root object chosen and the direction the representations are traversed.

Understanding JPA-to-XML Mapping Concepts

7-2 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

You can find examples of XML binding with JAXB in Section 7.2, "Binding JPA Entities
to XML".

7.1.2 JAXB
JAXB is a Java API that allows a Java program to access an XML document by
presenting that document to the program in a Java format. This process, called
binding, represents information in an XML document as an object in computer
memory. In this way, applications can access the data in the XML from the object
rather than using the Domain Object Model (DOM) or the Streaming API for XML
(SAX) to retrieve the data from a direct representation of the XML itself. Usually, an
XML binding is used with JPA entities to create a data access service by optimizing a
JAX-WS or JAX-RS implementation. Both of these web service standards use JAXB as
the default binding layer. This service provides a means to access data exposed by JPA
across computers, where the client computer might or might not be using Java.

JAXB uses an extended set of annotations to define the binding rules for Java-to-XML
mapping. These annotations are subclasses of the javax.xml.bind.* packages in
the Oracle TopLink API. For more information on these annotations, see Oracle Fusion
Middleware Java API Reference for Oracle TopLink.

For more information about JAXB, see "Java Architecture for XML Binding (JAXB)" at:

http://www.eclipse.org/eclipselink/moxy.php

7.1.3 MOXy
MOXy implements JAXB for TopLink. It allows you to map a Plain Old Java Objects
(POJO) model to an XML schema, greatly enhancing your ability to create JPA-to-XML
mappings. MOXy supports all the standard JAXB annotations in the
javax.xml.bind.annotation package plus has its own extensions in the
org.eclipse.persistence.oxm.annotations package. You can use these latter
annotations in conjunction with the standard annotations to extend the utility of
JAXB. Because MOXy represents the optimal JAXB implementation, you still
implement it whether or not you explicitly use any of its extensions. MOXy offers
these benefits:

■ It allows you to map your own classes to your own XML schema, a process called
"Meet in the Middle Mapping". This avoids static coupling of your mapped classes
with a single XML schema.

■ It offers specific features, such as compound key mapping and mapping
relationships with back-pointers to address critical JPA-to-XML mapping issues.

■ It allows you to map your existing JPA models to industry standard schemas.

■ It allows you to combine MOXy mappings and the TopLink persistence
framework to interact with your data through the J2EE connector architecture
(JCA).

■ It offers superior performance in several mapping scenarios.

For more information on MOXy, see the MOXy FAQ at:

http://wiki.eclipse.org/EclipseLink/FAQ/WhatIsMOXy

7.1.4 XML Data Representation
JAXB/MOXy is not always the most effective way to map JPA to XML. For example,
you would not use JAXB if:

Binding JPA Entities to XML

Mapping JPA to XML 7-3

■ You want to specify metadata for a third-party class but do not have access to the
source.

■ You want to map an object model to multiple XML schemas, because JAXB rules
preclude applying more than one mapping by using annotations.

■ Your object model already contains too many annotations—for example, from
such services as JPA, Spring, JSR-303, and so on—and you want to specify the
metadata elsewhere.

Under these and similar circumstances, you can use an XML data representation by
exposing the eclipselink_oxm.xml file.

XML metadata works in two modes:

■ It adds to the metadata supplied by annotations. This is useful when:

– Annotations define version one of the XML representation, and you use XML
metadata to change the metadata for future versions.

– You use the standard JAXB annotations, and use the XML metadata for the
MOXy extensions. In this way you do not introduce new compile time
dependencies in the object model.

■ It completely replaces the annotation metadata, which is useful when you want to
map to different XML representations.

For more information about how to use XML data representation, see Section 7.4,
"Main Tasks for Using XML Metadata Representation to Override JAXB Annotations".

7.2 Binding JPA Entities to XML
The following tasks demonstrate how to bind JPA entities to XML by using JAXB
annotations. For more information about binding, see Section 7.1.1, "XML Binding"; for
more information about JAXB, see Section 7.1.2, "JAXB"

■ Section 7.2.1, "Main Tasks for Binding JPA Relationships to XML"

■ Section 7.2.2, "Main Tasks for Binding Compound Primary Keys to XML"

■ Section 7.2.3, "Main Tasks for Binding Embedded ID Classes to XML"

7.2.1 Main Tasks for Binding JPA Relationships to XML
The following tasks demonstrate how to use JAXB to derive an XML representation
from a set of JPA entities, a process called binding (read about XML binding in
Section 7.2, "Binding JPA Entities to XML"). These tasks will show how to bind two
common JPA relationships to map an Employee entity to that employee's telephone
number, address, and department:

■ Privately-owned relationships

■ Shared reference relationships

The tasks for binding JPA relationships to XML are the following:

■ Task 1: Define the Accessor Type and Import Packages

■ Task 2: Map Privately Owned Relationships

■ Task 3: Map the Shared Reference Relationship

Binding JPA Entities to XML

7-4 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

7.2.1.1 Task 1: Define the Accessor Type and Import Packages
Because all of the following examples use the same accessor type, FIELD, define it at
the package level by using the JAXB annotation @XmlAccessorType. At this point,
you would also import the necessary packages:

@XmlAccessorType(XmlAccessType.FIELD)
package com.example.model;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;

7.2.1.2 Task 2: Map Privately Owned Relationships
A privately owned relationship occurs when the target object is referenced only by a
single source object. This type of relationship can be either one-to-one and embedded,
or one-to-many.

This task shows how to create bidirectional mappings for both of these types of
relationships between the Employee entity and the Address and PhoneNumber
entities.

7.2.1.2.1 Mapping a One-to-One and Embedded Relationship

The JPA @OneToOne and @Embedded annotations indicate that only one instance of
the source entity is able to refer to the same target entity instance. This example shows
how to map the Employee entity to the Address entity and then back to the
Employee entity. This is considered a one-to-one mapping because the employee can
be associated with only one address. Because this relationship is bidirectional, that is,
Employee points to Address, which must point back to Employee, it uses the
TopLink extension @XmlInverseReference to represent the back-pointer.

To create the one-to-one and embedded mapping:

1. Ensure that the accessor type FIELD has been defined at the package level, as
described in Section 7.2.1.1, "Task 1: Define the Accessor Type and Import
Packages".

2. Map one direction of the relationship, in this case the employee property on the
Address entity, by inserting the @OneToOne annotation in the Employee entity:

 @OneToOne(mappedBy="resident")
 private Address residence;

The mappedBy argument indicates that the relationship is owned by the
resident field.

3. Map the return direction, that is, the address property on the Employee entity
by inserting the @OneToOne and @XmlInverseMapping annotations into the
Address entity:

 @OneToOne
 @JoinColumn(name="E_ID")
 @XmlInverseReference(mappedBy="residence")
 private Employee resident;

The mappedBy field indicates that this relationship is owned by the residence
field. @JoinColumn identifies the column that will contain the foreign key.

The entities should look like those shown in Example 7–1 and Example 7–2.

Binding JPA Entities to XML

Mapping JPA to XML 7-5

7.2.1.2.2 Mapping a One-to-Many Relationship The JPA @OneToMany annotation indicates
that a single instance of the source entity can refer to multiple instances of the same
target entity. For example, one employee can have multiple telephone numbers, such
as a land line, a mobile number, a desired contact number, and an alternative
workplace number. Each different number would be an instance of the PhoneNumber
entity and a single Employee entity could point to each instance.

This task maps the employee to one of that employee's telephone numbers and back.
Because the relationship between Employee and PhoneNumber is bidirectional, the
example again uses the TopLink extension @XmlInverseReference to map the
back-pointer.

To create a one-to-many mapping:

1. Ensure that the accessor type FIELD has been defined at the package level, as
described in Section 7.2.1.1, "Task 1: Define the Accessor Type and Import
Packages".

2. Map one direction of the relationship, in this case the employee property on the
PhoneNumber entity, by inserting the @OneToMany annotation in the Employee
entity:

 @OneToMany(mappedBy="contact")
 private List<PhoneNumber> contactNumber;

The mappedBy field indicates that this relationship is owned by the contact
field.

3. Map the return direction, that is the telephone number property on the Employee
entity, by inserting the @ManyToOne and @XmlInverseMapping annotations into
the PhoneNumber entity:

 @ManyToOne
 @JoinColumn(name="E_ID", referencedColumnName = "E_ID")
 @XmlInverseReference(mappedBy="contactNumber")
 private Employee contact;

The mappedBy field indicates that this relationship is owned by the
contactNumber field. The @JoinColumn annotation identifies the column that
will contain the foreign key (name="E_ID") and the column referenced by the
foreign key (referencedColumnName = "E_ID").

The entities should look like those shown in Example 7–1 and Example 7–3.

7.2.1.3 Task 3: Map the Shared Reference Relationship
A shared reference relationship occurs when target objects are referenced by multiple
source objects. For example, a business might be segregated into multiple
departments, such as IT, human resources, finance, and so on. Each of these
departments has multiple employees of differing job descriptions, pay grades,
locations, and so on. Managing departments and employees requires shared reference
relationships.

Because a shared reference relationship cannot be safely represented as nesting in
XML, use key relationships. To specify the ID fields on JPA entities, use the TopLink
JAXB @XmlID annotation on non-string fields and properties and @XmlIDREF on
string fields and properties.

The following examples how to map a many-to-one shared reference relationship and
a many-to-many shared reference relationship.

Binding JPA Entities to XML

7-6 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

7.2.1.3.1 Mapping a Many-to-One Shared Reference Relationship In a many-to-one mapping,
one or more instances of the source entity are able to refer to the same target entity
instance. This example demonstrates how to map an employee to one of that
employee's multiple telephone numbers.

To map a many-to-one shared reference relationship:

1. Ensure that the accessor type FIELD has been defined at the package level, as
described in Section 7.2.1.1, "Task 1: Define the Accessor Type and Import
Packages".

2. Map one direction of the relationship, in this case the phone number property on
the Employee entity, by inserting the @ManyToOne annotation in the
PhoneNumber entity:

 @ManyToOne
 @JoinColumn(name="E_ID", referencedColumnName = "E_ID")
 @XmlIDREF
 private Employee contact;

The @JoinColumn annotation identifies the column that will contain the foreign
key (name="E_ID") and the column referenced by the foreign key
(referencedColumnName = "E_ID"). The @XmlIDREF annotation indicates
that this will be the primary key for the corresponding table.

3. Map the return direction, that is the employee property on the PhoneNumber
entity, by inserting the @OneToMany and @XmlInverseMapping annotations into
the Address entity:

 @OneToMany(mappedBy="contact")
 @XmlInverseReference(mappedBy="contact")
 private List<PhoneNumber> contactNumber;

The mappedBy field for both annotations indicates that this relationship is owned
by the contact field.

The entities should look like those shown in Example 7–1 and Example 7–3.

7.2.1.3.2 Mapping a Many-to-Many Shared Reference Relationship The @ManyToMany
annotation indicates that one or more instances of the source entity are able to refer to
one or more target entity instances. Because the relationship between Department
and Employee is bidirectional, this example again uses the TopLink
@XmlInverseReference annotation to represent the back-pointer.

To map a many-to-many shared reference relationship, do the following:

1. Ensure that the accessor type FIELD has been defined at the package level, as
described in Section 7.2.1.1, "Task 1: Define the Accessor Type and Import
Packages".

2. Create a Department entity by inserting the following code:

@Entity
public class Department {

3. Under this entity, define the many-to-many relationship and the entity's join table
by inserting the following code:

 @ManyToMany
 @JoinTable(name="DEPT_EMP", joinColumns =
 @JoinColumn(name="D_ID", referencedColumnName = "D_ID"),
 inverseJoinColumns = @JoinColumn(name="E_ID",
 referencedColumnName = "E_ID"))

Binding JPA Entities to XML

Mapping JPA to XML 7-7

This code creates a join table called DEPT_EMP and identifies the column that will
contain the foreign key (name="E_ID") and the column referenced by the foreign
key (referencedColumnName = "E_ID"). Additionally, it identifies the
primary table on the inverse side of the relationship.

4. Complete the initial mapping, in this case the Department entity’s employee
property, and make it a foreign key for this entity by inserting the following code:

 @XmlIDREF
 private List<Employee> member;

5. In the Employee entity created in Section 7.2.1.2.1, "Mapping a One-to-One and
Embedded Relationship", specify that eId is the primary key for JPA (the @Id
annotation), and for JAXB (the @XmlID annotation) by inserting the following
code:

 @Id
 @Column(name="E_ID")
 @XmlID
 private BigDecimal eId;

6. Still within the Employee entity, complete the return mapping by inserting the
following code:

 @ManyToMany(mappedBy="member")
 @XmlInverseReference(mappedBy="member")
 private List<Department> team;

The entities should look like those shown in Example 7–1 and Example 7–4.

7.2.1.4 JPA Entities
After the mappings are created, the entities should look like those in the following
examples:

■ Example 7–1, "Employee Entity"

■ Example 7–2, "Address Entity"

■ Example 7–3, "PhoneNumber Entity"

■ Example 7–4, "Department Entity"

Example 7–1 Employee Entity

@Entity
public class Employee {

 @Id
 @Column(name="E_ID")
 private BigDecimal eId;

 private String name;

 @OneToOne(mappedBy="resident")
 private Address residence;

Note: To save space, package names, import statements, and the get
and set methods have been omitted from the code examples. All
examples use standard JPA annotations.

Binding JPA Entities to XML

7-8 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

 @OneToMany(mappedBy="contact")
 private List<PhoneNumber> contactNumber;

 @ManyToMany(mappedBy="member")
 private List<Department> team;

}

Example 7–2 Address Entity

@Entity
public class Address {

 @Id
 @Column(name="E_ID", insertable=false, updatable=false)
 private BigDecimal eId;

 private String city;

 private String street;

 @OneToOne
 @JoinColumn(name="E_ID")
 private Employee resident;

}

Example 7–3 PhoneNumber Entity

@Entity
@Table(name="PHONE_NUMBER")
public class PhoneNumber {

 @Id
 @Column(name="P_ID")
 private BigDecimal pId;

 @ManyToOne
 @JoinColumn(name="E_ID", referencedColumnName = "E_ID")
 private Employee contact;

 private String num;

}

Example 7–4 Department Entity

@Entity
public class Department {

 @Id
 @Column(name="D_ID")
 private BigDecimal dId;

 private String name;

 @ManyToMany
 @JoinTable(name="DEPT_EMP", joinColumns =
 @JoinColumn(name="D_ID", referencedColumnName = "D_ID"),
 inverseJoinColumns = @JoinColumn(name="E_ID",

Binding JPA Entities to XML

Mapping JPA to XML 7-9

 referencedColumnName = "E_ID"))
 private List<Employee> member;

}

7.2.2 Main Tasks for Binding Compound Primary Keys to XML
When a JPA entity has compound primary keys, you can bind the entity by using
JAXB annotations and certain Oracle TopLink extensions, as shown in the following
tasks:

■ Task1: Define the XML Accessor Type

■ Task 2: Create the Target Object

■ Task 3: Create the Source Object

7.2.2.1 Task1: Define the XML Accessor Type
Define the accessor type as FIELD, as described in Section 7.2.1.1, "Task 1: Define the
Accessor Type and Import Packages".

7.2.2.2 Task 2: Create the Target Object
To create the target object, do the following:

1. Create an Employee entity with a composite primary key class called
EmployeeId to map to multiple fields or properties of the entity:

@Entity
@IdClass(EmployeeId.class)
public class Employee {

2. Specify the first primary key, eId, of the entity and map it to a column:

 @Id
 @Column(name="E_ID")
 @XmlID
 private BigDecimal eId;

3. Specify the second primary key, country. In this instance, you need to use
@XmlKey to identify the primary key because only one property—here, eId—can
be annotated with the @XmlID annotation.

