
[image: Oracle Corporation]

Oracle® Fusion Middleware

Administering Server Environments for Oracle WebLogic Server

12c (12.2.1.1.0)

E72093-01

June 2016

This document describes how to design, configure, and manage WebLogic Server environments. It is a resource for system administrators and operators responsible for implementing a WebLogic Server installation.

Oracle Fusion Middleware Administering Server Environments for Oracle WebLogic Server, 12c (12.2.1.1.0)

E72093-01

Copyright © 2015, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

	Documentation Accessibility
	Conventions

1 Introduction and Roadmap

	Document Scope and Audience
	Guide to This Document
	Related Documentation
	New and Changed Features in This Release

2 Using Work Managers to Optimize Scheduled Work

	Understanding How WebLogic Server Uses Thread Pools
	Understanding Work Managers
	Request Classes
	Constraints
	Stuck Thread Handling
	Self-Tuning Thread Pool
	Self-Tuning Thread Pool Size
	ThreadLocal Clean Out

	Work Manager Scope
	The Default Work Manager
	Overriding the Default Work Manager
	When to Use Work Managers

	Global Work Managers
	Application-scoped Work Managers

	Using Work Managers, Request Classes, and Constraints
	Dispatch Policy for EJB
	Dispatch Policy for Web Applications

	Deployment Descriptor Examples
	Work Managers and Execute Queues
	Enabling Execute Queues
	Migrating from Execute Queues to Work Managers

	Accessing Work Managers Using MBeans
	Using CommonJ With WebLogic Server
	Accessing CommonJ Work Managers
	Mapping CommonJ to WebLogic Server Work Managers

3 Avoiding and Managing Overload

	Configuring WebLogic Server to Avoid Overload Conditions
	Limiting Requests in the Thread Pool
	Work Managers and Thread Pool Throttling

	Limiting HTTP Sessions
	Exit on Out of Memory Exceptions
	Stuck Thread Handling

	WebLogic Server Self-Monitoring
	Overloaded Health State

	WebLogic Server Exit Codes

4 Configuring Network Resources

	Overview of Network Configuration
	Understanding Network Channels
	What Is a Channel?
	Rules for Configuring Channels
	Custom Channels Can Inherit Default Channel Attributes

	Why Use Network Channels?
	Handling Channel Failures
	Upgrading Quality of Service Levels for RMI

	Standard WebLogic Server Channels
	The Default Network Channel
	Administration Port and Administrative Channel
	Administration Port Capabilities
	Administration Port Restrictions
	Administration Port Requires SSL
	Configure Administration Port
	Booting Managed Servers to Use Administration Port
	Booting Managed Servers to Use Administrative Channels
	Custom Administrative Channels

	Using Internal Channels
	Channel Selection
	Internal Channels Within a Cluster

	Configuring a Channel
	Guidelines for Configuring Channels
	Channels and Server Instances
	Dynamic Channel Configuration
	Channels and Identity
	Channels and Protocols
	Reserved Names
	Channels, Proxy Servers, and Firewalls

	Configuring Network Channels For a Cluster
	Create the Cluster
	Create and Assign the Network Channel
	Configuring a Replication Channel
	Increase Packet Size When Using Many Channels

	Assigning a Custom Channel to an EJB
	Using IPv6 with IPv4

5 Configuring Web Server Functionality

	Overview of Configuring Web Server Components
	Configuring the Server
	Configuring the Listen Port

	Web Applications
	Web Applications and Clustering

	Configuring Virtual Hosting
	Virtual Hosting and the Default Web Application
	Setting Up a Virtual Host

	How WebLogic Server Resolves HTTP Requests
	Setting Up HTTP Access Logs
	Log Rotation
	Common Log Format
	Setting Up HTTP Access Logs by Using Extended Log Format
	Creating the Fields Directive
	Supported Field Identifiers
	IP Address Related Fields
	DNS Related Fields
	Diagnostic Message Correlation Fields

	Creating Custom Field Identifiers
	Get Methods of the HttpAccountingInfo Object

	Preventing POST Denial-of-Service Attacks
	Setting Up WebLogic Server for HTTP Tunneling
	Configuring the HTTP Tunneling Connection
	Connecting to WebLogic Server from the Client

	Using Native I/O for Serving Static Files (Windows Only)

6 Using the Plug-in for Oracle Virtual Assembly Builder

	Overview
	About Oracle Virtual Assembly Builder
	About the WebLogic Server Introspection Plug-in
	Setting Up the WebLogic Server Introspection Plug-in

