
[1]Oracle® Fusion Middleware
Using the Jersey JAX-RS Reference Implementation

11g Release 1 (10.3.6)

E41958-02

April 2015

Documentation for software developers that describes how
to use the Jersey JAX-RS Reference Implementation (RI) with
Oracle Fusion Middleware 11g.

Oracle Fusion Middleware Using the Jersey JAX-RS Reference Implementation, 11g Release 1 (10.3.6)

E41958-02

Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... v

Documentation Accessibility ... v
Conventions ... v

1 Using the Jersey JAX-RS Reference Implementation

1.1 Introduction to the REST Architectural Style ... 1-1
1.2 What are RESTful Web Services? ... 1-2
1.3 Developing RESTful Web Service on WebLogic Server.. 1-2
1.4 Summary of the Jersey JAX-RS RI Shared Libraries .. 1-2
1.5 Steps to Use the Jersey JAX-RS RI Shared Libraries .. 1-4
1.6 Registering the Jersey JAX-RS RI Shared Libraries With Your WebLogic Server

Instances ... 1-5
1.7 Configuring the Web Application to Use the Jersey JAX-RS RI .. 1-6
1.7.1 Updating web.xml to Delegate Web Requests to the Jersey Servlet 1-6
1.7.2 Updating weblogic.xml to Reference the Shared Libraries ... 1-7
1.8 Creating RESTful Web Services and Clients... 1-8
1.8.1 A Simple RESTful Web Service ... 1-8
1.8.2 A Simple RESTful Client... 1-8
1.8.2.1 An Application Subclass.. 1-9
1.9 Securing the Jersey Servlet Application... 1-9
1.10 Securing RESTful Web Service Clients ... 1-11
1.10.1 Registering the Shared Libraries Required by the Oracle WSM RESTful Client

Filter With Your WebLogic Server Instances.. 1-12
1.10.2 Configuring the Web Application to Use the Oracle WSM RESTful Client Filter .. 1-13
1.10.3 Attaching Policies to RESTful Web Service Clients Using Feature Classes 1-14
1.11 Registering a More Recent Version of the Jersey JAX-RS RI ... 1-16

iv

v

Preface

This preface describes the document accessibility features and conventions used in this
guide—Using the Jersey JAX-RS Reference Implementation.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vi

1

Using the Jersey JAX-RS Reference Implementation 1-1

1Using the Jersey JAX-RS Reference
Implementation

This document describes how to use the Jersey JAX-RS Reference Implementation (RI)
with Oracle Fusion Middleware 11g. Sections include:

■ Introduction to the REST Architectural Style

■ What are RESTful Web Services?

■ Developing RESTful Web Service on WebLogic Server

■ Summary of the Jersey JAX-RS RI Shared Libraries

■ Steps to Use the Jersey JAX-RS RI Shared Libraries

■ Registering the Jersey JAX-RS RI Shared Libraries With Your WebLogic Server
Instances

■ Configuring the Web Application to Use the Jersey JAX-RS RI

■ Creating RESTful Web Services and Clients

■ Securing the Jersey Servlet Application

■ Securing RESTful Web Service Clients

■ Registering a More Recent Version of the Jersey JAX-RS RI

1.1 Introduction to the REST Architectural Style
REST describes any simple interface that transmits data over a standardized interface
(such as HTTP) without an additional messaging layer, such as Simple Object Access
Protocol (SOAP). REST is an architectural style—not a toolkit—that provides a set of
design rules for creating stateless services that are viewed as resources, or sources of
specific information (data and functionality). Each resource can be identified by its
unique Uniform Resource Identifiers (URIs).

A client accesses a resource using the URI and a standardized fixed set of methods,
and a representation of the resource is returned. A representation of a resource is
typically a document that captures the current or intended state of a resource. The
client is said to transfer state with each new resource representation.

Table 1–1 defines a set of constraints defined by the REST architectural style that must
be adhered to in order for an application to be considered "RESTful."

What are RESTful Web Services?

1-2 Using the Jersey JAX-RS Reference Implementation

1.2 What are RESTful Web Services?
RESTful web services are services that are built according to REST principles and, as
such, are designed to work well on the Web.

RESTful web services conform to the architectural style constraints defined in
Table 1–1. Typically, RESTful web services are built on the HTTP protocol and
implement operations that map to the common HTTP methods, such as GET, POST,
PUT, and DELETE to create, retrieve, update, and delete resources, respectively.

1.3 Developing RESTful Web Service on WebLogic Server
WebLogic Server ships with a set of pre-built shared libraries, packaged as Web
applications, that are required to run applications that are based on the Jersey JAX-RS
RI. The following versions are supported:

■ Jersey JAX-RS RI Version 1.9

■ Jersey JAX-RS RI Version 1.1.5.1

The following sections summarize the Jersey JAX-RS RI shared libraries and the steps
to use them, and how to register a more recent version of the Jersey JAX-RS RI.

1.4 Summary of the Jersey JAX-RS RI Shared Libraries
The shared libraries are located in the following directory: WL_
HOME/common/deployable-libraries.

Table 1–2 lists the pre-built shared library that supports Jersey JAX-RS RI Version 1.9
Web services.