 @Id
 @XmlKey
 private String country;

The @XmlKey annotation marks a property as a key that will be referenced by
using a key-based mapping via the @XmlJoinNode annotation in the source
object. This is similar to the @XmlKey annotation except it does not require the
property be bound to the schema type ID. This is a typical application of the
@XmlKey annotation.

4. Create a many-to-one mapping of the Employee property on PhoneNumber by
inserting the following code:

 @OneToMany(mappedBy="contact")
 @XmlInverseReference(mappedBy="contact")
 private List<PhoneNumber> contactNumber;

The Employee entity should look like that shown in Example 7–5.

Binding JPA Entities to XML

7-10 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

Example 7–5 Employee Entity with Compound Primary Keys

@Entity
@IdClass(EmployeeId.class)
public class Employee {

 @Id
 @Column(name="E_ID")
 @XmlID
 private BigDecimal eId;

 @Id
 @XmlKey
 private String country;

 @OneToMany(mappedBy="contact")
 @XmlInverseReference(mappedBy="contact")
 private List<PhoneNumber> contactNumber;

}

7.2.2.3 Task 3: Create the Source Object
This task creates the source object, the PhoneNumber entity. Because the target object
has a compound key, you must use the TopLink @XmlJoinNodes annotation to set up
the mapping.

To create the source object:

1. Create the PhoneNumber entity:

@Entity
public class PhoneNumber {

2. Create a many-to-one relationship and define the join columns:

 @ManyToOne
 @JoinColumns({
 @JoinColumn(name="E_ID", referencedColumnName = "E_ID"),
 @JoinColumn(name="E_COUNTRY", referencedColumnName = "COUNTRY")
 })

3. Set up the mapping by using the TopLink @XmlJoinNodes annotation:

@XmlJoinNodes({
 @XmlJoinNode(xmlPath="contact/id/text()",
referencedXmlPath="id/text()"),
 @XmlJoinNode(xmlPath="contact/country/text()",
referencedXmlPath="country/text()")
 })

4. Define the contact property:

private Employee contact;

}

The target object should look like that shown in Example 7–6.

Example 7–6 PhoneNumber Entity

@Entity
public class PhoneNumber {

Binding JPA Entities to XML

Mapping JPA to XML 7-11

 @ManyToOne
 @JoinColumns({
 @JoinColumn(name="E_ID", referencedColumnName = "E_ID"),
 @JoinColumn(name="E_COUNTRY", referencedColumnName = "COUNTRY")
 })
 @XmlJoinNodes({
 @XmlJoinNode(xmlPath="contact/id/text()", referencedXmlPath="id/text()"),
 @XmlJoinNode(xmlPath="contact/country/text()", referencedXmlPath="country/text()")
 })
 private Employee contact;

}

7.2.3 Main Tasks for Binding Embedded ID Classes to XML
An embedded ID defines a separate Embeddable Java class to contain the entity's
primary key. It is defined through the @EmbeddedId annotation. The embedded ID's
Embeddable class must define each Id attribute for the entity using basic mappings.
In the embedded Id, all attributes in its Embeddable class are assumed to be part of
the primary key. The following tasks show how to derive an XML representation from
a set of JPA entities using JAXB when a JPA entity has an embedded ID class:

■ Task 1: Define the XML Accessor Type

■ Task 2: Create the Target Object

■ Task 3: Implement DescriptorOrganizer as EmployeeCustomizer Class

■ Task 4: Create the Source Object

■ Task 5: Implement the DescriptorCustomizer as PhoneNumberCustomizer Class

7.2.3.1 Task 1: Define the XML Accessor Type
Define the XML accessor type as FIELD, as described in Section 7.2.1.1, "Task 1: Define
the Accessor Type and Import Packages".

7.2.3.2 Task 2: Create the Target Object
The target object is an entity called Employee and contains the mapping for an
employee's contact telephone number. Creating this target object requires
implementing a DescriptorCustomizer interface, so you must include the TopLink
@XmlCustomizer annotation. Also, because the relationship is bidirectional, you
must implement the @XmlInverseReference annotation.

To create the target object:

1. Create the Employee entity. Use the @IdClass annotation to specify that the
EmployeeID class will be mapped to multiple properties of the entity and use the
@XmlCustomizer annotation to indicate that the class EmployeeCustomizer
will implement the DescriptorCustomizer interface (see Section 7.2.3.3, "Task
3: Implement DescriptorOrganizer as EmployeeCustomizer Class").

@Entity
@IdClass(EmployeeId.class)
public class Employee {

2. Define the id property and make it embeddable.

 @EmbeddedId
 @XmlPath(".");

Binding JPA Entities to XML

7-12 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

 private EmployeeId id;

3. Define a one-to-many mapping, in this case, the employee property on the
PhoneNumber entity. Because the relationship is bidirectional, use
@XmlInverseReference annotation to define the return mapping. Both of these
relationships will be owned by the contact field, as indicated by the mappedBy
argument.

 @OneToMany(mappedBy="contact")
 @XmlInverseReference(mappedBy="contact")
 private List<PhoneNumber> contactNumber;

The completed target object should look like that shown in Example 7–7.

Example 7–7 Employee Entity as Target Object

@Entity
@IdClass(EmployeeId.class)
@XmlCustomizer(EmployeeCustomizer.class)
public class Employee {

 @EmbeddedId
 private EmployeeId id;

 @OneToMany(mappedBy="contact")
 @XmlInverseReference(mappedBy="contact")
 private List<PhoneNumber> contactNumber;

}

7.2.3.3 Task 3: Implement DescriptorOrganizer as EmployeeCustomizer Class
In Task 2: Create the Target Object, DescriptorCustomizer was implemented as
the class EmployeeCustomizer. This allows changing the XML Path (XPath) on the
mapping for the id property to either self or "." and then specifying the XPath to the
XML nodes that represent the ID. To do this:

1. Implement the DescriptorOrganizer class as EmployeeOrganizer.

import org.eclipse.persistence.oxm.mappings.XMLCompositeObjectMapping;

public class EmployeeCustomizer implements DescriptorCustomizer {

2. Specify the XPath to the XML nodes that represent the ID:

descriptor.addPrimaryKeyFieldName("eId/text()");
descriptor.addPrimaryKeyFieldName("country/text()");

The EmployeeCustomizer class should look like Example 7–8.

Example 7–8 EmployeeCustomizer Class with Updated XPath Information

import org.eclipse.persistence.config.DescriptorCustomizer;
import org.eclipse.persistence.descriptors.ClassDescriptor;
import org.eclipse.persistence.oxm.mappings.XMLCompositeObjectMapping;

public class EmployeeCustomizer implements DescriptorCustomizer {

 descriptor.addPrimaryKeyFieldName("eId/text()");
 descriptor.addPrimaryKeyFieldName("country/text()");
 }

Binding JPA Entities to XML

Mapping JPA to XML 7-13

}

7.2.3.4 Task 4: Create the Source Object
The source object in this task has a compound key, so you must annotate the field with
the @XmlTransient annotation to prevent a key from being mapped by itself. Use
the TopLink @XmlCustomizer annotation to set up the mapping.

To create the source object, do the following:

1. Create the PhoneNumber entity and specify another class,
PhoneNumberCustomizer, to implement the DescriptorCustomizer
interface.

@Entity
@XmlCustomizer(PhoneNumberCustomizer.class)
public class PhoneNumber {

2. Create a many-to-one mapping and define the join columns.

@ManyToOne
 @JoinColumns({
 @JoinColumn(name="E_ID", referencedColumnName = "E_ID"),
 @JoinColumn(name="E_COUNTRY", referencedColumnName = "COUNTRY")
 })

3. Define the contact property. Use the @XmlTransient annotation to prevent this
key from being mapped by itself.

 @XmlTransient
 private Employee contact;

The completed PhoneNumber class should look like Example 7–9.

Example 7–9 PhoneNumber Class as Source Object

@Entity
@XmlCustomizer(PhoneNumberCustomizer.class)
public class PhoneNumber {

 @ManyToOne
 @JoinColumns({
 @JoinColumn(name="E_ID", referencedColumnName = "E_ID"),
 @JoinColumn(name="E_COUNTRY", referencedColumnName = "COUNTRY")
 })
 @XmlTransient
 private Employee contact;

}

7.2.3.5 Task 5: Implement the DescriptorCustomizer as PhoneNumberCustomizer
Class
Code added in Task 4 indicated the need to map the XMLObjectReferenceMapping
class to the new values. This requires implementing the DescriptorCustomizer
class as the PhoneNumberCustomizer class and adding the multiple key mappings.
To do this:

1. Implement DescriptorCustomizer as PhoneNumberCustomizer. Import
org.eclipse.persistence.oxm.mappings.XMLObjectReferenceMappin
g:

Main Tasks for Mapping Simple Java Values to XML Text Nodes

7-14 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

import org.eclipse.persistence.oxm.mappings.XMLObjectReferenceMapping;

public class PhoneNumberCustomizer implements DescriptorCustomizer {

2. In the customize method, update the following mappings:

■ contactMapping.setAttributeName to "contact".

■ contactMapping.addSourceToTargetKeyFieldAssociation to
"contact/@eID", "eId/text()".

■ contactMapping.addSourceToTargetKeyFieldAssociation to
"contact/@country", "country/text()".

The PhoneNumberCustomizer should look like that shown in Example 7–10.

Example 7–10 PhoneNumber Customizer with Updated Key Mappings

import org.eclipse.persistence.config.DescriptorCustomizer;
import org.eclipse.persistence.descriptors.ClassDescriptor;
import org.eclipse.persistence.oxm.mappings.XMLObjectReferenceMapping;

public class PhoneNumberCustomizer implements DescriptorCustomizer {

 public void customize(ClassDescriptor descriptor) throws Exception {
 XMLObjectReferenceMapping contactMapping = new XMLObjectReferenceMapping();
 contactMapping.setAttributeName("contact");
 contactMapping.setReferenceClass(Employee.class);
 contactMapping.addSourceToTargetKeyFieldAssociation("contact/@eID", "eId/text()");
 contactMapping.addSourceToTargetKeyFieldAssociation("contact/@country", "country/text()");
 descriptor.addMapping(contactMapping);
 }

}

7.2.4 Using the EclipseLink XML Binding Document
As demonstrated in the preceding tasks, TopLink implements the standard JAXB
annotations to map JPA entities to an XML representation. You can also express
metadata by using the EclipseLink XML Bindings document. Not only can you use
XML bindings to separate your mapping information from your actual Java class, but
you can also use it for more advanced metadata tasks, such as:

■ Augmenting or overriding existing annotations with additional mapping
information

■ Specifying all mapping information externally, without using any Java annotations

■ Defining your mappings across multiple EclipseLink XML Bindings documents

■ Specifying virtual mappings that do not correspond to concrete Java fields

For more information on using the XML Bindings document, see XML Bindings in the
JAXB/MOXy documentation at
http://wiki.eclipse.org/EclipseLink/UserGuide/MOXy/Runtime/XML_
Bindings.

7.3 Main Tasks for Mapping Simple Java Values to XML Text Nodes
There are several ways to map simple Java values directly to XML text nodes. It
includes the following tasks:

Main Tasks for Mapping Simple Java Values to XML Text Nodes

Mapping JPA to XML 7-15

■ Task 1: Mapping a Value to an Attribute

■ Task 2: Mapping a Value to a Text Node

7.3.1 Task 1: Mapping a Value to an Attribute
This task maps the id property in the Java object Customer to its XML representation
as an attribute of the <customer> element. The XML will be based on the schema in
Example 7–11.

Example 7–11 Example XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="customer" type="customer-type"/>

 <xsd:complexType name="customer-type">
 <xsd:attribute name="id" type="xsd:integer"/>
 </xsd:complexType>

</xsd:schema>

The following procedures demonstrate how to map the id property from the Java
object and, alternatively, how to represent the value in the Oracle TopLink
Object-to-XML Mapping (OXM) metadata format.

7.3.1.1 Mapping from the Java Object
The key to creating this mapping from a Java object is the @XmlAttribute JAXB
annotation, which maps the field to the XML attribute. To create this mapping:

1. Create the object and import javax.xml.bind.annotation.*:

package example;

import javax.xml.bind.annotation.*;

2. Declare the Customer class and use the @XmlRootElement annotation to make
it the root element. Set the XML accessor type to FIELD:

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {

3. Map the id property in the Customer class as an attribute:

 @XmlAttribute
 private Integer id;

The object should look like that shown in Example 7–12.

Example 7–12 Customer Object with Mapped id Property

package example;

import javax.xml.bind.annotation.*;

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {
 @XmlAttribute

Main Tasks for Mapping Simple Java Values to XML Text Nodes

7-16 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

 private Integer id;

 ...
}

7.3.1.2 Defining the Mapping in OXM Metadata Format
If you want to represent the mapping in the TopLink OXM metadata format, use the
XML tags defined in the eclipselink-oxm.xml file and populate them with the
appropriate values, as shown in Example 7–13.

Example 7–13 Mapping id as an Attribute in OXM Metadata Format

...
<java-type name="Customer">
 <xml-root-element name="customer"/>
 <java-attributes>
 <xml-attribute java-attribute="id"/>
 </java-attributes>
</java-type>
...

For more information about the OXM metadata format, see Section 7.4, "Main Tasks
for Using XML Metadata Representation to Override JAXB Annotations".

7.3.2 Task 2: Mapping a Value to a Text Node
Oracle TopLink makes it easy for you to map values from a Java object to various
kinds of XML text nodes; for example, to simple text nodes, text nodes in a simple
sequence, in a subset, or by position. These mappings are demonstrated in the
following examples:

■ Mapping a Value to a Simple Text Node

■ Mapping Values to a Text Node in a Simple Sequence

■ Mapping a Value to a Text Node in a Subelement

■ Mapping Values to a Text Node by Position

7.3.2.1 Mapping a Value to a Simple Text Node
You can map a value from a Java object either by using JAXB annotations in the Java
object or, alternatively, by representing the mapping in the TopLink OXM metadata
format.

7.3.2.1.1 Mapping by Using JAXB Annotations Assume the associated schema defines an
element called <phone-number> that accepts a string value. You can use the
@XmlValue annotation to map a string to the <phone-number> node. Do the
following:

1. Create the object and import javax.xml.bind.annotation.*:

package example;

import javax.xml.bind.annotation.*;

2. Declare the PhoneNumber class and use the @XmlRootElement annotation to
make it the root element with the name phone-number. Set the XML accessor
type to FIELD:

@XmlRootElement(name="phone-number")

Main Tasks for Mapping Simple Java Values to XML Text Nodes

Mapping JPA to XML 7-17

@XmlAccessorType(XmlAccessType.FIELD)
public class PhoneNumber {

3. Insert the @XmlValue annotation on the line before the number property in the
Customer class to map this value as an attribute:

 @XmlValue
 private String number;

The object should look like that shown in Example 7–14.

Example 7–14 PhoneNumber Object with Mapped number Property

package example;

import javax.xml.bind.annotation.*;

@XmlRootElement(name="phone-number")
@XmlAccessorType(XmlAccessType.FIELD)
public class PhoneNumber {
 @XmlValue
 private String number;

 ...
}

7.3.2.1.2 Defining the Mapping in OXM Metadata Format If you want to represent the
mapping in the TopLink OXM metadata format, then use the XML tags defined in the
eclipselink-oxm.xml file and populate them with the appropriate values, as
shown in Example 7–15.