	Introspection Plug-in Parameters
	Reference System Prerequisites
	Plug-in Usage Requirements
	Resulting Artifact Type
	Wiring
	Wiring Properties
	WebLogic Server Appliance Properties
	Assembly-Level System Properties
	Properties Common to Administration Server and Managed Server Appliances
	Administration Server Appliance Properties

	Oracle Coherence*Web Introspection Extension
	Supported Template Types

7 Configuring Concurrent Managed Objects

	About Java EE Concurrency Utilities
	Concurrency 1.0 Code Examples in WebLogic Server

	How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers
	How WebLogic Server Handles Asynchronous Tasks in Application Components
	Concurrent Managed Objects (CMOs)
	CMOs versus CommonJ API
	CMO Context Propagation
	Propagated Context Types
	Contextual Invocation Points

	Self Tuning for CMO Tasks
	Threads Interruption When CMOs Are Shutting Down
	CMO Constraints for Long-Running Threads
	Setting Limits for Maximum Concurrent Long Running Requests
	Setting Limits for Maximum Concurrent New Threads

	Default Java EE CMOs
	Default Managed Executor Service
	Default Managed Scheduled Executor Service
	Default Context Service
	Default Managed Thread Factory

	Customized CMOs in Configuration Files
	Defining CMOs in WebLogic Configuration Files
	Binding CMOs to JNDI Under an Application Component Environment
	JNDI Binding Using <resource-env-ref>
	JNDI Binding Using @Resource
	Updated Schemas for Custom CMO Modules
	Updated System Module Beans for CMOs

	Custom Managed Executor Service Configuration Elements
	Deployment Descriptor Examples

	Custom Managed Scheduled Executor Service Configuration Elements
	ScheduledFuture.get() Method
	Deployment Descriptor Examples

	Custom Managed Thread Factory Configuration Elements
	Contexts of Threads Created by MTF
	Deployment Descriptor Examples

	Transaction Management for CMOs
	Transaction Management for MES and MSES
	Transaction Management for Context Service
	Transaction Management for MTF

	Global CMO Templates
	Configuring CMO Templates using the Administration Console
	Using MBeans to Configure CMO Templates

	Configuring Concurrent Constraints
	Using the Administration Console to Configure Concurrent Constraints
	Domain-level Concurrent Constraints
	Server-level Concurrent Constraints
	Dynamic Cluster-level Concurrent Constraints

	Using MBeans to Configure Concurrent Constraints

	Querying CMOs
	Using the Administration Console to Monitor CMO Threads
	Monitor JSR236 CMOs for All Deployed Applications and Modules
	Monitor JSR236 CMOs for a Deployed EAR or Module

	Using MBeans to Monitor CMOs
	Using MBeans to Monitor Concurrent Constraints

8 Using the Batch Runtime

	About Batch Jobs
	Batch 1.0 Code Examples in WebLogic Server

	Using the Default Batch Runtime Configuration with the Derby Database
	Configuring the Batch Runtime to Use a Dedicated Database
	Prerequisite Steps Configure the JobRepository Tables, Batch Data Source, and Managed Executor Service
	Create the JobRepository Tables
	Creating JobRepository Tables Using RCU
	Creating JobRepository Tables Using an SQL Script

	Create a JDBC Data Source for the JobRepository
	Optionally, Create a Managed Executor Service Template

	Configure the Batch Runtime to Use a Dedicated Batch Data Source and Managed Executor Service
	Configuring the Batch Runtime Using the Administration Console
	Configuring the Batch Runtime Using WLST

	Querying the Batch Runtime
	Using the Administration Console to Query the Batch Runtime
	Get Details of all Batch Jobs
	Get Details about a Job's Execution
	Get Details about a Job's Step Execution

	Using Runtime Mbeans to Query the Batch Runtime
	Get Details of all Batch Jobs Using getJobDetails
	Get Details of a Job Execution Using getJobExecutions
	Get Details of a Job Step Execution Using getStepExecutions

	Troubleshooting Tips
	Make Sure the Database Containing the JobRepository Tables is Running

Preface

This preface describes the document accessibility features and conventions used in this guide—Administering Server Environments
for Oracle WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface

	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.

	italic

	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	monospace

	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

1 Introduction and Roadmap

This section describes the contents and organization of this guide—Administering Server Environments
for Oracle WebLogic Server.