Table 1–1 Constraints of the REST Architectural Style

Constraint Description

Addressability Identifies all resources using a uniform resource identifier (URI). In the English
language, URIs would be the equivalent of a noun.

Uniform interface Enables the access of a resource using a uniform interface, such as HTTP methods
(GET, POST, PUT, and DELETE). Applying the English language analogy, these
methods would be considered verbs, describing the actions that are applicable to the
named resource.

Client-server architecture Separates clients and servers into interface requirements and data storage
requirements. This architecture improves portability of the user interface across
multiple platforms and scalability by simplifying server components.

Stateless interaction Uses a stateless communication protocol, typically Hypertext Transport Protocol
(HTTP). All requests must contain all of the information required for a particular
request. Session state is stored on the client only.

This interactive style improves:

■ Visibility—Single request provides the full details of the request.

■ Reliability—Eases recovery from partial failures.

■ Scalability—Not having to store state enables the server to free resources quickly.

Cacheable Enables the caching of client responses. Responses must be identified as cacheable or
non-cacheable. Caching eliminates some interactions, improving efficiency, scalability,
and perceived performance.

Layered system Enables client to connect to an intermediary server rather than directly to the end
server (without the client's knowledge). Use of intermediary servers improve system
scalability by offering load balancing and shared caching.

Summary of the Jersey JAX-RS RI Shared Libraries

Using the Jersey JAX-RS Reference Implementation 1-3

Table 1–3 summarizes the pre-built shared libraries that support Jersey JAX-RS RI
Version 1.1.5.1 Web services, organized by the functionality that they support. The
table also indicates whether the shared library is required or optional.

Table 1–2 Shared Library for Jersey JAX-RS RI 1.9

Functionality Description

■ Jersey

■ JSON processing and streaming

■ ATOM processing

■ Shared Library Name: jersey-bundle

■ JAR Filename: jersey-bundle-1.9.jar

■ WAR Filename: jersey-bundle-1.9.war

■ Version: 1.9

■ License: SUN CDDL+GPL

JAX-RS API ■ Shared Library Name: jsr311

■ JAR Filename: jsr311-api-1.1.1.jar

■ WAR Filename: jsr311-api-1.1.1.war

■ Version: 1.1.1

■ License: JSR311 license

Table 1–3 Shared Libraries for Jersey JAX-RS RI 1.1.5.1

Functionality Description Required?

Jersey ■ Shared Library Name: jersey-bundle

■ JAR Filename: jersey-bundle-1.1.5.1.jar

■ WAR Filename: jersey-bundle-1.1.5.1.war

■ Version: 1.1.5.1

■ License: SUN CDDL+GPL

Required

JAX-RS API ■ Shared Library Name: jsr311

■ JAR Filename: jsr311-api-1.1.1.jar

■ WAR Filename: jsr311-api-1.1.1.war

■ Version: 1.1.1

■ License: JSR311 license

Required

JSON processing ■ Shared Library Name: jackson-core-asl

■ JAR Filename: jackson-core-asl-1.1.1.jar

■ WAR Filename: jackson-core-asl-1.1.1.war

■ Version: 1.1.1

■ License: Apache 2.0

Optional

JSON processing ■ Shared Library Name: jackson-jaxrs

■ JAR Filename: jackson-jaxrs-1.1.1.jar

■ WAR Filename: jackson-jaxrs-1.1.1.war

■ Version: 1.1.1

■ License: Apache 2.0

Optional

Steps to Use the Jersey JAX-RS RI Shared Libraries

1-4 Using the Jersey JAX-RS Reference Implementation

In addition, the following table lists the dependent JARs that are available on
WebLogic Server, and not required to be registered as shared libraries.

1.5 Steps to Use the Jersey JAX-RS RI Shared Libraries
To use the Jersey JAX-RS RI, perform the following steps:

1. Register the Jersey JAX-RS RI shared libraries with one or more WebLogic Server
instances. See "Registering the Jersey JAX-RS RI Shared Libraries With Your
WebLogic Server Instances" on page 5.

2. Configure the Web application that contains the RESTful Web service to use the
Jersey JAX-RS RI shared libraries. See "Configuring the Web Application to Use the
Jersey JAX-RS RI" on page 6.

3. Create the JAX-RS Web services and clients. See "Creating RESTful Web Services
and Clients" on page 8.

4. Optionally, secure the Jersey servlet application or RESTful Web service client
using Oracle Web Services Manager (Oracle WSM) policies. For more information,
see:

■ "Securing the Jersey Servlet Application" on page 9

■ "Securing RESTful Web Service Clients" on page 11

JSON processing ■ Shared Library Name: jackson-mapper-asl

■ JAR Filename: jackson-mapper-asl-1.1.1.jar

■ WAR Filename: jackson-mapper-asl-1.1.1.war

■ Version: 1.1.1

■ License: Apache 2.0

Optional

JSON streaming ■ Shared Library Name: jettison

■ JAR Filename: jettison-1.1.jar

■ WAR Filename: jettison-1.1.war

■ Version: 1.1

■ License: Apache 2.0

Optional

ATOM processing ■ Shared Library Name: rome

■ JAR Filename: rome-1.0.jar

■ WAR Filename: rome-1.0.war

■ Version: 1.0

■ License: Apache 2.0

Optional

Table 1–4 Dependent JARs (Available on WebLogic Server)

Functionality JAR Filename

jdom Version 1.0 API for ATOM processing com.bea.core.jdom_1.0.0.0_1-0.jar

JAXB Version 2.1.1 API javax.xml.bind_2.1.1.jar

Servlet Version 2.5 API Javax.servlet_1.0.0.0_2-5.jar

Table 1–3 (Cont.) Shared Libraries for Jersey JAX-RS RI 1.1.5.1

Functionality Description Required?