Example 7–15 Mapping number as an Attribute in OXM Metadata Format

...
<java-type name="PhoneNumber">
 <xml-root-element name="phone-number"/>
 <java-attributes>
 <xml-value java-attribute="number"/>
 </java-attributes>
</java-type>
...

7.3.2.2 Mapping Values to a Text Node in a Simple Sequence
You can map a sequence of values, for example a customer's first and last name, as
separate elements either by using JAXB annotations or by representing the mapping in
the TopLink OXM metadata format. The following procedures illustrate how to map
values for customers’ first names and last names

7.3.2.2.1 Mapping by Using JAXB Annotations Assuming the associated schema defines
the following elements:

■ <"customer"> of the type customer-type, which itself is defined as
complexType

■ Sequential elements called <"first-name"> and <"last-name">, both of the
type string

You can use the @XmlElement annotation to map values for a customer's first and last
names to the appropriate XML nodes. To do so:

Main Tasks for Mapping Simple Java Values to XML Text Nodes

7-18 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

1. Create the object and import javax.xml.bind.annotation.*:

package example;

import javax.xml.bind.annotation.*;

2. Declare the Customer class and use the @XmlRootElement annotation to make
it the root element. Set the XML accessor type to FIELD:

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {

3. Define the firstname and lastname properties and annotate them with the
@XmlElement annotation. Use the name= argument to customize the XML
element name (if you do not explicitly set the name with name=, then the XML
element will match the Java attribute name; for example, here the <first-name>
element combination would be specified <firstName> </firstName> in
XML).

 @XmlElement(name="first-name")
 private String firstName;

 @XmlElement(name="last-name")
 private String lastName;

The object should look like Example 7–16.

Example 7–16 Customer Object Mapping Values to a Simple Sequence

package example;

import javax.xml.bind.annotation.*;

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {
 @XmlElement(name="first-name")
 private String firstName;

 @XmlElement(name="last-name")
 private String lastName;

 ...
}

7.3.2.2.2 Defining the Mapping in OXM Metadata Format If you want to represent the
mapping in the TopLink OXM metadata format, then use the XML tags defined in the
eclipselink-oxm.xml file and populate them with the appropriate values, as
shown in Example 7–17.

Example 7–17 Mapping Sequential Attributes in OXM Metadata Format

...
<java-type name="Customer">
 <xml-root-element name="customer"/>
 <java-attributes>
 <xml-element java-attribute="firstName" name="first-name"/>
 <xml-element java-attribute="lastName" name="last-name"/>
 </java-attributes>
</java-type>

Main Tasks for Mapping Simple Java Values to XML Text Nodes

Mapping JPA to XML 7-19

...

7.3.2.3 Mapping a Value to a Text Node in a Subelement
You can map values from a Java object to text nodes that are nested as a subelement in
the XML document by using JAXB annotations or by representing the mapping in the
TopLink OXM metadata format. For example, if you want to populate <first-name>
and <last-name> elements, which are subelements of a <personal-info> element
under a <customer> root element, you could use the following procedures to achieve
these mappings.

7.3.2.3.1 Mapping by Using JAXB Annotations Assume the associated schema defines the
following elements:

■ <"customer"> of the type customer-type, which itself is defined as
complexType

■ <personal-info>

■ Subelements of <personal-info> called <"first-name"> and
<"last-name">, both of the type String

You can use JAXB annotations to map values for a customer's first and last name to the
appropriate XML subelement nodes. Because this example goes beyond a simple
element name customization and actually introduces a new XML structure, it uses the
TopLink @XmlPath annotation. To achieve this mapping:

1. Create the object and import javax.xml.bind.annotation.* and
org.eclipse.persistence.oxm.annotations.*.

package example;

import javax.xml.bind.annotation.*;
import org.eclipse.persistence.oxm.annotations.*;

2. Declare the Customer class and use the @XmlRootElement annotation to make
it the root element. Set the XML accessor type to FIELD:

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {

3. Define the firstName and lastName properties.

4. Map the firstName and lastName properties to the subelements defined by the
XML schema by inserting the @XmlPath annotation on the line immediately
preceding the property declaration. For each annotation, define the mapping by
specifying the appropriate XPath predicate:

 @XmlPath("personal-info/first-name/text()")
 private String firstName;

 @XmlPath("personal-info/last-name/text()")
 private String lastName;

The object should look like that shown in Example 7–18.

Example 7–18 Customer Object Mapping Properties to Subelements

package example;

import javax.xml.bind.annotation.*;

Main Tasks for Mapping Simple Java Values to XML Text Nodes

7-20 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

import org.eclipse.persistence.oxm.annotations.*;

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {
 @XmlPath("personal-info/first-name/text()")
 private String firstName;

 @XmlPath("personal-info/last-name/text()")
 private String lastName;

 ...
}

7.3.2.3.2 Defining the Mapping in OXM Metadata Format If you want to represent the
mapping in the TopLink OXM metadata format, you need to use the XML tags defined
in the eclipselink-oxm.xml file and populate them with the appropriate values, as
shown in Example 7–19.

Example 7–19 Mapping Attributes as Subelements in OXM Metadata Format

...
<java-type name="Customer">
 <xml-root-element name="customer"/>
 <java-attributes>
 <xml-element java-attribute="firstName" xml-path="personal-info/first-name/text()"/>
 <xml-element java-attribute="lastName" xml-path="personal-info/last-name/text()"/>
 </java-attributes>
</java-type>
...

7.3.2.4 Mapping Values to a Text Node by Position
When multiple nodes have the same name, map their values from the Java object by
specifying their position in the XML document. Do this by using mapping the values
to the position of the attribute rather than the attribute's name. You can do this either by
using JAXB annotations or by representing the mapping in the TopLink OXM
metadata format. In the following example, XML contains two <name> elements; the
first occurrence of name should represent the customer's first name and the second
occurrence should represent the customer’s last name.

Assume an XML schema defines the following attributes:

■ <customer> of the type customer-type, which itself is specified as a
complexType

■ <name> of the type String

This example uses the JAXB @XmlPath annotation to map a customer's first and last
names to the appropriate <name> element. It also uses the @XmlType(propOrder)
annotation to ensure that the elements are always in the proper positions. To achieve
this mapping:

1. Create the object and import javax.xml.bind.annotation.* and
org.eclipse.persistence.oxm.annotations.XmlPath.

package example;

import javax.xml.bind.annotation.*;
import org.eclipse.persistence.oxm.annotations.XmlPath;

Main Tasks for Using XML Metadata Representation to Override JAXB Annotations

Mapping JPA to XML 7-21

2. Declare the Customer class and insert the @XmlType(propOrder) annotation
with the arguments "firstName" followed by "lastName". Insert the
@XmlRootElement annotation to make Customer the root element and set the
XML accessor type to FIELD:

@XmlRootElement
@XmlType(propOrder={"firstName", "lastName"})
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {

3. Define the properties firstName and lastName with the type String.

4. Map the properties firstName and lastName to the appropriate position in the
XML document by inserting the @XmlPath annotation with the appropriate XPath
predicates.

 @XmlPath("name[1]/text()")
 private String firstName;

 @XmlPath("name[2]/text()")
 private String lastName;

The predicates, "name[1]/text()" and "name[2]/text()" indicate the
<name> element to which that specific property will be mapped; for example,
"name[1]/text" will map the firstName property to the first <name>
element.

The object should look like that shown in Example 7–20.

Example 7–20 Customer Object Mapping Values by Position

package example;

import javax.xml.bind.annotation.*;

import org.eclipse.persistence.oxm.annotations.XmlPath;

@XmlRootElement
@XmlType(propOrder={"firstName", "lastName"})
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {
 @XmlPath("name[1]/text()")
 private String firstName;

 @XmlPath("name[2]/text()")
 private String lastName;

 ...
}

For more information on using XPath predicates, see Section 7.5, "Using XPath
Predicates for Mapping".

7.4 Main Tasks for Using XML Metadata Representation to Override JAXB
Annotations

In addition to using Java annotations, TopLink provides an XML mapping
configuration file called eclipselink-oxm.xml that you can use in place of or to
override JAXB annotations in the source with an XML representation of the metadata.

Main Tasks for Using XML Metadata Representation to Override JAXB Annotations

7-22 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

In addition to allowing all of the standard JAXB mapping capabilities, it also includes
advanced mapping types and options.

An XML metadata representation is useful when:

■ You cannot modify the domain model because, for example, it comes from a third
party.

■ You do not want to introduce compilation dependencies on JAXB APIs (if you are
using a version of Java that predates Java SE 6).

■ You want to apply multiple JAXB mappings to a domain model (you are limited to
one representation with annotations).

■ Your object model already contains so many annotations from other technologies
that adding more would make the class unreadable.

Use the eclipselink-oxm.xml configuration file to override JAXB annotations by
performing the following tasks:

■ Task 1: Define Advanced Mappings in the XML

■ Task 2: Configure Usage in JAXBContext

■ Task 3: Specify MOXy as the JAXB Implementation

7.4.1 Task 1: Define Advanced Mappings in the XML
First, update the XML mapping file to expose the eclipselink_oxm_2_3.xsd
schema. Example 7–21 shows how to modify the <xml-bindings> element in the
mapping file to point to the correct namespace and optimize the schema. Each Java
package can have one mapping file.

Example 7–21 Updating XML Binding Information in the Mapping File

<?xml version="1.0"?>
<xml-bindings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.eclipse.org/eclipselink/xsds/persistence/oxm
http://www.eclipse.org/eclipselink/xsds/eclipselink_oxm_2_3.xsd"
 version="2.3">
</xml-bindings>

7.4.2 Task 2: Configure Usage in JAXBContext
Next, pass the mapping file to the JAXBContext class in your object:

1. Specify the externalized metadata by inserting this code:

Map<String, Source> metadata = new HashMap<String,Source>();
metadata.put("example.order", new StreamSource("order-metadata.xml"));
metadata.put("example.customer", new StreamSource("customer-metadata.xml"));

2. Create the properties object to pass to JAXBContext. For this example:

Map<String,Object> properties = new HashMap<String,Object>();
properties.put(JAXBContextFactory.ECLIPSELINK_OXM_XML_KEY, metadata);

Caution: While using this mapping file enables many advanced
features, it might prevent you from porting it to other JAXB
implementations.

Using XPath Predicates for Mapping

Mapping JPA to XML 7-23

3. Create JAXBContext. For example:

JAXBContext.newInstance("example.order:example.customer", aClassLoader,
properties);

7.4.3 Task 3: Specify MOXy as the JAXB Implementation
You must use MOXy as your JAXB implementation. To do so, do the following:

1. Open a jaxb.properties file and add the following line:

javax.xml.bind.context.factory=org.eclipse.persistence.jaxb.JAXBContextFactory

2. Copy the jaxb.properties file to the package that contains your domain
classes.

7.5 Using XPath Predicates for Mapping
The TopLink MOXy API uses XPath predicates to define an expression that specifies
the XML element's name. An XPath predicate is an expression that defines a specific
object-to-XML mapping. As shown in previous examples, by default, JAXB will use
the Java field name as the XML element name.

This section contains the following subsections:

■ Section 7.5.1, "Understanding XPath Predicates"

■ Section 7.5.2, "Main Tasks for Mapping Based on an Attribute Value"

■ Section 7.5.3, "Self-Mappings"

7.5.1 Understanding XPath Predicates
As described previously, an XPath predicate is an expression that defines a specific
object-to-XML mapping when standard annotations are not sufficient. For example,
the following XML code shows a <data> element with two <node> subelements. If
you want to create this mapping in a Java object, then specify an XPath predicate for
each <node> subelement, for example Node[2] in the following Java:

 <java-attributes>
 <xml-element java-attribute="node" xml-path="node[1]/ABC"/>
 <xml-element java-attribute="node" xml-path="node[2]/DEF"/>
 </java-attributes>

This would match the second occurrence of the node element ("DEF") in the following
XML:

<?xml version="1.0" encoding="UTF-8"?>
<data>
 <node>ABC</node>
 <node>DEF</node>
</data>

Thus, by using the XPath predicate, you can use the same attribute name for a
different attribute value.

In another example, if you wanted to map attributes based on position, you would
follow the instructions described in Section 7.3.2.4, "Mapping Values to a Text Node by
Position".

Using XPath Predicates for Mapping

7-24 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

7.5.2 Main Tasks for Mapping Based on an Attribute Value
Beginning with TopLink MOXy 2.3, you can also map to an XML element based on an
attribute value. In these tasks, you will annotate the JPA entity to render the XML
document shown in Example 7–22. Note that all of the XML elements are named node
but are differentiated by the value of their name attribute.

Example 7–22 JPA Entity

<?xml version="1.0" encoding="UTF-8"?>
<node>
 <node name="first-name">Bob</node>
 <node name="last-name">Smith</node>
 <node name="address">
 <node name="street">123 A Street</node>
 </node>
 <node name="phone-number" type="work">555-1111</node>
 <node name="phone-number" type="cell">555-2222</node>
</node>

To attain this mapping, declare three classes, Name, Address, and PhoneNumber and
then use an XPath in the form of element-name[@attribute-name='value'] to
map each Java field. To create entities from the Customer, Address, and PhoneNumber
classes, perform the following tasks:

■ Task 1: Create the Customer Class Entity

■ Task 2: Create the Address Class Entity

■ Task 3: Create the PhoneNumber Class Entity

7.5.2.1 Task 1: Create the Customer Class Entity
To create an entity from the Customer class:

1. Import the necessary JPA packages by adding the following code:

import javax.xml.bind.annotation.*;

import org.eclipse.persistence.oxm.annotations.XmlPath;

2. Declare the Customer class and use the @XmlRootElement annotation to make
it the root element. Set the XML accessor type to FIELD:

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {

3. Declare these properties as local to the Customer class:

■ firstName (String type)

■ lastName (String)

■ Address (Address)

For each property, set the Xpath predicate by preceding the property declaration
with the annotation
@XmlPath(element-name[@attribute-name='value']). For example, for
firstName, you would set the XPath predicate with this statement:

@XmlPath("node[@name='first-name']/text()")

Using XPath Predicates for Mapping

Mapping JPA to XML 7-25

4. Also declare local to the Customer class the phoneNumber property as a
List<PhoneNumber> type and assign it the value new
ArrayList<PhoneNumber>().

The Customer class should look like that shown in Example 7–23.

Example 7–23 Customer Object Mapping to an Attribute Value

package example;

import javax.xml.bind.annotation.*;

import org.eclipse.persistence.oxm.annotations.XmlPath;

@XmlRootElement(name="node")
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {

 @XmlPath("node[@name='first-name']/text()")
 private String firstName;

 @XmlPath("node[@name='last-name']/text()")
 private String lastName;

 @XmlPath("node[@name='address']")
 private Address address;

 @XmlPath("node[@name='phone-number']")
 private List<PhoneNumber> phoneNumbers = new ArrayList<PhoneNumber>();

 ...
}

7.5.2.2 Task 2: Create the Address Class Entity
To create an entity from the Address class, do the following:

1. Import the necessary JPA packages by adding the following code:

import javax.xml.bind.annotation.*;

import org.eclipse.persistence.oxm.annotations.XmlPath;

2. Declare the Address class and set the XML accessor type to FIELD:

@XmlAccessorType(XmlAccessType.FIELD)
public class Address {

This instance does not require the @XmlRootElement annotation as in Task 1:
Create the Customer Class Entity because the Address class is not a root element
in the XML document.

3. Declare the String property street local to the Address class. Set the XPath
predicate by preceding the property declaration with the annotation
@XmlPath("node[@name='street']/text()").

The Address class should look like that shown in Example 7–24.