	Document Scope and Audience

	Guide to This Document

	Related Documentation

	New and Changed Features in This Release

Document Scope and Audience

This document describes how you design, configure, and manage WebLogic Server environments. It is a resource for system administrators and operators responsible for implementing a WebLogic Server installation. This document is relevant to all phases of a software project, from development through test and production phases.

It is assumed that the reader is familiar with Java EE and Web technologies, object-oriented programming techniques, and the Java programming language.

Guide to This Document

The document is organized as follows:

	This chapter, "Introduction and Roadmap"describes the scope of this guide and lists related documentation.

	"Using Work Managers to Optimize Scheduled Work" describes the WebLogic Server execution model and the process of configuring application access to the execute queue.

	"Avoiding and Managing Overload" describes detecting, avoiding, and recovering from overload conditions.

	"Configuring Network Resources" describes optimizing your WebLogic Server domain for your network.

	"Configuring Web Server Functionality" describes using WebLogic Server as a Web server.

	"Using the Plug-in for Oracle Virtual Assembly Builder" describes the WebLogic Server introspection plug-in for Oracle Virtual Assembly Builder, which can be used to examine a single WebLogic domain and the Middleware home directory in which it resides.

	"Configuring Concurrent Managed Objects" describes the Concurrent Managed Objects (CMOs) implemented by WebLogic Server to provide support for defining and implementing the Concurrency Utilities for Java EE 1.0 (JSR 236).

	"Using the Batch Runtime" describes the batch runtime implemented by WebLogic Server to provide support for defining, implementing, and running batch jobs, as defined for Java EE 7 in Batch Applications for the Java Platform (JSR 352).

Related Documentation

	Understanding Domain Configuration
for Oracle WebLogic Server

	Oracle WebLogic Server Administration
Console Online Help

New and Changed Features in This Release

This release of WebLogic Server enhances adds support for Java EE 7, including the following features:

	Concurrency Utilities for Java EE 1.0 (JSR 236). For information, see Configuring Concurrent Managed Objects.

	Batch Applications for the Java Platform (JSR 352). For information, see Using the Batch Runtime.

For a comprehensive listing of the new WebLogic Server features introduced in this release, see What's New in Oracle WebLogic Server 12.2.1.1.0.

2 Using Work Managers to Optimize Scheduled Work

This chapter describes how WebLogic Server lets you configure how your application prioritizes the execution of its work using a Work Manager. Based on rules you define and by monitoring actual run-time performance, WebLogic Server can optimize the performance of your application and maintain service-level agreements. You define the rules and constraints for your application by defining a Work Manger and applying it either globally to a WebLogic Server domain or to a specific application component.

This chapter includes the following sections:

	Understanding How WebLogic Server Uses Thread Pools

	Understanding Work Managers

	Work Manager Scope

	Using Work Managers, Request Classes, and Constraints

	Deployment Descriptor Examples

	Work Managers and Execute Queues

	Accessing Work Managers Using MBeans

	Using CommonJ With WebLogic Server

Understanding How WebLogic Server Uses Thread Pools

In previous versions of WebLogic Server, processing was performed in multiple execute queues. Different classes of work were executed in different queues, based on priority and ordering requirements, and to avoid deadlocks. In addition to the default execute queue, weblogic.kernel.default, there were pre-configured queues dedicated to internal administrative traffic, such as weblogic.admin.HTTP and weblogic.admin.RMI.

You could control thread usage by altering the number of threads in the default queue, or configure custom execute queues to ensure that particular applications had access to a fixed number of execute threads, regardless of overall system load.

Now WebLogic Server uses a single thread pool, in which all types of work are executed. WebLogic Server prioritizes work based on rules you define, and run-time metrics, including the actual time it takes to execute a request and the rate at which requests are entering and leaving the pool.

The common thread pool changes its size automatically to maximize throughput. The queue monitors throughput over time and based on history, determines whether to adjust the thread count. For example, if historical throughput statistics indicate that a higher thread count increased throughput, WebLogic increases the thread count. Similarly, if statistics indicate that fewer threads did not reduce throughput, WebLogic decreases the thread count. This new strategy makes it easier for administrators to allocate processing resources and manage performance, avoiding the effort and complexity involved in configuring, monitoring, and tuning custom executes queues.

Understanding Work Managers

WebLogic Server prioritizes work and allocates threads based on an execution model that takes into account administrator-defined parameters and actual run-time performance and throughput.