Registering the Jersey JAX-RS RI Shared Libraries With Your WebLogic Server Instances

Using the Jersey JAX-RS Reference Implementation 1-5

As required, you can build and deploy a more recent version of the Jersey JAX-RS RI
shared libraries. See "Registering a More Recent Version of the Jersey JAX-RS RI" on
page 16.

For more information about the Jersey JAX-RS RI and examples of developing RESTful
Web services, see https://jersey.java.net.

1.6 Registering the Jersey JAX-RS RI Shared Libraries With Your
WebLogic Server Instances

Shared Java EE libraries are registered with one or more WebLogic Server instances by
deploying them to the target servers and indicating that the deployments are to be
shared. Shared Java EE libraries must be targeted to the same WebLogic Server
instances you want to deploy applications that reference the libraries.

When a referencing application is deployed, WebLogic Server merges the shared
library files with the application. If you try to deploy a referencing application to a
server instance that has not registered a required library, deployment of the
referencing application fails.

Based on the functionality required by your application and the version of the Jersey
JAX-RS RI that you want to use, you can register one or more of the Jersey JAX-RS
shared libraries defined in "Summary of the Jersey JAX-RS RI Shared Libraries" on
page 2, as follows:

1. Choose whether you want to use Version 1.9 or 1.1.5.1 of the Jersey JAX-RS RI.
Based on the version you choose, refer to Table 1–2 or Table 1–3, respectively, to
determine the shared libraries that are required by your application.

2. Determine the WebLogic Server targets to which you will register the shared
libraries. Shared libraries must be registered to the same WebLogic Server
instances on which you plan to deploy referencing applications. (You may
consider deploying libraries to all servers in a domain, so that you can later deploy
referencing applications as needed.)

3. Register a shared library by deploying the shared library files to the target servers
identified in Step 2, and identifying the deployment as a library using the
-library option.

The following shows an example of how to deploy the shared libraries that
provide support for Jersey JAX-RS RI Version 1.9 functionality and JAX-RS API.

weblogic.Deployer -verbose -noexit -source C:\myinstall\wlserver_
10.3\common\deployable-libraries\jersey-bundle-1.9.war -targets myserver
-adminurl t3://localhost:7001 -user system -password ******** -deploy -library

weblogic.Deployer -verbose -noexit -source C:\myinstall\wlserver_
10.3\common\deployable-libraries\jsr311-api-1.1.1.war -targets myserver
-adminurl t3://localhost:7001 -user system -password ******** -deploy -library

If you wish to use Jersey JAX-RS RI Version 1.1.5.1, the following shows an
example of how to deploy the shared libraries that provide support for the basic
Jersey JAX-RS RI functionality and JAX-RS API.

weblogic.Deployer -verbose -noexit -source C:\myinstall\wlserver_
10.3\common\deployable-libraries\jersey-bundle-1.1.5.1.war -targets myserver
-adminurl t3://localhost:7001 -user system -password ******** -deploy -library

weblogic.Deployer -verbose -noexit -source C:\myinstall\wlserver_
10.3\common\deployable-libraries\jsr311-api-1.1.1.war -targets myserver

Configuring the Web Application to Use the Jersey JAX-RS RI

1-6 Using the Jersey JAX-RS Reference Implementation

-adminurl t3://localhost:7001 -user system -password ******** -deploy -library

For more information about the weblogic.Deployer, see "weblogic.Deployer
Command-Line Reference" in Deploying Applications to Oracle WebLogic Server.

1.7 Configuring the Web Application to Use the Jersey JAX-RS RI
You need to configure the Web application that contains the RESTful Web services to
use the Jersey shared libraries. Specifically, you need to update the following two
deployment descriptor files that are associated with your application:

■ web.xml—Update to delegate Web requests to the Jersey servlet. See "Updating
web.xml to Delegate Web Requests to the Jersey Servlet" on page 6.

■ weblogic.xml—Update to reference the shared libraries from Table 1–3 that are
required by your application. See "Updating weblogic.xml to Reference the Shared
Libraries" on page 7.

1.7.1 Updating web.xml to Delegate Web Requests to the Jersey Servlet
Update the web.xml file to delegate all Web requests to the Jersey Servlet,
com.sun.jersey.spi.container.servlet.ServletContainer. The web.xml file is
located in the WEB-INF directory in the root directory of your application archive.