Example 7–24 Address Object Mapping to an Attribute Value

package example;

Using XPath Predicates for Mapping

7-26 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

import javax.xml.bind.annotation.*;

import org.eclipse.persistence.oxm.annotations.XmlPath;

@XmlAccessorType(XmlAccessType.FIELD)
public class Address {

 @XmlPath("node[@name='street']/text()")
 private String street;

 ...
}

7.5.2.3 Task 3: Create the PhoneNumber Class Entity
To create an entity from the PhoneNumber class:

1. Import the necessary JPA packages by adding the following code:

import javax.xml.bind.annotation.*;

import org.eclipse.persistence.oxm.annotations.XmlPath;

2. Declare the PhoneNumber class and use the @XmlRootElement annotation to
make it the root element. Set the XML accessor type to FIELD:

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {

3. Create the type and string properties and define their mapping as attributes
under the PhoneNumber root element by using the @XmlAttribute. annotation.

 @XmlAttribute
 private String type;

 @XmlValue
 private String number;

The PhoneNumber object should look like that shown in Example 7–25.

Example 7–25 PhoneNumber Object Mapping to an Attribute Value

package example;

import javax.xml.bind.annotation.*;

@XmlAccessorType(XmlAccessType.FIELD)
public class PhoneNumber {

 @XmlAttribute
 private String type;

 @XmlValue
 private String number;

 ...
}

Using Dynamic JAXB/MOXy

Mapping JPA to XML 7-27

7.5.3 Self-Mappings
A self-mapping occurs on one-to-one mappings when you set the target object's XPath
to "." (dot) so the data from the target object appears inside the source object's XML
element. This exercise uses the example in Section 7.5.2, "Main Tasks for Mapping
Based on an Attribute Value" to map the address information to appear directly under
the customer element and not wrapped in its own element.

To create the self mapping:

1. Repeat Tasks 1 and 2 in Section 7.5.2.1, "Task 1: Create the Customer Class Entity".

2. Declare these properties local to the Customer class:

■ firstName (String)

■ lastName (String)

■ Address (Address)

3. For the firstName and lastName properties, set the @XmlPath annotation by
preceding the property declaration with the annotation
@XmlPath(element-name[@attribute-name='value']). For example, for
firstName, you would set the XPath predicate with this statement:

@XmlPath("node[@name='first-name']/text()")

4. For the address property, set @XmlPath to "." (dot):

 @XmlPath(".")
 private Address address;

5. Also declare the phoneNumber property local to the Customer class. Declare it as
a List<PhoneNumber> type and assign it the value new
ArrayList<PhoneNumber>().

The rendered XML for the Customer entity should look like that shown in
Example 7–26.

Example 7–26 XML Node with Self-Mapped Address Element

<?xml version="1.0" encoding="UTF-8"?>
<node>
 <node name="first-name">Bob</node>
 <node name="last-name">Smith</node>
 <node name="street">123 A Street</node>
 <node name="phone-number" type="work">555-1111</node>
 <node name="phone-number" type="cell">555-2222</node>
</node>

7.6 Using Dynamic JAXB/MOXy
Dynamic JAXB/MOXy allows you to bootstrap a JAXBContext class from a variety
of metadata sources and use familiar JAXB APIs to marshal and unmarshal data,
without requiring compiled domain classes. This is an enhancement over static JAXB,
because now you can update the metadata without having to update and recompile
the previously generated Java source code.

The benefits of using dynamic JAXB/MOXy entities are:

■ Instead of using actual Java classes (for example, Customer.class,
Address.class, and so on), the domain objects are subclasses of the
DynamicEntity class.

Using Dynamic JAXB/MOXy

7-28 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

■ Dynamic entities offer a simple get(propertyName)/set(propertyName
propertyValue) API to manipulate their data.

■ Dynamic entities have an associated DynamicType class, which is generated
in-memory, when the metadata is parsed.

7.6.1 Main Tasks for Using Dynamic JAXB/MOXy
The following Tasks demonstrate how to use dynamic JAXB/MOXy:

■ Task 1: Bootstrap a Dynamic JAXBContext from an XML Schema

■ Task 2: Create Dynamic Entities and Marshal Them to XML

■ Task 3: Unmarshal the Dynamic Entities from XML

7.6.1.1 Task 1: Bootstrap a Dynamic JAXBContext from an XML Schema
Use the DynamicJAXBContextFactory class to create a dynamic JAXBContext
object. Example 7–27 specifies the input stream and then bootstraps a
DynamicJAXBContext class from the customer.xsd schema (Example 7–28) by
using the createContextFromXSD()method.

Example 7–27 Specifying the Input Stream and Creating DynamicJAXBContext

import java.io.FileInputStream;

import org.eclipse.persistence.jaxb.dynamic.DynamicJAXBContext;
import org.eclipse.persistence.jaxb.dynamic.DynamicJAXBContextFactory;

public class Demo {

 public static void main(String[] args) throws Exception {
 FileInputStream xsdInputStream = new FileInputStream("src/example/customer.xsd");
 DynamicJAXBContext jaxbContext =
 DynamicJAXBContextFactory.createContextFromXSD(xsdInputStream, null, null, null);

The first parameter represents the XML schema itself and must be in one of the
following forms: java.io.InputStream, org.w3c.dom.Node, or
javax.xml.transform.Source.

7.6.1.1.1 The XML Schema Example 7–28 shows the customer.xsd schema that
represents the metadata for the dynamic JAXBContext you are bootstrapping.

Example 7–28 Sample XML Schema Document

<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.org"
 targetNamespace="http://www.example.org"
 elementFormDefault="qualified">

 <xsd:complexType name="address">
 <xsd:sequence>
 <xsd:element name="street" type="xsd:string" minOccurs="0"/>
 <xsd:element name="city" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:element name="customer">
 <xsd:complexType>

Using Dynamic JAXB/MOXy

Mapping JPA to XML 7-29

 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" minOccurs="0"/>
 <xsd:element name="address" type="address" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

7.6.1.1.2 Handling Schema Import/Includes To bootstrap DynamicJAXBContext from an
XML schema that contains imports of other schemas, you need to configure an
org.xml.sax.EntityResolver to resolve the locations of the imported schemas
and pass the EntityResolver to DynamicJAXBContextFactory.

Example 7–29 shows the schema document customer.xsd and Example 7–30 shows
the schema document address.xsd. You can see that customer.xsd imports
address.xsd by using the statement:

<xsd:import namespace="http://www.example.org/address"
schemaLocation="address.xsd"/>

Example 7–29 customer.xsd

<?xml version="1.0" encoding="UTF-8"?>
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:add="http://www.example.org/address"
 xmlns="http://www.example.org/customer"
 targetNamespace="http://www.example.org/customer"
 elementFormDefault="qualified">

 <xsd:import namespace="http://www.example.org/address" schemaLocation="address.xsd"/>

 <xsd:element name="customer">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" minOccurs="0"/>
 <xsd:element name="address" type="add:address" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

Example 7–30 address.xsd

<?xml version="1.0" encoding="UTF-8"?>
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.org/address"
 targetNamespace="http://www.example.org/address"
 elementFormDefault="qualified">

 <xsd:complexType name="address">
 <xs:sequence>
 <xs:element name="street" type="xs:string"/>
 <xs:element name="city" type="xs:string"/>
 </xs:sequence>
 </xsd:complexType>

</xsd:schema>

Using Dynamic JAXB/MOXy

7-30 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

7.6.1.1.3 Implementing and Passing EntityResolver If you want to bootstrap
DynamicJAXBContext from the customer.xsd schema then pass an entity resolver.
Do the following:

1. To resolve the locations of the imported schemas, implement entityResolver
by supplying the code shown in Example 7–31.

Example 7–31 Implementing an EntityResolver

class MyEntityResolver implements EntityResolver {

 public InputSource resolveEntity(String publicId, String systemId) throws SAXException,
IOException {
 // Imported schemas are located in ext\appdata\xsd\

 // Grab only the filename part from the full path
 String filename = new File(systemId).getName();

 // Now prepend the correct path
 String correctedId = "ext/appdata/xsd/" + filename;

 InputSource is = new InputSource(ClassLoader.getSystemResourceAsStream(correctedId));
 is.setSystemId(correctedId);

 return is;
 }

}

2. After you implement DynamicJAXBContext, pass the EntityResolver, as
shown in Example 7–32.

Example 7–32 Passing in the Entityresolver

FileInputStream xsdInputStream = new FileInputStream("src/example/customer.xsd");
DynamicJAXBContext jaxbContext =
 DynamicJAXBContextFactory.createContextFromXSD(xsdInputStream, new MyEntityResolver(), null,
null);

7.6.1.1.4 Error Handling You might see the following exception when importing another
schema:

Internal Exception: org.xml.sax.SAXParseException: schema_reference.4: Failed to read schema
document '<imported-schema-name>', because 1) could not find the document; 2) the document could
not be read; 3) the root element of the document is not <xsd:schema>.

To work around this exception, disable the XJC schema correctness check by setting
the noCorrectnessCheck Java property. You can set this property in one of two
ways:

■ From within the code, by adding this line:

System.setProperty("com.sun.tools.xjc.api.impl.s2j.SchemaCompilerImpl.noCorrect
nessCheck", "true")

■ From the command line, by using this command:

-Dcom.sun.tools.xjc.api.impl.s2j.SchemaCompilerImpl.noCorrectnessCheck=true

Using Dynamic JAXB/MOXy

Mapping JPA to XML 7-31

7.6.1.1.5 Specifying a Class Loader Use your application's current class loader as the
classLoader parameter. This parameter verifies that specified classes exist before a
new DynamicType is generated. In most cases you can pass null for this parameter
and use Thread.currentThread().getContextClassLoader() method
instead.

7.6.1.2 Task 2: Create Dynamic Entities and Marshal Them to XML
Use the DynamicJAXBContext class to create instances of a DynamicEntity object.
The entity and property names correspond to the class and property names, in this
case the customer and address, that would have been generated if you had used static
JAXB.

Example 7–33 Creating the Dynamic Entity

DynamicEntity customer = jaxbContext.newDynamicEntity("org.example.Customer");
customer.set("name", "Jane Doe");

DynamicEntity address = jaxbContext.newDynamicEntity("org.example.Address");
address.set("street", "1 Any Street").set("city", "Any Town");
customer.set("address", address);

The marshaller obtained from the DynamicJAXBContext is a standard marshaller
and can be used normally to marshal instances of DynamicEntity, as shown in
Example 7–34.

Example 7–34 Standard Dynamic JAXB Marshaller

Marshaller marshaller = jaxbContext.createMarshaller();
marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);
marshaller.marshal(customer, System.out);

Example 7–35 show resultant XML document:

Example 7–35 Updated XML Document Showing <address> Element and Its Attributes

<?xml version="1.0" encoding="UTF-8"?>
<customer xmlns="www.example.org">
 <name>Jane Doe</name>
 <address>
 <street>1 Any Street</street>
 <city>Any Town</city>
 </address>
</customer>

7.6.1.3 Task 3: Unmarshal the Dynamic Entities from XML
This task shows how to unmarshal from XML the dynamic entities you created in Task
2: Create Dynamic Entities and Marshal Them to XML. The XML in reference is shown
in Example 7–35.

The Unmarshaller obtained from the DynamicJAXBContext object is a standard
unmarshaller, and can be used to unmarshal instances of DynamicEntity, as shown
in Example 7–36.

Example 7–36 Standard Dynamic JAXB Unmarshaller

FileInputStream xmlInputStream = new FileInputStream("src/example/dynamic/customer.xml");
Unmarshaller unmarshaller = jaxbContext.createUnmarshaller();
DynamicEntity customer = (DynamicEntity) unmarshaller.unmarshal(xmlInputStream);

Additional Resources

7-32 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

7.6.1.3.1 Get Data from the DynamicEntity Specify which data in the dynamic entity to
obtain. Specify this value by using the System.out.println() method and passing
in the entity name. DynamicEntity offers property-based data access; for example,
get("name") instead of getName():

System.out.println(customer.<String>get("name"));

7.6.1.3.2 Use DynamicType to Introspect Dynamic Entity Instances of DynamicEntity
have a corresponding DynamicType, which you can use to introspect the
DynamicEntity object, as shown in Example 7–37.

Example 7–37 Introspecting the DynamicEntity

DynamicType addressType = jaxbContext.getDynamicType("org.example.Address");

DynamicEntity address = customer.<DynamicEntity>get("address");
for(String propertyName: addressType.getPropertiesNames()) {
 System.out.println(address.get(propertyName));
}

7.7 Additional Resources
The following additional resourcs are available:

■ Section 7.7.1, "Code Samples"

■ Section 7.7.2, "Related Javadoc"

7.7.1 Code Samples
Numerous code samples and tutorials can be found at the EclipseLink MOXy wiki site:

http://www.eclipse.org/eclipselink/moxy.php

7.7.2 Related Javadoc
The following Javadoc is available:

■ Java Architecture for XML Binding (JAXB) Specification

■ Mapping Objects to XML (MOXy) Specification

7.7.2.1 Java Architecture for XML Binding (JAXB) Specification
JAXB uses an extended set of annotations to define the binding rules for Java-to-XML
mapping. These annotations are subclasses of the javax.xml.bind.* packages in
the Oracle TopLink API. Javadoc is for these annotations is at:

http://docs.oracle.com/javase/6/docs/api/javax/xml/bind/package-
summary.html

7.7.2.2 Mapping Objects to XML (MOXy) Specification
MOXy supports all the standard JAXB annotations in the
javax.xml.bind.annotation package:

http://www.eclipse.org/eclipselink/api/2.3/org/eclipse/persisten
ce/oxm/annotations/package-summary.html

Additional Resources

Mapping JPA to XML 7-33

MOXy has its own extensions in the
org.eclipse.persistence.oxm.annotations package:

http://www.eclipse.org/eclipselink/api/2.3/org/eclipse/persisten
ce/oxm/annotations/package-summary.html

Additional Resources

7-34 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

8

Testing TopLink JPA Outside a Container 8-1

8Testing TopLink JPA Outside a Container

With TopLink, you can use the persistence unit JAR to test your application outside
the container (for instance, in applications for the Java Platform, Standard Edition
(Java SE)).

This chapter includes the following sections:

■ Section 8.1, "Understanding JPA Deployment"

■ Section 8.2, "Configuring the persistence.xml File"

■ Section 8.3, "Using a Property Map"

■ Section 8.4, "Additional Resources"

8.1 Understanding JPA Deployment
When deploying outside of a container, use the createEntityManagerFactory
method of the javax.persistence.Persistence class to create an entity
manager factory. This method accepts a Map of properties and the name of the
persistence unit. The properties that you pass to this method are combined with those
specified in the persistence.xml file. They may be additional properties or they
may override the value of a property that you specified previously in the
persistence.xml file.

8.1.1 Using an EntityManager
The EntityManager is the access point for persisting an entity bean loading it from
the database. Normally, the JPA container manages interaction with the data source.
However, if you are using a JTA data source for your JPA persistence unit, you can
access the JDBC connection from the Java EE container’s data source. You must
include the connection information to the persistence.xml file because the
managed data source is not available.

With Oracle TopLink, you also have access to the EclipseLink extensions to the
EntityManager.

8.2 Configuring the persistence.xml File
The persistence.xml file is the deployment descriptor file for persistence using
Java Persistence API (JPA). It specifies the persistence units and declares the managed
persistence classes, the object/relation mapping, and the database connection details.

Tip: This is a convenient way to set properties obtained from a
program input, such as the command line.