Administrators can configure a set of scheduling guidelines and associate them with one or more applications, or with particular application components. For example, you can associate one set of scheduling guidelines for one application, and another set of guidelines for other applications. At run time, WebLogic Server uses these guidelines to assign pending work and enqueued requests to execution threads.

Note:
Work requests from all Work Managers are executed by a single thread pool; separate thread pools are not created for each Work Manager.

To manage work in your applications, you define one or more of the following Work Manager components:

	Fair Share Request Class

	Response Time Request Class

	Min Threads Constraint

	Max Threads Constraint

	Capacity Constraint

	Context Request Class

For more information on these components, see Request Classes or Constraints.

You can use any of these Work Manager components to control the performance of your application by referencing the name of the component in the application deployment descriptor. In addition, you may define a Work Manager that encapsulates all of the above components (except Context Request Class; see Example 2-3) and reference the name of the Work Manager in your application's deployment descriptor. You can define multiple Work Managers—the appropriate number depends on how many distinct demand profiles exist across the applications you host on WebLogic Server.

You can configure Work Managers at the domain level, application level, and module level in one of the following configuration files, or by using the WebLogic Server Administration Console:

	config.xml—Work Managers specified in config.xml can be assigned to any application, or application component, in the domain.

	weblogic-application.xml—Work Managers specified at the application level can be assigned to that application, or any component of that application.

	weblogic-ejb-jar.xml or weblogic.xml—Work Managers specified at the component level can be assigned to that component.

	weblogic.xml—Work Managers specified for a Web application.

Example 2-1 is an example of a Work Manager definition.

	Request Classes

	Constraints

	Stuck Thread Handling

Example 2-1 Work Manager Stanza
<work-manager>
<name>highpriority_workmanager</name>
 <fair-share-request-class>
 <name>high_priority</name>
 <fair-share>100</fair-share>
 </fair-share-request-class>
 <min-threads-constraint>
 <name>MinThreadsCountFive</name>
 <count>5</count>
 </min-threads-constraint>
</work-manager>

To assign the Work Manager in Example 2-1 to control the dispatch policy of the entire Web application, add the code in Example 2-2 to the Web application's weblogic.xml file:

Example 2-2 Referencing the Work Manager in a Web Application
<wl-dispatch-policy>highpriority-workmanager</wl-dispatch-policy>

To assign the Work Manager to control the dispatch policy of a particular servlet, add the following code to the Web application's web.xml file:

<servlet>
 ...
 <init-param>
 <param-name>wl-dispatch-policy</param-name>
 <param-value>highpriority_workmanager</param-value>
 </init-param>
 ...
</servlet>

The components you can define and use in a Work Manager are described in following sections:

Request Classes

A request class expresses a scheduling guideline that WebLogic Server uses to allocate threads to requests. Request classes help ensure that high priority work is scheduled before less important work, even if the high priority work is submitted after the lower priority work. WebLogic Server takes into account how long it takes for requests to each module to complete.

Request classes define a best effort. They do not guarantee that the configured ratio will be maintained consistently. The observed ratio may vary due to several factors during a period of sufficient demand, such as:

	The mixture of requests from different request classes in the queue at any particular time. For example, more requests than the configured ratio may be processed for a lower priority request class if there are not enough requests from a higher priority request class in the Work Manager queue.

	Because the ratio is specified in terms of thread-usage time, a larger number of shorter requests could be processed in the same amount of thread-usage time as a smaller number of time-consuming requests.

There are multiple types of request classes, each of which expresses a scheduling guideline in different terms. A Work Manager may specify only one request class.

	fair-share-request-class—Specifies the average thread-use time required to process requests. The default fair share value is 50.

For example, assume that WebLogic Server is running two modules. The Work Manager for ModuleA specifies a fair-share-request-class of 80 and the Work Manager for ModuleB specifies a fair-share-request-class of 20.

During a period of sufficient demand, with a steady stream of requests for each module such that the number requests exceed the number of threads, WebLogic Server will allocate 80% and 20% of the thread-usage time to ModuleA and ModuleB, respectively.

Note:
The value of a fair share request class is specified as a relative value, not a percentage. Therefore, in the above example, if the request classes were defined as 400 and 100, they would still have the same relative values.

	response-time-request-class—Specifies a response time goal in milliseconds. Response time goals are not applied to individual requests. Instead, WebLogic Server computes a tolerable waiting time for requests with that class by subtracting the observed average thread use time from the response time goal, and schedules requests so that the average wait for requests with the class is proportional to its tolerable waiting time.