The following provides an example of how to update the web.xml file:

<web-app>
<servlet>

<display-name>My Jersey Application</display-name>
<servlet-name>MyJerseyApp</servlet-name>
<servlet-class>com.sun.jersey.spi.container.servlet.ServletContainer</servlet-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>myPackage.myJerseyApplication</param-value>

</init-param>
</servlet>
<servlet-mapping>

<servlet-name>MyJerseyApp</servlet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>
</web-app>

As shown in the previous example, you need to define the following elements:

■ <servlet-class> element defines the servlet that is the entry point into the Jersey
JAX-RS RI. This value should always be set to
com.sun.jersey.spi.container.servlet.ServletContainer.

■ <init-param> element defines the class that extends the
javax.ws.rs.core.Application, as describe in "An Application Subclass" on
page 9.

■ <servlet-mapping> element defines the base URL pattern that gets mapped to the
MyJerseyApp servlet. The portion of the URL after the http://<host>:<port>
+<webAppName> is compared to the <url-pattern> by WebLogic Server. If the
patterns match, the servlet mapped in this element will be called.

For more information about the web.xml deployment descriptor, see "web.xml
Deployment Descriptor Elements" in Developing Web Applications, Servlets, and JSPs for
Oracle WebLogic Server.

Configuring the Web Application to Use the Jersey JAX-RS RI

Using the Jersey JAX-RS Reference Implementation 1-7

1.7.2 Updating weblogic.xml to Reference the Shared Libraries
Update the weblogic.xml file to reference the shared libraries that are required by
your application. The weblogic.xml file is located in the WEB-INF directory in the root
directory of your application archive.

The <exact-match> directive enables you to control whether the latest version of the
shared libraries that are deployed will be used. If set to true, then the version specified
in the weblogic.xml will be used, regardless of whether a newer version has been
deployed to WebLogic Server. If set to false, then the latest version deployed to
WebLogic Server will be used, regardless of what is specified in the weblogic.xml file.

For example, if you set the <exact-match> directive to false and register as a shared
library a more recent version of the Jersey software, as described in "Registering a
More Recent Version of the Jersey JAX-RS RI" on page 16, then the more recent version
of the shared library will be used by your application automatically; you do not have
to edit the weblogic.xml file in this case to pick up the latest version.

The following example shows how to update the weblogic.xml file to use the Jersey
JAX-RS RI Version 1.9.

<library-ref>
<library-name>jax-rs</library-name>
<specification-version>1.1</specification-version>
<implementation-version>1.9</implementation-version>
<exact-match>false</exact-match>

</library-ref>

The following example shows how to update the weblogic.xml file to use the Jersey
JAX-RS RI Version 1.1.5.1. Not all shared library references will be required for every
Web application; the jersey-bundle and jsr311 shared libraries are both required to use
the Jersey JAX-RS RI. In this example, <exact-match> is set to false specifying that the
latest version of the shared library deployed to WebLogic Server should be used.

<library-ref>
<library-name>jersey-bundle</library-name>
<specification-version>1.1.1</specification-version>
<implementation-version>1.1.5.1</implementation-version>
<exact-match>false</exact-match>

</library-ref>
<library-ref>

<library-name>jsr311</library-name>
<specification-version>1.1.1</specification-version>
<implementation-version>1.1.1</implementation-version>
<exact-match>false</exact-match>

</library-ref>
<library-ref>

<library-name>jackson-core-asl</library-name>
<specification-version>1.0</specification-version>
<implementation-version>1.1.1</implementation-version>
<exact-match>false</exact-match>

</library-ref>
<library-ref>

<library-name>jettison</library-name>
<specification-version>1.1</specification-version>
<implementation-version>1.1</implementation-version>
<exact-match>false</exact-match>

</library-ref>
<library-ref>

<library-name>rome</library-name>
<specification-version>1.0</specification-version>

Creating RESTful Web Services and Clients

1-8 Using the Jersey JAX-RS Reference Implementation

<implementation-version>1.0</implementation-version>
<exact-match>false</exact-match>

</library-ref>

For more information about the weblogic.xml deployment descriptor, see
"weblogic.xml Deployment Descriptor Elements" in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

1.8 Creating RESTful Web Services and Clients
After you have registered the Jersey JAX-RS RI and configured your Web application,
you can start creating RESTful Web services and clients, and an Application subclass,
as required by your deployment. The following sections show a simple Web service
and client.

1.8.1 A Simple RESTful Web Service
The following provides a very simple example of a RESTful Web service:

package samples.helloworld;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;

// Specifies the path to the RESTful service
@Path("/helloworld")
public class helloWorld {

// Specifies that the method processes HTTP GET requests
@GET
@Path("sayHello")
@Produces("text/plain")
public String sayHello() {

return "Hello World!";
}

}

1.8.2 A Simple RESTful Client
The following provides a simple RESTful client that calls the RESTful Web service
defined previously. This sample uses classes that are provided by the Jersey JAX-RS RI
specifically; they are not part of the JAX-RS standard.

package samples.helloworld.client;

import com.sun.jersey.api.client.Client;
import com.sun.jersey.api.client.WebResource;

public class helloWorldClient {
public helloWorldClient() {

super();
}

public static void main(String[] args) {
Client c = Client.create();
WebResource resource =

c.resource("http://localhost:7101/RESTfulService-Project1-context-root/jersey/hell

Securing the Jersey Servlet Application

Using the Jersey JAX-RS Reference Implementation 1-9

oWorld");
String response = resource.get(String.class);

}
}

1.8.2.1 An Application Subclass
The following example shows how to create a class that extends
javax.ws.rs.core.Application to define the components of a RESTful Web service
application deployment and provides additional metadata. For more information
about javax.ws.rs.core.Application, see the Javadoc at
https://jersey.java.net/apidocs/1.9/jersey/javax/ws/rs/core/Application.ht
ml.