Using a Property Map

8-2 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

8.2.1 Main Tasks
This section includes the following tasks:

■ Task 1: Use the persistence.xml File

■ Task 2: Instantiate the EntityManagerFactory

8.2.1.1 Task 1: Use the persistence.xml File
Example 8–1 illustrates a persistence.xml file for a JavaSE configuration (that is,
outside a container):

Example 8–1 A persistence.xml File Specifying JavaSE Configuration

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence persistence_1_0.xsd"
version="1.0">

<persistence-unit name="my-app" transaction-type="RESOURCE_LOCAL">
<provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
<exclude-unlisted-classes>false</exclude-unlisted-classes>
<properties>

<property name="javax.persistence.jdbc.driver"
value="oracle.jdbc.OracleDriver"/>

<property name="javax.persistence.jdbc.url"
value="jdbc:oracle:thin:@localhost:1521:orcl"/>

<property name="javax.persistence.jdbc.user" value="scott"/>
<property name="javax.persistence.jdbc.password" value="tiger"/>

</properties>
</persistence-unit>

</persistence>

8.2.1.2 Task 2: Instantiate the EntityManagerFactory
An EntityManagerFactory provides an efficient way to construct
EntityManager instances for a database. You can instantiate the
EntityManagerFactory for the application (illustrated in Example 8–1) by using:

Persistence.createEntityManagerFactory("my-app");

8.3 Using a Property Map
You can use a property map to override the default persistence properties.

8.3.1 Main Tasks
This section includes the following steps:

■ Task 1: Configure the persistence.xml File

■ Task 2: Configure the Bootstrapping API

■ Task 3: Instantiate the EntityManagerFactory

8.3.1.1 Task 1: Configure the persistence.xml File
Example 8–2 illustrates a persistence.xml file that uses container deployment.

Using a Property Map

Testing TopLink JPA Outside a Container 8-3

Example 8–2 A persistence.xml File Specifying JavaSE Configuration

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence persistence_1_0.xsd"
version="1.0">

<persistence-unit name="employee" transaction-type="RESOURCE_LOCAL">
<non-jta-data-source>jdbc/MyDS</non-jta-data-source>

</persistence-unit>
</persistence>

8.3.1.2 Task 2: Configure the Bootstrapping API
To test the persistence unit shown in Example 8–2 outside the container, you must use
the JavaSE bootstrapping API. Example 8–3 contains sample code that illustrates this
bootstrapping:

Example 8–3 Sample Configuration

import static org.eclipse.persistence.config.PersistenceUnitProperties.*;

...

Map properties = new HashMap();

// Ensure RESOURCE_LOCAL transactions is used.
properties.put(TRANSACTION_TYPE,
PersistenceUnitTransactionType.RESOURCE_LOCAL.name());

// Configure the internal connection pool
properties.put(JDBC_DRIVER, "oracle.jdbc.OracleDriver");
properties.put(JDBC_URL, "jdbc:oracle:thin:@localhost:1521:ORCL");
properties.put(JDBC_USER, "scott");
properties.put(JDBC_PASSWORD, "tiger");

// Configure logging. FINE ensures all SQL is shown
properties.put(LOGGING_LEVEL, "FINE");
properties.put(LOGGING_TIMESTAMP, "false");
properties.put(LOGGING_THREAD, "false");
properties.put(LOGGING_SESSION, "false");

// Ensure that no server-platform is configured
properties.put(TARGET_SERVER, TargetServer.None);

8.3.1.3 Task 3: Instantiate the EntityManagerFactory
An EntityManagerFactory provides an efficient way to construct
EntityManager instances for a database. You can instantiate the
EntityManagerFactory for the application (illustrated in Example 8–3) by using:

Persistence.
createEntityManagerFactory("unitName", "Properties");

Note: There is no data source available when tested outside of a
container.

Additional Resources

8-4 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

8.4 Additional Resources
For additional information on JPA deployment, see the following sections of the JPA
Specification (http://jcp.org/en/jsr/detail?id=317):

■ Section 7.2, "Bootstrapping in Java SE Environments"

■ Chapter 7, "Container and Provider Contracts for Deployment and Bootstrapping"

8.4.1 Javadoc
For more information, see the following APIs in Oracle Fusion Middleware Java API
Reference for Oracle TopLink.

■ PersistenceUnitProperties class

■ EntityManagerFactory interface

■ JpaEntityManager interface

9

Enhancing TopLink Performance 9-1

9Enhancing TopLink Performance

This chapter describes the Oracle TopLink performance features and how to monitor
and optimize TopLink-enabled applications.

This chapter contains the following sections:

■ Section 9.1, "Performance Features"

■ Section 9.2, "Using Tools to Monitor and Optimize TopLink-Enabled Applications"

9.1 Performance Features
Toplink includes a number of performance features that make it the industry's best
performing and most scalable JPA implementation. These features include:

■ Object Caching

■ Querying

■ Enhancing Mapping Performance

■ Transactions

■ Database

9.1.1 Object Caching
The TopLink cache is an in-memory repository that stores recently read or written
objects based on class and primary key values. The cache helps improve performance
by holding recently read or written objects and accessing them in-memory to minimize
database access.

Caching allows you to:

■ Set how long the cache lasts and the time of day; this is a process called cache
invalidation.

■ Configure cache types (Weak, Soft, SoftCache, HardCache, Full) on a per
entity basis.

■ Configure cache size on a per entity basis.

■ Coordinate clustered caches.

9.1.1.1 Caching Annotations
TopLink defines these entity-caching annotations:

■ @Cache

Performance Features

9-2 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

■ @TimeOfDay

■ @ExistenceChecking

TopLink also provides a number of persistence unit properties that you can specify to
configure the TopLink cache (see "How to Use the Persistence Unit Properties for
Caching" in the EclipseLink online documentation, at
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#How_to_Use_the_Persistence_Unit_Properties_for_
Caching). These properties might compliment or provide an alternative to using
annotations.

9.1.1.2 Using the @Cache Annotation
TopLink uses identity maps to cache objects in order to enhance performance, as well
as maintain object identity. You can control the cache and its behavior by using the
@Cache annotation in your entity classes. Example 9–1 shows how to implement this
annotation.

Example 9–1 Using the @Cache Annotation

@Entity
 @Table(name="EMPLOYEE")
 @Cache (
 type=CacheType.WEAK,
 isolated=false,
 expiry=600000,
 alwaysRefresh=true,
 disableHits=true,
 coordinationType=INVALIDATE_CHANGED_OBJECTS
)
 public class Employee implements Serializable {
 ...
 }

For more information about object caching and using the @Cache annotation, see
"Using EclipseLink JPA Extensions for Entity Caching" in the EclipseLink online
documentation:

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#Using_EclipseLink_JPA_Extensions_for_Entity_Caching

9.1.2 Querying
The scope of a query, the amount of data returned, and how that data is returned can
all affect the performance of a TopLink-enabled application. The Toplink query
mechanisms enhance query performance by providing these features:

■ Read-Only Queries

■ Join Fetching Feature

■ Batch Reading

■ Fetch Size

■ Pagination

■ Cache Usage

Performance Features

Enhancing TopLink Performance 9-3

9.1.2.1 Read-Only Queries
TopLink uses the eclipselink.read-only hint, QueryHint (@QueryHint), to
retrieve read-only results from a query. On non-transactional read operations, where
the requested entity types are stored in the shared cache, you can request that the
shared instance be returned instead of a detached copy.

For more information about read-only queries, see the documentation for the
read-only hint:

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#Read_Only

9.1.2.2 Join Fetching Feature
The Join Fetching feature enhances performance by enabling the joining and reading
of the related objects in the same query as the source object. Enable Join Fetching by
using the @JoinFetch annotation, as shown in Example 9–2. This example shows
how the @JoinFetch annotation specifies the Employee field managedEmployees.

Example 9–2 Enabling the Join Fetching Feature

@Entity
 public class Employee implements Serializable {
 ...
 @OneToMany(cascade=ALL, mappedBy="owner")
 @JoinFetch(value=OUTER)
 public Collection<Employee> getManagedEmployees() {
 return managedEmployees;
 }
 ...
 }

For more information about Join Fetching, see "How to Use the @JoinFetch
Annotation" in the EclipseLink online documentation:

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#How_to_Use_the_.40JoinFetch_Annotation

9.1.2.3 Batch Reading
The eclipselink.batch hint supplies TopLink with batching information so
subsequent queries of related objects can be optimized in batches instead of being
retrieved one-by-one or in one large joined read. Batch reading is more efficient than
joining because it avoids reading duplicate data. Batching is allowed on queries that
have only a single object in their Select clause.

9.1.2.4 Fetch Size
When you have large queries that return a large number of objects, you can improve
performance by reducing the number of database hits required to satisfy the selection
criteria. To do this, use the eclipselink.jdbc.fetch-size hint. This hint
specifies the number of rows that should be fetched from the database when more
rows are required (depending on the JDBC driver support level). Most JDBC drivers
default to a fetch size of 10, so if you are reading 1000 objects, then increasing the fetch
size to 256 can significantly reduce the time required to fetch the query's results. The
optimal fetch size is not always obvious. Usually, a fetch size of one half or one quarter
of the total expected result size is optimal. Note that setting a fetch size too large or too
small can decrease performance.

Performance Features

9-4 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

9.1.2.5 Pagination
Slow paging can result in significant application overhead; however, TopLink includes
a variety of solutions for improving paging results. For example, you can:

■ Configure the first and maximum number of rows to retrieve when executing a
query.

■ Perform a query on the database for all of the ID values that match the criteria and
then use these values to retrieve specific sets.

■ Configure TopLink to return a ScrollableCursor object from a query by using
query hints. This returns a database cursor on the query's result set and allows the
client to scroll through the results page by page.

For information about improving paging performance, see "How to use EclipseLink
Pagination" in the EclipseLink online documentation, at:

http://wiki.eclipse.org/EclipseLink/Examples/JPA/Pagination#How_
to_use_EclipseLink_Pagination

9.1.2.6 Cache Usage
TopLink uses a shared cache mechanism that is scoped to the entire persistence unit.
When operations are completed in a particular persistence context, the results are
merged back into the shared cache so that other persistence contexts can use them.
This happens regardless of whether the entity manager and persistence context are
created in the Java SE or Java EE platform. Any entity persisted or removed using the
entity manager will always be consistent with the cache.

You can specify how the query should interact with the TopLink cache by using the
eclipselink.cache-usage hint. For more information, see "Cache Usage" in the
EclipseLink online documentation:

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#Cache_Usage

9.1.3 Enhancing Mapping Performance
Mapping performance is enhanced by these features:

■ Indirection ("Lazy Loading")

■ Read-Only Classes

■ Weaving

9.1.3.1 Indirection ("Lazy Loading")
By default, when TopLink retrieves a persistent object, it retrieves all of the dependent
objects to which it refers. When you configure indirection (also known as lazy loading,
lazy reading, and just-in-time reading) for an attribute mapped with a relationship
mapping, TopLink uses an indirection object as a placeholder for the referenced object.
TopLink defers reading the dependent object until you access that specific attribute.
This can result in a significant performance improvement, especially if the application
is interested only in the contents of the retrieved object, rather than the objects to
which it is related.

TopLink supports different types of indirection, including: value holder indirection,
transparent indirect container indirection, and proxy indirection.

Performance Features

Enhancing TopLink Performance 9-5

9.1.3.2 Read-Only Classes
When you declare a class read-only, clones of that class are neither created nor merged,
greatly improving performance. You can declare a class as read-only within the context
of a unit of work by using the addReadOnlyClass() method by using one of the
following techniques:

■ To configure a read-only class for a single unit of work, specify that class as the
argument to the addReadOnlyClass()method:

myUnitofWork.addReadOnlyClass(B.class);

■ To configure multiple classes as read-only, add them to a vector and specify that
vector as the argument to the addReadOnlyClass() method:

myUnitOfWork.addReadOnlyClasses(myVectorOfClasses);

For more information about using read-only classes to enhance performance, see
"Declaring Read-Only Classes" in the EclipseLink online documentation:

http://wiki.eclipse.org/Using_Advanced_Unit_of_Work_API_
%28ELUG%29#Declaring_Read-Only_Classes

9.1.3.3 Weaving
Weaving is a technique of manipulating the byte code of compiled Java classes. The
TopLink JPA persistence provider uses weaving to enhance both JPA entities and Plain
Old Java Object (POJO) classes for such things as lazy loading, change tracking, fetch
groups, and internal optimizations.

Weaving can be performed either dynamically at runtime, when entities are loaded, or
statically at compile time by post-processing the entity .class files. By default,
TopLink uses dynamic weaving whenever possible. This includes inside a Java EE 5 or
Java EE 6 application server and in the Java SE platform when the TopLink agent is
configured. Dynamic weaving is recommended because it is easy to configure and
does not require any changes to a project's build process.

For information about how to use weaving to enhance application performance, see
"Weaving" in the EclipseLink online documentation:

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advanced_JPA_
Development/Performance/Weaving

9.1.4 Transactions
You can optimize performance during data transactions by using change tracking.
Change tracking allows you to tune the way TopLink detects changes that occur
during a transaction. You should choose the strategy based on the usage and data
modification patterns of the entity type because different types may have different
access patterns and hence different settings, and so on.

Enable change tracking by using the @ChangeTracking annotation, as shown in
Example 9–3.

Example 9–3 Enabling Change Tracking

@Entity
@Table(name="EMPLOYEE")
@ChangeTracking(OBJECT) (
public class Employee implements Serializable {
 ...
}

Performance Features

9-6 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

For more information about change tracking, see "Using EclipseLink JPA Extensions
for Tracking Changes" in the EclipseLink online documentation, at:

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#Using_EclipseLink_JPA_Extensions_for_Tracking_Changes

9.1.5 Database
Database performance features in TopLink include:

■ Connection Pooling

■ Parameterized SQL and Statement Caching

■ Batch Writing

9.1.5.1 Connection Pooling
Establishing a connection to a data source can be time-consuming, so reusing such
connections in a connection pool can improve performance. TopLink uses connection
pools to manage and share the connections used by server and client sessions. This
feature reduces the number of connections required and allows your application to
support many clients.

By default, TopLink sessions use internal connection pools. These pools allow you to
optimize the creation of read connections for applications that read data only to
display it and only infrequently modify data. They also allow you to use TopLink
Workbench to configure the default (write) and read connection pools and to create
additional connection pools for object identity or any other purpose.

In addition to internal connection pools, you can also configure TopLink to use any of
these types of connection pools:

■ External connection pools: You must use this type of connection pool to integrate
with external transaction controller.

■ Default (write) and read connection pools.

■ Sequence connection pools: Use these pools when your application requires table
sequencing (that is, nonnative sequencing) and you are using an external
transaction controller.

■ Application-specific connection pools: These are connection pools that you can
create and use for any application purpose, provided you are using internal
TopLink connection pools in a session.

For more information about using connection pools with TopLink, see the following
topics in the EclipseLink online documentation:

■ "Connection Pools":

http://wiki.eclipse.org/Introduction_to_Data_Access_
%28ELUG%29#Connection_Pools

■ "Introduction to the Internal Connection Pool Creation":

http://wiki.eclipse.org/Creating_an_Internal_Connection_Pool_
%28ELUG%29#Introduction_to_the_Internal_Connection_Pool_
Creation

Using Tools to Monitor and Optimize TopLink-Enabled Applications

Enhancing TopLink Performance 9-7

9.1.5.2 Parameterized SQL and Statement Caching
Parameterized SQL can prevent the overall length of a SQL query from exceeding the
statement length limit that your JDBC driver or database server imposes. Using
parameterized SQL along with prepared statement caching can improve performance
by reducing the number of times the database SQL engine parses and prepares SQL
for a frequently called query.

By default, TopLink enables parameterized SQL, but not prepared statement caching.
You should enable statement caching either in TopLink when using an internal
connection pool or in the data source when using an external connection pool and you
want to specify a statement cache size appropriate for your application.

To enable parameterized SQL, add this line to the persistence.xml file that is in the
same path as your domain classes:

<property name="eclipselink.jdbc.bind-parameters" value="true"/>

To disable parameterized SQL, change value= to false.

For more information about using parameterized SQL and statement caching, see
"How to Use Parameterized SQL (Parameter Binding) and Prepared Statement
Caching for Optimization" in the EclipseLink online documentation:

http://wiki.eclipse.org/Optimizing_the_EclipseLink_Application_
%28ELUG%29#How_to_Use_Parameterized_SQL_.28Parameter_Binding.29_
and_Prepared_Statement_Caching_for_Optimization

9.1.5.3 Batch Writing
Batch writing helps optimize transactions with multiple write operations. Batch
writing is enabled by using the TopLink JDBC extension batch-writing. You set one
of the following parameter this property into the session at deployment time:

■ JDBC: Use JDBC batch writing.

■ Buffered: Do not use either JDBC batch writing nor native platform batch
writing.

■ Oracle-JDBC: Use both JDBC batch writing and Oracle native platform batch
writing and use OracleJDBC in your property map.

■ None: Disable batch writing.

For more information about batch writing, see "How to Use EclipseLink JPA
Extensions for JDBC Connection Communication" in the EclipseLink online
documentation:

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#Using_EclipseLink_JPA_Extensions_for_JDBC

9.2 Using Tools to Monitor and Optimize TopLink-Enabled Applications
The most important challenge to performance tuning is knowing what to optimize. To
improve the performance of your application, identify the areas of your application
that do not operate at peak efficiency.

Oracle TopLink provides a diverse set of features to measure and optimize application
performance. You can enable or disable most features in the descriptors or session,
making any resulting performance gains global.Performance considerations are
present at every step of the development cycle. Although this implies an awareness of

Using Tools to Monitor and Optimize TopLink-Enabled Applications

9-8 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

performance issues in your design and implementation, it does not mean that you
should expect to achieve the best possible performance in your first pass.

For example, if optimization complicates the design, leave it until the final
development phase. You should still plan for these optimizations from your first
iteration, to make them easier to integrate later.

9.2.1 Main Tasks
The most important concept associated with tuning your TopLink application is the
idea of an iterative approach. The most effective way to tune your application is to do
the following tasks:

■ Task 1: Measure TopLink Performance with the TopLink Profiler

■ Task 2: Identify Sources of Application Performance Problems

■ Task 3: Modify Poorly Performing Application Components

■ Task 4: Measure Performance Again

9.2.2 Task 1: Measure TopLink Performance with the TopLink Profiler
The TopLink performance profiler helps you identify performance problems by
logging performance statistics for every executed query in a given session.

The TopLink performance profiler logs to the log file the information in Table 9–1.

Table 9–1 Information Logged by the TopLink Performance Profiler

Information Logged Description

Query Class Query class name

Domain Class Domain class name

Total Time Total execution time of the query, including any nested queries
(in milliseconds)

Local Time Execution time of the query, excluding any nested queries (in
milliseconds)

Number of Objects The total number of objects affected

Number of Objects Handled
per Second

How many objects were handled per second of transaction time

Logging the amount of time spent printing logging messages (in
milliseconds)

SQL Prepare The amount of time spent preparing the SQL script (in
milliseconds)

SQL Execute The amount of time spent executing the SQL script (in
milliseconds)

Row Fetch The amount of time spent fetching rows from the database (in
milliseconds)

Cache The amount of time spent searching or updating the object cache
(in milliseconds)

Object Build The amount of time spent building the domain object (in
milliseconds)

Query Prepare The amount of time spent to prepare the query prior to
execution (in milliseconds)

Using Tools to Monitor and Optimize TopLink-Enabled Applications

Enhancing TopLink Performance 9-9

9.2.2.1 Enabling the TopLink Profiler
The TopLink performance profiler is an instance of the
org.eclipse.persistence.tools.profiler.PerformanceProfiler class.
To enable it, add the following line to the persistence.xml file:

<property name="eclipselink.profiler" value="PerformanceProfiler.logProfiler"/>

In addition to enabling the TopLink profiler, PerformanceProfiler class public
API also provides the functionality described in Table 9–2.

9.2.2.2 Accessing and Interpreting Profiler Results
You can see profiling results by opening the profile log in a text reader, such as
Notepad.

The profiler output file indicates the health of a TopLink-enabled application.

Example 9–4 shows an example of the TopLink profiler output.

Example 9–4 Performance Profiler Output

Begin Profile of{
ReadAllQuery(com.demos.employee.domain.Employee)
Profile(ReadAllQuery,# of obj=12, time=139923809,sql execute=21723809,
prepare=49523809, row fetch=39023809, time/obj=11623809,obj/sec=8)
} End Profile

Example 9–4 shows the following information about the query:

■ ReadAllQuery(com.demos.employee.domain.Employee): specific query
profiled, and its arguments

■ Profile(ReadAllQuery: start of the profile and the type of query

SQL Generation The amount of time spent to generate the SQL script before it is
sent to the database (in milliseconds)

Table 9–2 Additional PerformanceProfiler Functionality

To... Use...

Disable the profiler dontLogProfile

Organize the profiler log into a summary of all the
individual operation profiles, including these operation
statistics:

■ Operations that were profiled

■ Shortest profiling operation

■ Total time of all the operations

■ Number of objects returned by profiled queries

■ Total time that was spent in each kind of operation that
was profiled

logProfileSummary

Organize the profiler log into a summary of all the
individual operation profiles by query

logProfileSummaryByQuery

Organize the profiler log into a summary of all the
individual operation profiles by class.

logProfileSummaryByClass

Table 9–1 (Cont.) Information Logged by the TopLink Performance Profiler

Information Logged Description

Using Tools to Monitor and Optimize TopLink-Enabled Applications

9-10 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

■ # of obj=12: number of objects involved in the query

■ time=139923809: total execution time of the query (in milliseconds)

■ sql execute=21723809: total time spent executing the SQL statement

■ prepare=49523809: total time spent preparing the SQL statement

■ row fetch=39023809: total time spent fetching rows from the database

■ time/obj=116123809: number of nanoseconds spent on each object

■ obj/sec=8: number of objects handled per second

9.2.3 Task 2: Identify Sources of Application Performance Problems
Areas of the application where performance problems could occur include the
following:

■ Identifying General Performance Optimization

■ Schema

■ Mappings and Descriptors

■ Sessions

■ Cache

■ Data Access

■ Queries

■ Unit of Work

■ Application Server and Database Optimization

Task 3: Modify Poorly Performing Application Components provides some guidelines
for dealing with problems in each of these areas.

9.2.4 Task 3: Modify Poorly Performing Application Components
For each potential source of application performance problems listed in Section 9.2.3,
"Task 2: Identify Sources of Application Performance Problems", you can try specific
workarounds.

9.2.4.1 Identifying General Performance Optimizations
Avoid overriding TopLink default behavior unless your application requires it.
Some of these defaults are suitable for a development environment; you should
change these defaults to suit your production environment. See "Optimizing for a
Production Environment" in the EclipseLink online documentation:

http://wiki.eclipse.org/Optimizing_the_EclipseLink_Application_
%28ELUG%29#Optimizing_for_a_Production_Environment.

Use the Workbench rather than manual coding. These tools are not only easy to use,
but the default configuration they export to deployment XML (and the code it
generates, if required) represents best practices optimized for most applications.

9.2.4.2 Schema
Optimization is an important consideration when you design your database schema
and object model. Most performance issues occur when the object model or database
schema is too complex, because this can make the database slow and difficult to query.

Using Tools to Monitor and Optimize TopLink-Enabled Applications

Enhancing TopLink Performance 9-11

This is most likely to happen if you derive your database schema directly from a
complex object model.

To optimize performance, design the object model and database schema together.
However, allow each model to be designed optimally: do not require a direct
one-to-one correlation between the two.

For information about designing schema, see "Optimizing Schema", in the EclipseLink
online documentation (http://wiki.eclipse.org/Optimizing_the_
EclipseLink_Application_%28ELUG%29#Optimizing_Schema). This
document includes four schema optimization scenarios that will help you design
schema that provides the desired performance.

9.2.4.3 Mappings and Descriptors
If you find performance bottlenecks in your mapping and descriptors, then try these
workarounds:

■ Always use indirection (lazy loading). It is not only critical in optimizing database
access, but also allows TopLink to make several other optimizations including
optimizing its cache access and unit of work processing. See "Configuring
Indirection (Lazy Loading)" in the EclipseLink online documentation:

http://wiki.eclipse.org/Configuring_a_Mapping_
%28ELUG%29#Configuring_Indirection_.28Lazy_Loading.29

■ Avoid using method access in your TopLink mappings, especially if you have
expensive or potentially dangerous side-effect code in your get or set methods;
use the default direct attribute access instead. See "Configuring Method or Direct
Field Accessing at the Mapping Level" in the EclipseLink online documentation:

http://wiki.eclipse.org/Configuring_a_Descriptor_
%28ELUG%29#Configuring_Cache_Existence_Checking_at_the_
Descriptor_Level

■ Avoid using the existence checking option checkCacheThenDatabase on
descriptors, unless required by the application. The default existence checking
behavior offers better performance. See "Configuring Cache Existence Checking at
the Descriptor Level" in the EclipseLink online documentation:

http://wiki.eclipse.org/Configuring_a_Mapping_
%28ELUG%29#Configuring_Method_or_Direct_Field_Accessing_at_
the_Mapping_Level

■ Avoid expensive initialization in the default constructor that TopLink uses to
instantiate objects. Instead, use lazy initialization or use a TopLink instantiation
policy to configure the descriptor to use a different constructor. See Configuring
Instantiation Policy" in the EclipseLink online documentation:

http://wiki.eclipse.org/Configuring_a_Descriptor_
%28ELUG%29#Configuring_Instantiation_Policy

9.2.4.4 Sessions
If you suspect that session performance is hindering your application, try these
workarounds:

■ Use a server session in a server environment instead of a database session.

■ Use the TopLink client session instead of a remote session. A client session is
appropriate for most multiuser Java EE application server environments.

■ Do not pool client sessions. Pooling sessions offers no performance gains.

Using Tools to Monitor and Optimize TopLink-Enabled Applications

9-12 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

■ Increase the size of your session read and write connection pools to the desired
number of concurrent threads (for example, 50). You can configure this in TopLink
when you are using an internal connection pool or in the data source when you
are using an external connection pool.

For a list of additional resources, see "Optimizing Sessions" in the EclipseLink online
documentation:

http://wiki.eclipse.org/Optimizing_the_EclipseLink_Application_
%28ELUG%29#Optimizing_Sessions

9.2.4.5 Cache
You can often improve cache performance by implementing cache coordination. Cache
coordination allows multiple, possibly distributed instances of a session to broadcast
object changes among each other so that each session's cache can be kept up-to-date.
For detailed information about optimizing cache behavior, see "Optimizing Cache" in
the EclipseLink online documentation, at:

http://wiki.eclipse.org/Optimizing_the_EclipseLink_Application_
%28ELUG%29#Optimizing_Cache

9.2.4.6 Data Access
Depending on the type of data source your application accesses, TopLink offers a
variety of Login options that you can use to tune the performance of low level data
read and write operations. For optimizing higher-level data read and write operations,
see "Optimizing Data Access" (in the EclipseLink online documentation at
http://wiki.eclipse.org/Optimizing_the_EclipseLink_Application_
%28ELUG%29#Optimizing_Data_Access).

This document offers several techniques to improve data access performance for your
application. These techniques show you how to:

■ Optimize JDBC driver properties.

■ Optimize data format.

■ Use batch writing for optimization.

■ Use outer-join reading with inherited subclasses.

■ Use parameterized SQL (parameter binding) and prepared statement caching for
optimization.

9.2.4.7 Queries
TopLink provides an extensive query API for reading, writing, and updating data. For
information about improving query performance, see "Optimizing Queries" (in the
EclipseLink online documentation at http://wiki.eclipse.org/Optimizing_
the_EclipseLink_Application_%28ELUG%29#Optimizing_Queries).

This document offers several techniques to improve query performance for your
application. These techniques show you how to:

■ Use parameterized SQL and prepared statement caching for optimization.

■ Use named queries for optimization.

■ Use batch and join reading for optimization.

■ Use partial object queries and fetch groups for optimization.

■ Use read-only queries for optimization.

Using Tools to Monitor and Optimize TopLink-Enabled Applications

Enhancing TopLink Performance 9-13

■ Use JDBC fetch size for optimization.

■ Use cursored streams and scrollable cursors for optimization.

■ Use result set pagination for optimization.

It also includes links to read and write optimization examples.

9.2.4.8 Unit of Work
To obtain optimal performance when using a unit of work, consider the following tips:

■ Register objects with a unit of work only if objects are eligible for change. If you
register objects that will not change, then the unit of work needlessly clones and
processes those objects.

■ Avoid the performance cost of existence checking when you are registering a new
or existing object. For more information, see "How to Use Registration and
Existence Checking" in the EclipseLink online documentation:

http://wiki.eclipse.org/Using_Advanced_Unit_of_Work_API_
%28ELUG%29#How_to_Use_Registration_and_Existence_Checking

■ Avoid the performance cost of change set calculation on a class you know will not
change by telling the unit of work that the class is read-only. For more information,
see "Declaring Read-Only Classes" in the EclipseLink online documentation:

http://wiki.eclipse.org/Using_Advanced_Unit_of_Work_API_
%28ELUG%29#Declaring_Read-Only_Classes

■ Avoid the performance cost of change set calculation on an object read by a
ReadAllQuery in a unit of work that you do not intend to change by
unregistering the object. For more information, see "How to Unregister Working
Clones" in the EclipseLink online documentation:

http://wiki.eclipse.org/Using_Advanced_Unit_of_Work_API_
%28ELUG%29#How_to_Unregister_Working_Clones

■ Before using conforming queries, ensure that it is necessary. For alternatives, see
"Using Conforming Queries and Descriptors" in the EclipseLink online
documentation:

http://wiki.eclipse.org/Using_Advanced_Unit_of_Work_API_
%28ELUG%29#Using_Conforming_Queries_and_Descriptors

■ Enable weaving and change tracking to greatly improve transactional
performance. For more information, see "Optimizing Using Weaving" in the
EclipseLink online documentation:

http://wiki.eclipse.org/Optimizing_the_EclipseLink_
Application_%28ELUG%29#Optimizing_Using_Weaving

If your performance measurements show that you have a performance problem
during unit of work commit transaction, then consider using object-level or
attribute-level change tracking, depending on the type of objects involved and how
they typically change. For more information, see "Unit of Work and Change Policy" in
the EclipseLink online documentation:

 http://wiki.eclipse.org/Introduction_to_EclipseLink_
Transactions_%28ELUG%29#Unit_of_Work_and_Change_Policy

Using Tools to Monitor and Optimize TopLink-Enabled Applications

9-14 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

9.2.4.9 Application Server and Database Optimization
To optimize the application server and database performance, consider these
techniques:

■ Configuring your application server and database correctly can have a big impact
on performance and scalability. Ensure that you correctly optimize these key
components of your application in addition to your TopLink application and
persistence.

■ For your application or Java EE platform, ensure that your memory, thread pool,
and connection pool sizes are sufficient for your server's expected load, and that
your JVM has been configured optimally.