Within the Application subclass, override the getClasses() and getSingletons()
methods, as required, to return the list of RESTful Web service resources. A resource is
bound to the Application subclass that returns it.

Note that an error is returned if both methods return the same resource.

Use the javax.ws.rs.ApplicationPath annotation to defined the base URI pattern
that gets mapped to the servlet. For more information about the @ApplicationPath
annotation, see the Javadoc at:
https://jersey.java.net/apidocs/1.9/jersey/javax/ws/rs/core/Application.ht
ml.

The following provides an example of a class that extends
javax.ws.rs.core.Application and uses the @ApplicationPath annotation to define
the base URI of the resource.

import javax.ws.rs.core.Application;
javax.ws.rs.ApplicationPath;
...
@ApplicationPath("resources")
public class MyApplication extends Application {

public Set<java.lang.Class<?>> getClasses() {
Set<java.lang.Class<?>> s = new HashSet<Class<?>>();
s.add(HelloWorldResource.class);
return s;

}
}

1.9 Securing the Jersey Servlet Application
To secure the Jersey servlet application, you can attach one or more of the following
Oracle WSM policies. For more information about these policies and how to manually
configure them, see "Predefined Policies" in Security and Administrator's Guide for Web
Services.

Authentication Policies
■ oracle/wss_http_token_service_policy

■ oracle/http_basic_auth_over_ssl_service_policy

■ oracle/http_jwt_token_service_policy

■ oracle/http_jwt_token_over_ssl_service_policy

■ oracle/http_oam_token_service_policy

Securing the Jersey Servlet Application

1-10 Using the Jersey JAX-RS Reference Implementation

■ oracle/http_saml20_token_bearer_service_policy

■ oracle/http_saml20_token_bearer_over_ssl_service_policy

■ oracle/multi_token_rest_service_policy (exactly-one policy)

■ oracle/multi_token_over_ssl_rest_service_policy (exactly-one policy)

Authorization Policies
■ oracle/binding_authorization_denyall_policy

■ oracle/binding_authorization_permitall_policy

■ oracle/binding_permission_authorization_policy

To secure the Jersey servlet application using Oracle WSM policies, update the
web.xml file to secure the Jersey servlet application using the procedures described in
"Attaching Policies to Servlet Applications" in Security and Administrator's Guide for
Web Services.

The following provides an example of how to update the web.xml file:

Example 1–1 Example of web.xml File to Attach Policies to the Jersey Servlet Application

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5" xmlns="http://java.sun.com/xml/ns/javaee">

<filter>
<filter-name>OWSM Security Filter</filter-name>
<filter-class>oracle.wsm.agent.handler.servlet.SecurityFilter</filter-class>
<init-param>

<param-name>servlet-name</param-name>
<param-value>MyJerseyApp</param-value>

</init-param>
<init-param>

<param-name>oracle.wsm.metadata.policySet</param-name>
<param-value><![CDATA[<sca11:policySet name="policySet"

appliesTo="REST-Resource()"
attachTo="Service('*')"
xmlns:sca11="http://docs.oasis-open.org/ns/opencsa/sca/200903"
xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
xmlns:wsp15="http://www.w3.org/ns/ws-policy">
<wsp15:PolicyReference

URI="oracle/multi_token_rest_service_policy"
orawsp:category="security" orawsp:status="enabled">

</wsp15:PolicyReference>
<wsp15:PolicyReference

URI="oracle/binding_authorization_permitall_policy"
orawsp:category="security" orawsp:status="enabled">

</wsp15:PolicyReference>
</sca11:policySet>]]>

</param-value>

Note: You can also attach a SPNEGO token policy that you
create using the oracle/http_spnego_token_service_
template assertion template. For more information, see
"Configuring Kerberos With SPNEGO Negotiation" in
Security and Administrator's Guide for Web Services.

Securing RESTful Web Service Clients

Using the Jersey JAX-RS Reference Implementation 1-11

</init-param>
</filter>
<filter-mapping>

<filter-name>OWSM Security Filter</filter-name>
<servlet-name>MyJerseyApp</servlet-name>

</filter-mapping>
<servlet>

<display-name>My Jersey Application</display-name>
<servlet-name>MyJerseyApp</servlet-name>
<servlet-class>com.sun.jersey.spi.container.servlet.ServletContainer</servlet-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>myPackage.myJerseyApplication</param-value>

</init-param>
</servlet>
<servlet-mapping>

<servlet-name>MyJerseyApp</servlet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>
</web-app>

1.10 Securing RESTful Web Service Clients
To secure RESTful Web service clients, you can attach one or more of the following
Oracle WSM policies. For more information about these policies and how to manually
configure them, see "Predefined Policies" in Security and Administrator's Guide for Web
Services.