■ Ensure that your database has been configured correctly for optimal performance
and its expected load.

9.2.5 Task 4: Measure Performance Again
Finally, after identifying possible performance bottlenecks and taking some action on
them, rerun your application, again with the profiler enabled (see Section 9.2.2.1,
"Enabling the TopLink Profiler"). Review the results and, if more action is required,
then follow the procedures outlined in Section 9.2.4, "Task 3: Modify Poorly
Performing Application Components".

10

Migrating From Hibernate to TopLink 10-1

10Migrating From Hibernate to TopLink

This chapter describes how to migrate applications from using Hibernate JPA
annotations and its native and proprietary API to using TopLink JPA. The migration
involves converting Hibernate annotations to TopLink's native annotations, and
converting native Hibernate API to TopLink JPA in the application code. Standard JPA
annotations and API are left unchanged.

This chapter contains the following sections:

■ Section 10.1, "Understanding Hibernate"

■ Section 10.2, "Main Tasks"

■ Section 10.3, "Additional Resources"

10.1 Understanding Hibernate
Hibernate is an object-relational mapping tool for Java environments. It provides a
framework for mapping Java objects to relational database artifacts, and Java data
types to SQL data types. It also provides the ability to query the database and retrieve
data.

For more information about Hibernate, see http://www.hibernate.org.

Motivations for Migrating
Reasons why you would want to migrate from Hibernate to TopLink include:

■ Performance and scalability: TopLink's caching architecture allows you to
minimize object creation and share instances. TopLink's caching supports
single-node and clustered deployments.

■ Support for leading relation databases: TopLink continues to support all leading
relational databases with extensions specific to each. TopLink is also the best ORM
solution for the Oracle database.

■ A comprehensive persistence solution: While TopLink offers industry leading
object-relational support, TopLink also uses its core mapping functionality to
deliver Object-XML (JAXB), Service Data Object (SDO), and Database Web
Services. Depending on your requirements you can use one or more of the
persistence services based on the same core persistence engine.

■ JPA Support: As the JPA 1.0 specification co-leads, Oracle and the
TopLink/EclipseLink team have been focused on delivering a JPA-compliant
solution with supporting integration with JDeveloper, ADF, Spring, and the
Eclipse IDE (Dali project). Oracle has delivered the JPA 1.0 reference
implementation and EclipseLink delivers the JPA 2.0 reference implementation.

Main Tasks

10-2 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

Oracle is focussed on standards-based development, while still offering many
advanced capabilities.

10.2 Main Tasks
Complete these tasks to migrate an application that uses Hibernate as its persistence
provider to Oracle TopLink.

■ Task 1: Convert the Hibernate Entity Annotation

■ Task 2: Convert the Hibernate Custom Sequence Generator Annotation

■ Task 3: Convert Hibernate Mapping Annotations

■ Task 4: Modify the persistence.xml File

■ Task 5: Convert Hibernate API to EclipseLink API

10.2.1 Task 1: Convert the Hibernate Entity Annotation
The Hibernate entity annotation, defined by the
org.hibernate.annotations.Entity class, adds additional metadata beyond
what is defined by the JPA standard @Entity annotation.

Example 10–1 illustrates a sample Hibernate entity annotation. The example uses the
selectBeforeUpdate, dynamicInsert, dynamicUpdate, optimisticLock,
and polymophism attributes. Note that the Hibernate entity annotation also defines
mutable and persister attributes which are not used in this example.

Example 10–1 Sample Hibernate Entity Annotation

@org.hibernate.annotations.Entity(
 selectBeforeUpdate = true,
 dynamicInsert = true,
 dynamicUpdate = true,
 optimisticLock = OptimisticLockType.ALL,
 polymorphism = PolymorphismType.EXPLICIT)

The following sections describe how TopLink treats selects, dynamic updates and
inserts, locks, and polymorphism. For more information, see
"EclipseLink/Examples/JPA/Migration/Hibernate/V3Annotations" in the Eclipselink
documentation.

http://wiki.eclipse.org/EclipseLink/Examples/JPA/Migration/Hiber
nate/V3Annotations

10.2.1.1 Convert the Select Before Update, Dynamic Insert and Update Attributes
In Hibernate, the selectBeforeUpdate attribute specifies that Hibernate should
never perform an SQL UPDATE unless it is certain that an object is actually modified.
The dynamicInsert attribute specifies that INSERT SQL should be generated at
runtime and contain only the columns whose values are not null. The
dynamicUpdate attribute specifies that UPDATE SQL should be generated at runtime
and can contain only those columns whose values have changed.

By default, TopLink will always insert all mapped columns and will update only the
columns that have changed. If alternate operations are required, then the queries used
for these operations can be customized by using Java code, SQL, or stored procedures.

Main Tasks

Migrating From Hibernate to TopLink 10-3

10.2.1.2 Convert the Optimistic Lock Attribute
In Hibernate, the optimisticLock attribute determines the optimistic locking
strategy.

TopLink's optimistic locking functionality supports all of the Hibernate locking types
and more. Table 10–1 translates locking types from Hibernate's
@Entity(optimisticLock) attributes into TopLink locking policies. These policies
can be configured either with the TopLink @OptimisticLocking annotation or in
the TopLink orm.xml file. For more information, see "Using EclipseLink JPA
Extensions for Optimistic Locking" in the EclipseLink documentation.

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#Using_EclipseLink_JPA_Extensions_for_Optimistic_
Locking

Additionally, TopLink allows you to compare a specific set of selected columns using
the OptimisticLockingType.SELECTED_COLUMNS annotation. This allows you to
select the critical columns that should be compared if the CHANGED or ALL strategies
do not meet your needs.

10.2.2 Task 2: Convert the Hibernate Custom Sequence Generator Annotation
In Hibernate, the @GeneratedValue annotation defines the identifier generation
strategy. The @GenericGenerator allows you to define a Hibernate-specific ID
generator. Example 10–2 illustrates a custom generator for sequence values.

Example 10–2 Custom Generator for Sequence Values

...
@Id
 @GeneratedValue(generator = "system-uuid")
 @GenericGenerator(name = "system-uuid", strategy = "mypackage.UUIDGenerator")
 public String getTransactionGuid()
...

In TopLink, a custom sequence generator can be implemented and registered by using
the @GeneratedValue annotation. For more information, see: "How to use Custom
Sequencing (i.e., UUID)" in the EclipseLink documentation.

Table 10–1 Transforming Hibernate's OptimisticLock to TopLink's OptimisticLocking

Hibernate's
OptimisticLock Type Description EclipseLink OptimisticLocking

NONE No optimistic locking EclipseLink defaults to no optimistic locking

VERSION Use a column version Use the JPA @Version annotation or EclipseLink
annotation:

@OptimisticLocking(type =
OptimisticLockingType.VERSION_COLUMN)

DIRTY Changed columns are
compared

Use the JPA @Version annotation or the EclipseLink
annotation:

@OptimisticLocking(type =
OptimisticLockingType.CHANGED_COLUMNS)

ALL All columns are
compared

Use the EclipseLink annotation:

@OptimisticLocking(type =
OptimisticLockingType.ALL_COLUMNS)

Main Tasks

10-4 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

http://wiki.eclipse.org/EclipseLink/Examples/JPA/CustomSequencin
g

10.2.3 Task 3: Convert Hibernate Mapping Annotations
The following sections describe how to convert various Hibernate annotations to
TopLink annotations.

10.2.3.1 Convert the @ForeignKey Annotation
In Hibernate, the @ForeignKey annotation allows you to define the name of the
foreign key to be used during schema generation.

TopLink does generate reasonable names, but does not provide an annotation or
eclipselink-orm.xml support for specifying the name to use. When migrating, the
recommended solution is to have TopLink generate the schema (DDL) commands to a
script file instead of directly on the database. The script can then be customized to use
different names prior to being executed.

10.2.3.2 Convert the @Cache Annotation
In Hibernate, the @Cache annotation configures the caching of entities and
relationships. Because TopLink uses an entity cache instead of a data cache, the
relationships are automatically cached. In these cases, the @Cache annotation should
simply be removed during migration.

When the @Cache annotation is used on an entity, its behavior is similar to TopLink's
@Cache annotation. For more information on the @Cache annotation and equivalent
eclipselink-orm.xml configuration values, see "Eclipse User Guide on JPA
Extensions" in the EclipseLink documentation.

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#Using_EclipseLink_JPA_Extensions_for_Entity_Caching

10.2.4 Task 4: Modify the persistence.xml File
The persistence.xml file is the deployment descriptor file for JPA persistence. It
specifies the persistence units, and declares the managed persistence classes, the
Object-Relational mapping, and the database connection details. Example 10–3
illustrates a persistence.xml file for an application that uses Hibernate:

Example 10–3 Persistence File for an Application that uses Hibernate

<persistence>
 <persistence-unit name="helloworld">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <properties>
 <property name="hibernate.dialect"
value="org.hibernate.dialect.HSQLDialect"/>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 </properties>
 </persistence-unit>

Note: The foreign key name is not used by TopLink at runtime, but is
required if EclipseLink attempts to drop the schema. In this case, the
drop script should be generated to a file and customized to match the
foreign key names used during creation.

Main Tasks

Migrating From Hibernate to TopLink 10-5

</persistence>

10.2.4.1 Modified persistence.xml
Example 10–4 illustrates a persistence.xml file modified for an application that
uses TopLink. Key differences include the value for the persistence provider. For
TopLink, this value is org.eclipse.persistence.jpa.PersistenceProvider.
The names of TopLink-specific properties will typically be prefixed by eclipselink,
for example, eclipselink.target-database.

Example 10–4 Persistence File Modified for EclipseLink

<xml version="1.0" encoding="UTF-8"?>
<persistence version="1.0" xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">
 <persistence-unit name="helloworld">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <!-- Entities must be specified for EclipseLink weaving -->
 <class>Todo</class>
 <properties>
 <property name="eclipselink.ddl-generation" value="drop-and-create-tables"/>
 <property name="eclipselink.ddl-generation.output-mode" value="database"/>
 <property name="eclipselink.weaving" value="false"/>
 <property name="eclipselink.logging.level" value="FINE"/>
 </properties>
 </persistence-unit>
</persistence>

For more information, see "EclipseLink/Examples/JPA/Migration/JBoss" in the
EclipseLink documentation.

http://wiki.eclipse.org/EclipseLink/Examples/JPA/Migration/JBoss

10.2.4.2 Drop and Create the Database
For production environments, you would normally have the schema setup on the
database. The following properties defined in the persistence unit are more suitable for
examples and demos. These properties will instruct TopLink to automatically drop
and create database tables. Any previously existing tables will be removed.

<property name="eclipselink.ddl-generation" value="drop-and-create-tables"/>
<property name="eclipselink.ddl-generation.output-mode" value="database"/>

10.2.5 Task 5: Convert Hibernate API to EclipseLink API
Table 10–2 describes the Hibernate classes that are commonly used in a JPA project and
their equivalent EclipseLink (JPA) interfaces. All of the Hibernate classes are in the
org.hibernate package. All of the JPA interfaces (and the Persistence class) are
in the javax.persistence package.

For information on the EclipseLink API, see Oracle Fusion Middleware Java API Reference
for Oracle TopLink.

Additional Resources

10-6 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

10.3 Additional Resources
For more information on migrating from Hibernate to EclipseLink, see
"EclipseLink/Examples/JPA/Migration/Hibernate":

http://wiki.eclipse.org/EclipseLink/Examples/JPA/Migration/Hiber
nate

Table 10–2 Hibernate Classes and Equivalent JPA Interfaces

org.hibernate javax.persistence Description

cfg.Configuratio
n

Persistence A bootstrap class that configures the session factory (in
Hibernate) or the entity manager factory (in JPA). It is
generally used to create a single session (or entity manager)
factory for the JVM.

SessionFactory EntityManagerFactory Provides APIs to open Hibernate sessions (or JPA entity
managers) to process a user request. Generally, a session (or
entity manager) is opened per thread processing client
requests.

Session EntityManager Provides APIs to store and load entities to and from the
database. It also provides APIs to get a transaction and
create a query.

Transaction EntityTransaction Provides APIs to manage transactions.

Query Query Provides APIs to execute queries.

A

Installing Oracle TopLink A-1

AInstalling Oracle TopLink

This appendix contains information about installing Oracle TopLink. It contains the
following sections:

■ Appendix A.1, "System Requirements and Certifications"

■ Appendix A.2, "Installing a Stand Alone Instance of Oracle TopLink"

■ Appendix A.3, "Installing Oracle TopLink and EclipseLink with Oracle WebLogic
Server"

■ Appendix A.4, "Installing Oracle TopLink with Oracle Containers for Java EE"

■ Appendix A.5, "Installing EclipseLink with Oracle Containers for Java EE"

A.1 System Requirements and Certifications
The complete product requirements list and the latest certification information for 11g
Release 1 (11.1.1.6.0) are available at:

http://www.oracle.com/technology/products/ias/toplink/technical/
support/index.html

A.1.1 Additional Requirements
TopLink requires a Java Virtual Machine (JVM) compatible with JDK 1.5.0 (or higher).
TopLink also requires internet access to use URL-based schemas and hosted
documentation.

A.2 Installing a Stand Alone Instance of Oracle TopLink
Follow these steps to install TopLink stand alone (including TopLink Foundation
Library and TopLink Workbench). Before you proceed with the installation, back up all
existing project data.

1. Unzip the TopLink Zip file (toplink.zip) into an empty directory. This is your
new <TOPLINK_HOME> directory where Oracle TopLink 11g Release 1 will reside.

When unzipped, additional steps are required to run the Oracle TopLink
Workbench and other utilities. For more information, see "Configuring the
TopLink Workbench Environment" in the Oracle Fusion Middleware Developer's
Guide for Oracle TopLink.

2. When installation is complete, refer to Oracle TopLink Release Notes.

.

Installing Oracle TopLink and EclipseLink with Oracle WebLogic Server

A-2 Oracle Fusion Middleware Oracle JDeveloper IDE Studio Edition Help

A.3 Installing Oracle TopLink and EclipseLink with Oracle WebLogic
Server

The Oracle WebLogic Server installation includes both the toplink.jar and the
eclipselink.jar. No additional installation is required. For configuration
information, see "Integrating TopLink with Oracle WebLogic Server" in the Oracle
Fusion Middleware Developer's Guide for Oracle TopLink.

A.4 Installing Oracle TopLink with Oracle Containers for Java EE
Follow these steps to install TopLink with OC4J (including TopLink Foundation
Library and TopLink Workbench). Before you proceed with the installation, back up all
existing project data.

1. Unzip the OC4J Zip file (oc4j_extended.zip) into an empty directory. This is
your new <ORACLE_HOME> directory where OC4J 10g will reside.

2. Unzip the TopLink Zip file (toplink.zip) in your <ORACLE_HOME> directory
where <ORACLE_HOME> is the directory where you installed OC4J 10g.

When unzipped, additional steps are required to run the Oracle TopLink
Workbench and other utilities. For more information, see "Configuring the
TopLink Workbench Environment" in the Oracle Fusion Middleware Developer's
Guide for Oracle TopLink.

3. When installation is complete, refer to Oracle TopLink Release Notes.

A.5 Installing EclipseLink with Oracle Containers for Java EE
EclipseLink (eclipselink.jar) is included with the TopLink installation, as
described in "Installing Oracle TopLink with Oracle Containers for Java EE".