Authentication Policies
■ oracle/wss_http_token_client_policy

■ oracle/http_basic_auth_over_ssl_client_policy

■ oracle/http_jwt_token_client_policy

■ oracle/http_jwt_token_over_ssl_client_policy

■ oracle/http_saml20_token_bearer_client_policy

■ oracle/http_saml20_token_bearer_over_ssl_client_policy

To secure RESTful Web services using Oracle WSM policies:

1. Register the shared libraries required by the Oracle WSM RESTful client filter with
your WebLogic Server instances, as described in "Registering the Shared Libraries
Required by the Oracle WSM RESTful Client Filter With Your WebLogic Server
Instances" on page 12.

2. Update the weblogic.xml deployment descriptor to reference the shared libraries
required by the Oracle WSM RESTful client filter, as described in "Configuring the
Web Application to Use the Oracle WSM RESTful Client Filter" on page 13.

Note: You can also attach a SPNEGO token policy that you
create using the oracle/http_spnego_token_client_
template assertion template. For more information, see
"Configuring Kerberos With SPNEGO Negotiation" in
Security and Administrator's Guide for Web Services.

Securing RESTful Web Service Clients

1-12 Using the Jersey JAX-RS Reference Implementation

3. Attach Oracle WSM policies to your RESTful Web service clients using one of the
following methods:

■ Directly, using Feature classes, as described in "Attaching Policies to RESTful
Web Service Clients Using Feature Classes" on page 14.

■ Globally using the rest-client resource type, as described in "Creating and
Managing Policy Sets" in Security and Administrator's Guide for Web Services.
For example:

C:\Oracle\Middleware\oracle_common\common\bin> wlst.cmd
...
wls:/offline>
connect("weblogic","password","t3://myAdminServer.example.com:7001")
Connecting to t3://myAdminServer.example.com:7001" with userid weblogic
...
Successfully connected to Admin Server "AdminServer" that belongs to
domain "my_domain".

Warning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Admin port should be used instead.

wls:/my_domain/serverConfig> beginRepositorySession()

Session started for modification.

wls:/my_domain/serverConfig> createPolicySet('myPolicySet','rest-client',
'Domain("*")')

Description defaulted to "Global policy attachments for REST clients."
The policy set was created successfully in the session.

wls:/my_domain/serverConfig> attachPolicySetPolicy('oracle/wss_http_token_
client_policy')

Policy reference "oracle/wss_http_token_service_policy" added.

wls:/my_domain/serverConfig> commitRepositorySession()

The policy set myPolicySet is valid.
Creating policy set myPolicySet in repository.

Session committed successfully.

In the event you experience problems using the Oracle WSM RESTful client filter, see
"Diagnosing Problems with the Oracle WSM RESTful Client Filter" in Security and
Administrator's Guide for Web Services.

1.10.1 Registering the Shared Libraries Required by the Oracle WSM RESTful Client
Filter With Your WebLogic Server Instances

Note: You must register the Jersey JAX-RS RI shared libraries, as
well, as described in "Registering the Jersey JAX-RS RI Shared
Libraries With Your WebLogic Server Instances" on page 1-5.

Securing RESTful Web Service Clients

Using the Jersey JAX-RS Reference Implementation 1-13

The shared libraries required by the Oracle WSM RESTful client filter (in addition to
the Jersey JAX-RS RI shared libraries) include:

■ MW_HOME/oracle_common/modules/oracle.wsm.common_
11.1.1/wsm-rest-lib.war

■ MW_HOME/oracle_common/modules/oracle.webservices_
11.1.1/wls-rest-client.war

For Java EE RESTful clients, to register the shared libraries required by Oracle WSM
RESTful client filter with your WebLogic Server instances:

1. Determine the WebLogic Server targets to which you will register the shared
libraries. A shared library must be registered to the same WebLogic Server
instances on which you plan to deploy referencing applications. (You may
consider deploying libraries to all servers in a domain, so that you can later deploy
referencing applications as needed.)

2. Register the shared libraries by deploying the shared library files to the target
servers identified in Step 1, and identifying the deployment as a library using the
-library option.

For example:

weblogic.Deployer -verbose -noexit -source C:\myinstall\oracle_
common\modules\oracle.wsm.common_11.1.1\wsm-rest-lib.war -targets myserver
-adminurl t3://localhost:7001 -user system -password ******** -deploy -library

weblogic.Deployer -verbose -noexit -source C:\myinstall\oracle_
common\modules\oracle.webservices_11.1.1\wls-rest-client.war -targets myserver
-adminurl t3://localhost:7001 -user system -password ******** -deploy -library

For Java SE RESTful clients, to register the shared libraries required by your Oracle
WSM RESTful client filter with your WebLogic Server instances, you must add the
shared libraries to the classpath.

1.10.2 Configuring the Web Application to Use the Oracle WSM RESTful Client Filter

Update the weblogic.xml file to reference the shared libraries required by the Oracle
WSM RESTful client filter. The weblogic.xml file is located in the WEB-INF directory in
the root directory of your application archive.

The following example shows how to update the weblogic.xml file to use the Oracle
WSM RESTful client filter.

<?xml version = '1.0' encoding = 'windows-1252'?>
<weblogic-web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Note: You must configure the Web application to use the Jersey
JAX-RS RI, as well, as described in "Configuring the Web Application
to Use the Jersey JAX-RS RI" on page 1-6.