For information on manually installing EclipseLink with OC4J, refer to "Integrating
EclipseLink with Oracle Containers for Java EE" in the EclipseLink User's Guide at
http://wiki.eclipse.org/Integrating_EclipseLink_with_an_
Application_Server_(ELUG)#Integrating_EclipseLink_with_Oracle_
Containers_for_J2EE_.28OC4J.29

	1 Introduction
	2 Using TopLink with WebLogic Server
	3 Using TopLink with GlassFish Server
	4 Using Multiple Databases with a Composite Persistence Unit
	5 Scaling TopLink Applications in Clusters
	6 Providing Software as a Service
	7 Mapping JPA to XML
	8 Testing TopLink JPA Outside a Container
	9 Enhancing TopLink Performance
	10 Migrating From Hibernate to TopLink
	A Installing Oracle TopLink
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	1.1 About This Book
	1.2 What You Need to Know First
	1.3 The Use Cases

	2 Using TopLink with WebLogic Server
	2.1 Understanding TopLink and WebLogic Server
	2.1.1 Advantages to Using TopLink with WebLogic Server
	2.1.2 The Relationship of TopLink to Other Fusion Middleware Products

	2.2 What You Need to Start
	2.3 Main Tasks
	2.3.1 Task 1: Set TopLink as the Default JPA Provider (WebLogic Server 11g)
	2.3.2 Task 2: Apply the Patch to Support JPA 2.0 in WebLogic Server 11g
	2.3.3 Task 3: Update the Version of EclipseLink in WebLogic Server
	2.3.4 Task 4: Configure JMX MBean Extensions in WebLogic Server
	2.3.5 Task 5: Use or Reconfigure the Logging Integration
	2.3.5.1 How the Logging Integration Works
	2.3.5.2 Viewing Persistence Unit Logging Levels in the Administration Console
	2.3.5.3 Overriding the Default Logging Integration
	2.3.5.4 Configuring WebLogic Server to Expose TopLink Logging
	2.3.5.5 Other Considerations

	2.3.6 Task 6: Add Persistence to Your Java Application Using TopLink
	2.3.7 Task 7: Configure a Data Source
	2.3.7.1 Ways to Configure Data Sources for JPA Applications
	2.3.7.2 Configure a Globally-Scoped JTA Data Source
	2.3.7.2.1 Create the Data Source in WebLogic Server
	2.3.7.2.2 Configure persisence.xml

	2.3.7.3 Configure an Application-Scoped JTA Data Source
	2.3.7.3.1 Specify That the Data Source Is Application-Scoped
	2.3.7.3.2 Add the JDBC Module to the WebLogic Application Configuration
	2.3.7.3.3 Configure the JPA Persistence Unit to Use the JTA Data Source

	2.3.7.4 Configure a non-JTA Data Source and Manage Transactions in the Application
	2.3.7.5 Make Sure the Settings Match

	2.3.8 Task 8: Extend the Domain to Use Advanced Oracle Database Features
	2.3.9 Task 10: Start WebLogic Server and Deploy the Application
	2.3.10 Task 11: Run the Application
	2.3.11 Task 12: Configure and Monitor Persistence Settings in WebLogic Server

	2.4 Additional Resources
	2.4.1 Code Samples
	2.4.2 Related Javadoc

	3 Using TopLink with GlassFish Server
	3.1 Understanding TopLink and GlassFish Server
	3.1.1 Advantages to Using TopLink with GlassFish Server
	3.1.2 Relationship of GlassFish Server and TopLink to Fusion Middleware Products

	3.2 What You Need to Start
	3.3 Main Tasks
	3.3.1 Task 1: Add Object-XML (JAXB) Support to GlassFish Server (optional)
	3.3.2 Task 2: Set Up the Datasource
	3.3.2.1 Integrate the JDBC Driver for Oracle Database into GlassFish Server
	3.3.2.2 Create a JDBC Connection Pool for the Resource
	3.3.2.3 Create the JDBC Resource

	3.3.3 Task 3: Create the persistence.xml File
	3.3.3.1 Specify the Persistence Provider
	3.3.3.2 Specify an Oracle Database
	3.3.3.3 Specify Logging

	3.3.4 Task 4: Set Up GlassFish Server for JPA
	3.3.5 Task 5: Create the Application
	3.3.6 Task 6: Deploy the Application to GlassFish Server
	3.3.7 Task 7: Run the Application
	3.3.8 Task 8: Monitor the Application

	3.4 Additional Resources

	4 Using Multiple Databases with a Composite Persistence Unit
	4.1 Understanding the Composite Persistence Unit
	4.1.1 Composite Persistence Unit Requirements

	4.2 Main Tasks
	4.2.1 Task 1: Configure the Composite Persistence Unit
	4.2.2 Task 2: Use Composite Persistence Units
	4.2.3 Task 3: Deploy Composite Persistence Units

	4.3 Additional Resources
	4.3.1 Javadoc

	5 Scaling TopLink Applications in Clusters
	5.1 Understanding Scaling TopLink Applications in Clusters
	5.2 Main Tasks
	5.2.1 Task 1: Configure Cache Consistency
	5.2.1.1 Disabling the Shared Cache
	5.2.1.2 Refreshing the Cache
	5.2.1.3 Setting Cache Expiration
	5.2.1.4 Setting Optimistic Locking
	5.2.1.5 Using Cache Coordination

	5.2.2 Task 2: Ensure TopLink is Enabled
	5.2.3 Task 3: Ensure All Application Servers are Part of the Cluster

	5.3 Additional Resources
	5.3.1 Code Samples
	5.3.2 Related JavaDoc

	6 Providing Software as a Service
	6.1 Understanding Oracle TopLink as a SaaS
	6.2 Making JPA Entities Extensible
	6.2.1 Main Tasks
	6.2.1.1 Task 1: Configure the Entity
	6.2.1.1.1 Annotate the Entity Class with @VirtualAccessMethods
	6.2.1.1.2 Add get and set Methods to the Entity
	6.2.1.1.3 Add a Data Structure
	6.2.1.1.4 Use XML

	6.2.1.2 Task 2: Design the Schema
	6.2.1.3 Task 3: Provide Additional Mappings
	6.2.1.4 Task 4: Configure Persistence Properties and the Data Repository
	6.2.1.4.1 Configure persistence.xml
	6.2.1.4.2 Configure the EntityManagerFactory and the Metadata Repository
	6.2.1.4.3 Refresh the Metadata Repository

	6.2.2 Code Examples

	6.3 Making JAXB Beans Extensible
	6.3.1 Main Steps
	6.3.1.1 Task 1: Configure the Bean
	6.3.1.1.1 Annotate the Bean Class with @Xml VirtualAccessMethods
	6.3.1.1.2 Add get and set Methods to the Bean
	6.3.1.1.3 Add a Data Structure
	6.3.1.1.4 Use XML

	6.3.1.2 Task 2: Provide Additional Mappings

	6.3.2 Code Examples
	6.3.2.1 Basic Setup
	6.3.2.2 Define the Tenants

	6.4 Using Single-Table Multi-Tenancy
	6.4.1 Main Tasks
	6.4.1.1 Task 1: Enable Single-Table Multi-Tenancy
	6.4.1.2 Task 2: Specify Tenant Discriminator Columns
	6.4.1.3 Task 3: Use the Discriminator Column at Run Time

	6.4.2 Additional Resources
	6.4.2.1 Code Samples
	6.4.2.2 Related Javadoc

	6.5 Using an External Metadata Source
	6.5.1 Using the eclipselink-orm.xml File Externally
	6.5.2 Main Tasks
	6.5.2.1 Task 1: Configure the Persistence Unit
	6.5.2.1.1 Accessing a Fixed Location
	6.5.2.1.2 Accessing an Application Context Based Location

	6.5.2.2 Task 2: Configure the Server

	6.5.3 Additional Resources
	6.5.3.1 Javadoc

	7 Mapping JPA to XML
	7.1 Understanding JPA-to-XML Mapping Concepts
	7.1.1 XML Binding
	7.1.2 JAXB
	7.1.3 MOXy
	7.1.4 XML Data Representation

	7.2 Binding JPA Entities to XML
	7.2.1 Main Tasks for Binding JPA Relationships to XML
	7.2.1.1 Task 1: Define the Accessor Type and Import Packages
	7.2.1.2 Task 2: Map Privately Owned Relationships
	7.2.1.2.1 Mapping a One-to-One and Embedded Relationship
	7.2.1.2.2 Mapping a One-to-Many Relationship

	7.2.1.3 Task 3: Map the Shared Reference Relationship
	7.2.1.3.1 Mapping a Many-to-One Shared Reference Relationship
	7.2.1.3.2 Mapping a Many-to-Many Shared Reference Relationship

	7.2.1.4 JPA Entities

	7.2.2 Main Tasks for Binding Compound Primary Keys to XML
	7.2.2.1 Task1: Define the XML Accessor Type
	7.2.2.2 Task 2: Create the Target Object
	7.2.2.3 Task 3: Create the Source Object

	7.2.3 Main Tasks for Binding Embedded ID Classes to XML
	7.2.3.1 Task 1: Define the XML Accessor Type
	7.2.3.2 Task 2: Create the Target Object
	7.2.3.3 Task 3: Implement DescriptorOrganizer as EmployeeCustomizer Class
	7.2.3.4 Task 4: Create the Source Object
	7.2.3.5 Task 5: Implement the DescriptorCustomizer as PhoneNumberCustomizer Class

	7.2.4 Using the EclipseLink XML Binding Document

	7.3 Main Tasks for Mapping Simple Java Values to XML Text Nodes
	7.3.1 Task 1: Mapping a Value to an Attribute
	7.3.1.1 Mapping from the Java Object
	7.3.1.2 Defining the Mapping in OXM Metadata Format

	7.3.2 Task 2: Mapping a Value to a Text Node
	7.3.2.1 Mapping a Value to a Simple Text Node
	7.3.2.1.1 Mapping by Using JAXB Annotations
	7.3.2.1.2 Defining the Mapping in OXM Metadata Format

	7.3.2.2 Mapping Values to a Text Node in a Simple Sequence
	7.3.2.2.1 Mapping by Using JAXB Annotations
	7.3.2.2.2 Defining the Mapping in OXM Metadata Format

	7.3.2.3 Mapping a Value to a Text Node in a Subelement
	7.3.2.3.1 Mapping by Using JAXB Annotations
	7.3.2.3.2 Defining the Mapping in OXM Metadata Format

	7.3.2.4 Mapping Values to a Text Node by Position

	7.4 Main Tasks for Using XML Metadata Representation to Override JAXB Annotations
	7.4.1 Task 1: Define Advanced Mappings in the XML
	7.4.2 Task 2: Configure Usage in JAXBContext
	7.4.3 Task 3: Specify MOXy as the JAXB Implementation

	7.5 Using XPath Predicates for Mapping
	7.5.1 Understanding XPath Predicates
	7.5.2 Main Tasks for Mapping Based on an Attribute Value
	7.5.2.1 Task 1: Create the Customer Class Entity
	7.5.2.2 Task 2: Create the Address Class Entity
	7.5.2.3 Task 3: Create the PhoneNumber Class Entity

	7.5.3 Self-Mappings

	7.6 Using Dynamic JAXB/MOXy
	7.6.1 Main Tasks for Using Dynamic JAXB/MOXy
	7.6.1.1 Task 1: Bootstrap a Dynamic JAXBContext from an XML Schema
	7.6.1.1.1 The XML Schema
	7.6.1.1.2 Handling Schema Import/Includes
	7.6.1.1.3 Implementing and Passing EntityResolver
	7.6.1.1.4 Error Handling
	7.6.1.1.5 Specifying a Class Loader

	7.6.1.2 Task 2: Create Dynamic Entities and Marshal Them to XML
	7.6.1.3 Task 3: Unmarshal the Dynamic Entities from XML
	7.6.1.3.1 Get Data from the DynamicEntity
	7.6.1.3.2 Use DynamicType to Introspect Dynamic Entity

	7.7 Additional Resources
	7.7.1 Code Samples
	7.7.2 Related Javadoc
	7.7.2.1 Java Architecture for XML Binding (JAXB) Specification
	7.7.2.2 Mapping Objects to XML (MOXy) Specification

	8 Testing TopLink JPA Outside a Container
	8.1 Understanding JPA Deployment
	8.1.1 Using an EntityManager

	8.2 Configuring the persistence.xml File
	8.2.1 Main Tasks
	8.2.1.1 Task 1: Use the persistence.xml File
	8.2.1.2 Task 2: Instantiate the EntityManagerFactory

	8.3 Using a Property Map
	8.3.1 Main Tasks
	8.3.1.1 Task 1: Configure the persistence.xml File
	8.3.1.2 Task 2: Configure the Bootstrapping API
	8.3.1.3 Task 3: Instantiate the EntityManagerFactory

	8.4 Additional Resources
	8.4.1 Javadoc

	9 Enhancing TopLink Performance
	9.1 Performance Features
	9.1.1 Object Caching
	9.1.1.1 Caching Annotations
	9.1.1.2 Using the @Cache Annotation

	9.1.2 Querying
	9.1.2.1 Read-Only Queries
	9.1.2.2 Join Fetching Feature
	9.1.2.3 Batch Reading
	9.1.2.4 Fetch Size
	9.1.2.5 Pagination
	9.1.2.6 Cache Usage

	9.1.3 Enhancing Mapping Performance
	9.1.3.1 Indirection ("Lazy Loading")
	9.1.3.2 Read-Only Classes
	9.1.3.3 Weaving

	9.1.4 Transactions
	9.1.5 Database
	9.1.5.1 Connection Pooling
	9.1.5.2 Parameterized SQL and Statement Caching
	9.1.5.3 Batch Writing

	9.2 Using Tools to Monitor and Optimize TopLink-Enabled Applications
	9.2.1 Main Tasks
	9.2.2 Task 1: Measure TopLink Performance with the TopLink Profiler
	9.2.2.1 Enabling the TopLink Profiler
	9.2.2.2 Accessing and Interpreting Profiler Results

	9.2.3 Task 2: Identify Sources of Application Performance Problems
	9.2.4 Task 3: Modify Poorly Performing Application Components
	9.2.4.1 Identifying General Performance Optimizations
	9.2.4.2 Schema
	9.2.4.3 Mappings and Descriptors
	9.2.4.4 Sessions
	9.2.4.5 Cache
	9.2.4.6 Data Access
	9.2.4.7 Queries
	9.2.4.8 Unit of Work
	9.2.4.9 Application Server and Database Optimization

	9.2.5 Task 4: Measure Performance Again

	10 Migrating From Hibernate to TopLink
	10.1 Understanding Hibernate
	10.2 Main Tasks
	10.2.1 Task 1: Convert the Hibernate Entity Annotation
	10.2.1.1 Convert the Select Before Update, Dynamic Insert and Update Attributes
	10.2.1.2 Convert the Optimistic Lock Attribute

	10.2.2 Task 2: Convert the Hibernate Custom Sequence Generator Annotation
	10.2.3 Task 3: Convert Hibernate Mapping Annotations
	10.2.3.1 Convert the @ForeignKey Annotation
	10.2.3.2 Convert the @Cache Annotation

	10.2.4 Task 4: Modify the persistence.xml File
	10.2.4.1 Modified persistence.xml
	10.2.4.2 Drop and Create the Database

	10.2.5 Task 5: Convert Hibernate API to EclipseLink API

	10.3 Additional Resources

	A Installing Oracle TopLink
	A.1 System Requirements and Certifications
	A.1.1 Additional Requirements

	A.2 Installing a Stand Alone Instance of Oracle TopLink
	A.3 Installing Oracle TopLink and EclipseLink with Oracle WebLogic Server
	A.4 Installing Oracle TopLink with Oracle Containers for Java EE
	A.5 Installing EclipseLink with Oracle Containers for Java EE