Note: In the following example, the Web application is configured to
use the Jersey JAX-RS RI Version 1.9 shared library. For more
information about configuring the Jersey JAX-RS RI version, see
"Configuring the Web Application to Use the Jersey JAX-RS RI" on
page 1-6.

Securing RESTful Web Service Clients

1-14 Using the Jersey JAX-RS Reference Implementation

xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-web-app
http://www.bea.com/ns/weblogic/weblogic-web-app/1.0/weblogic-web-app.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-web-app">
...
<library-ref>

<library-name>jax-rs</library-name>
<specification-version>1.1</specification-version>
<implementation-version>1.9</implementation-version>
<exact-match>false</exact-match>

</library-ref>
<library-ref>

<library-name>wsm-rest-lib</library-name>
<exact-match>false</exact-match>

</library-ref>
<library-ref>

<library-name>wls-rest-client</library-name>
<specification-version>1.1</specification-version>
<implementation-version>1.1.0.0</implementation-version>
<exact-match>false</exact-match>

</library-ref>
...
</weblogic-web-app>

For more information about the weblogic.xml deployment descriptor, see
"weblogic.xml Deployment Descriptor Elements" in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

1.10.3 Attaching Policies to RESTful Web Service Clients Using Feature Classes
You can programmatically attach Oracle WSM security policies to RESTful web service
clients using the Feature classes defined in Table 1–5. The classes are provided in the
oracle.wsm.metadata.feature package.

When you create a RESTful client instance, optionally you can pass client
configuration properties by defining a
com.sun.jersey.api.client.config.ClientConfig and passing the information to
the create method of the com.sun.jersey.api.client.Client class.

Using the ClientConfig, you can attach Oracle WSM policies and override
configuration properties, as shown in the following example.

The following code attaches OAuth 2.0 policies to the RESTful client and overrides
configuration properties using Feature classes.

Example 1–2 Attaching Policies to RESTful Web Service Clients Using Feature Classes

package sample.restclient;
import java.io.IOException;

Table 1–5 Feature Classes Used for Attaching Policies to RESTful Clients

Feature Class Description

AbstractPolicyFeature Base abstract class for policy subject feature classes.

PolicySetFeature Set of policy references and configuration override properties
to attach to the policy subject.

PolicyReferenceFeature Single policy reference to attach to the policy subject.

PropertyFeature Optional property that can be used to override the
configuration of one or more policies.

Securing RESTful Web Service Clients

Using the Jersey JAX-RS Reference Implementation 1-15

import java.io.PrintWriter;

import weblogic.jaxrs.api.client.Client;
import com.sun.jersey.api.client.ClientResponse;
import com.sun.jersey.api.client.WebResource;
import com.sun.jersey.api.client.config.ClientConfig;
import com.sun.jersey.api.client.config.DefaultClientConfig;

import javax.servlet.*;
import javax.servlet.http.*;
import org.json.simple.JSONObject;
import org.json.simple.JSONValue;

import oracle.wsm.metadata.feature.AbstractPolicyFeature;
import oracle.wsm.metadata.feature.PolicyReferenceFeature;
import oracle.wsm.metadata.feature.PolicySetFeature;
import oracle.wsm.metadata.feature.PropertyFeature;

public class BankingServlet extends HttpServlet {
private static final String CONTENT_TYPE = "text/html; charset=UTF-8";
private static final String OAUTH_TOKEN_ENDPOINT =

"http://example.com:1234/ms_oauth/oauth2/endpoints/oauthservice/tokens";
private static final String RESOURCE_SERVER_ADDRESS =

"http://example.com:1234";
private static final String ACCOUNT_RESOURCE = RESOURCE_SERVER_ADDRESS +

"/banking_owsm/account/balance";
private static final String CLIENT_CSF_KEY = "bankingweb.csf.key";
private static final String OAUTH_RESOURCE_SCOPE =

"AccountResource.balance.read";

public void init(ServletConfig config) throws ServletException {
super.init(config);

}
public void service(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

PrintWriter out = response.getWriter();
response.setContentType(CONTENT_TYPE);

String userName = request.getRemoteUser();

out.println("<html>");
out.println("<head><title>The OAuth Bank</title></head>");
out.println("<body>");
out.println("<p>Hello " + userName + ", welcome to the OAuth Bank</p>");

ClientConfig cc = new DefaultClientConfig();

// Setting the token.uri. This is used by the Oracle WSM client agent
// when submitting requests for the authorization code.

PropertyFeature oAuthConfigPropFeature = new
PropertyFeature("token.uri",OAUTH_TOKEN_ENDPOINT);

PropertyFeature[] oAuthClientPropFeatures = new PropertyFeature[2];

// Setting oauth2.client.csf.key and scope.
// The key pointed to by oauth2.client.csf.key must be available in the
// OPSS credential store as a password credential, holding the
// client id/client secret pair identifying the client.
// scope is the resource scope for which the requested access token is valid.

oAuthClientPropFeatures[0] = new PropertyFeature("oauth2.client.csf.key",

Registering a More Recent Version of the Jersey JAX-RS RI

1-16 Using the Jersey JAX-RS Reference Implementation

CLIENT_CSF_KEY);
oAuthClientPropFeatures[1] = new PropertyFeature("scope",OAUTH_RESOURCE_

SCOPE);

PolicyReferenceFeature[] policyFeatures = new PolicyReferenceFeature[2];
policyFeatures[0] = new PolicyReferenceFeature("oracle/oauth2_config_

client_policy", oAuthConfigPropFeature);
policyFeatures[1] = new PolicyReferenceFeature("oracle/http_oauth2_token_

client_policy", oAuthClientPropFeatures);

// Attaching policies.
cc.getProperties().put(AbstractPolicyFeature.ABSTRACT_POLICY_FEATURE, new

PolicySetFeature(policyFeatures));

Client client = Client.create(cc);
WebResource webResource = client.resource(ACCOUNT_RESOURCE);
ClientResponse result =

webResource.accept("application/json").get(ClientResponse.class);

if (result.getStatus() == 200) {

String body = result.getEntity(String.class);

final JSONObject obj = (JSONObject)JSONValue.parse(body);

if (obj != null && obj.get("balance") != null) {
String balance = obj.get("balance").toString();
out.println ("<p>Account balance: " + balance);

}
else {

out.println("<p>Error while retrieving account balance.");
}

}

else {
out.println("<p>Error retrieving account balance: HTTP response

status: " + result.getStatus());
}

out.println("</body></html>");

out.close();
}

}

1.11 Registering a More Recent Version of the Jersey JAX-RS RI
If you wish to use a more recent version of the Jersey JAX-RS RI shared libraries than
the version that is provided with WebLogic Server, you need to perform the following
steps:

1. Download the required version of the relevant Jersey JAR file from the Jersey Web
site at: http://jersey.java.net.

2. Expand the JAR file downloaded in Step 1 and create a new shared library
following the steps described in "Creating Shared Java EE Libraries" in Developing
Applications for Oracle WebLogic Server.

Registering a More Recent Version of the Jersey JAX-RS RI

Using the Jersey JAX-RS Reference Implementation 1-17

3. Register the shared library by deploying the shared library files to the target
servers identified in Step 2, and identifying the deployment as a library using the
-library option. You must do the following:

■ Set the -name argument to match the standard Jersey JAX-RS RI shared library
name, defined in Table 1–3. For example, jersey-bundle.

■ Set the -libSpecVer and -libImplVer arguments to distinguish between the
different shared library versions.

The following shows an example of how to deploy the latest versions of the Jersey
JAX-RS RI functionality. For more information about the weblogic.Deployer, see
"weblogic.Deployer Command-Line Reference" in Deploying Applications to Oracle
WebLogic Server.

weblogic.Deployer -verbose -noexit -name jersey-bundle -source
C:\myinstall\wlserver_10.3\common\deployable-libraries\jersey-bundle-1.2.war
-targets myserver -adminurl t3://localhost:7001 -user system -password
******** -deploy -library -libspecver 1.2 -libimplver 1.2

4. Determine if you need to reconfigure your Web application.

If you set the <exact-match> directive to false in the weblogic.xml file when
configuring your Web application, as described in "Configuring the Web
Application to Use the Jersey JAX-RS RI" on page 6, then the shared library with
the most recent specification version will be used and you do not have to update
your Web application configuration.

If you set the <exact-match> directive to true or if you want to use a version of the
Jersey JAX-RS RI that is not the most recent version, then you will have to update
the weblogic.xml to reference the desired shared library. For more information,
see "Configuring the Web Application to Use the Jersey JAX-RS RI" on page 6.

5. Redeploy any applications that needs to use the newly registered version of the
Jersey JAX-RS shared library.

Registering a More Recent Version of the Jersey JAX-RS RI

1-18 Using the Jersey JAX-RS Reference Implementation

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Using the Jersey JAX-RS Reference Implementation
	1.1 Introduction to the REST Architectural Style
	1.2 What are RESTful Web Services?
	1.3 Developing RESTful Web Service on WebLogic Server
	1.4 Summary of the Jersey JAX-RS RI Shared Libraries
	1.5 Steps to Use the Jersey JAX-RS RI Shared Libraries
	1.6 Registering the Jersey JAX-RS RI Shared Libraries With Your WebLogic Server Instances
	1.7 Configuring the Web Application to Use the Jersey JAX-RS RI
	1.7.1 Updating web.xml to Delegate Web Requests to the Jersey Servlet
	1.7.2 Updating weblogic.xml to Reference the Shared Libraries

	1.8 Creating RESTful Web Services and Clients
	1.8.1 A Simple RESTful Web Service
	1.8.2 A Simple RESTful Client
	1.8.2.1 An Application Subclass

	1.9 Securing the Jersey Servlet Application
	1.10 Securing RESTful Web Service Clients
	1.10.1 Registering the Shared Libraries Required by the Oracle WSM RESTful Client Filter With Your WebLogic Server Instances
	1.10.2 Configuring the Web Application to Use the Oracle WSM RESTful Client Filter
	1.10.3 Attaching Policies to RESTful Web Service Clients Using Feature Classes

	1.11 Registering a More Recent Version of the Jersey JAX-RS RI