For example, given that ModuleA and ModuleB in the previous example, have response time goals of 2000 ms and 5000 ms, respectively, and the actual thread use time for an individual request is less than its response time goal. During a period of sufficient demand, with a steady stream of requests for each module such that the number of requests exceed the number of threads, and no "think time" delays between response and request, WebLogic Server will schedule requests for ModuleA and ModuleB to keep the average response time in the ratio 2:5. The actual average response times for ModuleA and ModuleB might be higher or lower than the response time goals, but will be a common fraction or multiple of the stated goal. For example, if the average response time for ModuleA requests is 1,000 ms., the average response time for ModuleB requests is 2,500 ms.

The previous sections described request classes based on fair share and response time by relating the scheduling to other work using the same request class. A mix of fair share and response time request classes is scheduled with a marked bias in favor of response time scheduling.

	context-request-class—Assigns request classes to requests based on context information, such as the current user or the current user's group.

For example, the context-request-class in Example 2-3 assigns a request class to requests based on the value of the request's subject and role properties.

The high_fairshare and low_fairshare request classes referenced by the context_workmanager in Example 2-3 could be defined in the config.xml as follows:

<self-tuning>
 ...
 <fair-share-request-class>
 <name>high_fairshare</name>
 <target>myserver</target>
 <fair-share>75</fair-share>
 </fair-share-request-class>
 <fair-share-request-class>
 <name>low_fairshare</name>
 <target>myserver</target>
 <fair-share>25</fair-share>
 </fair-share-request-class>
 ...
</self-tuning>

Note:
If a Web application's Work Manager references a context request class, the first user call will go through the default request class; subsequent calls in same session will go through the user-defined request class.

When using context request classes, set session timeout values to prevent sessions from expiring while requests wait in the Work Manager queue.

Example 2-3 Context Request Class
<work-manager>
 <name>context_workmanager</name>
 <context-request-class>
 <name>test_context</name>
 <context-case>
 <user-name>system</user-name>
 <request-class-name>high_fairshare</request-class-name>
 </context-case>
 <context-case>
 <group-name>everyone</group-name>
 <request-class-name>low_fairshare</request-class-name>
 </context-case>
 </context-request-class>
</work-manager>

Constraints

A constraint defines minimum and maximum numbers of threads allocated to execute requests and the total number of requests that can be queued or executing before WebLogic Server begins rejecting requests.

You can define the following types of constraints:

	max-threads-constraint—Limits the number of concurrent threads executing requests from the constrained work set. The default is unlimited. For example, consider a constraint defined with maximum threads of 10 and shared by 3 entry points. The scheduling logic ensures that not more than 10 threads are executing requests from the three entry points combined.

You can define a max-threads-constraint in terms of a the availability of the resource that requests depend upon, such as a connection pool.

A max-threads-constraint might, but does not necessarily, prevent a request class from taking its fair share of threads or meeting its response time goal. Once the constraint is reached the server does not schedule requests of this type until the number of concurrent executions falls below the limit. The server then schedules work based on the fair share or response time goal.

	min-threads-constraint—Guarantees the number of threads the server will allocate to affected requests to avoid deadlocks. The default is zero. A min-threads-constraint value of one is useful, for example, for a replication update request, which is called synchronously from a peer.

A min-threads-constraint might not necessarily increase a fair share. This type of constraint has an effect primarily when the server instance is close to a deadlock condition. In that case, the constraint will cause WebLogic Server to schedule a request even if requests in the service class have gotten more than its fair share recently.

	capacity—Causes the server to reject requests only when it has reached its capacity. The default is -1. Note that the capacity includes all requests, queued or executing, from the constrained work set. Work is rejected either when an individual capacity threshold is exceeded or if the global capacity is exceeded. This constraint is independent of the global queue threshold.

Note that the capacity constraint is not enforced if the request is made by a user belonging to the WebLogic Server Administrators group.

Stuck Thread Handling

In response to stuck threads, you can define a Stuck Thread Work Manager component that can shut down the Work Manager, move the application into admin mode, or mark the server instance as failed.

For example, the Work Manager defined in Example 2-4 shuts down the Work Manager when two threads are stuck for longer than 30 seconds.

Example 2-4 Stuck-Thread Work Manager
<work-manager>
 <name>stuckthread_workmanager</name>
 <work-manager-shutdown-trigger>
 <max-stuck-thread-time>30</max-stuck-thread-time>
 <stuck-thread-count>2</stuck-thread-count>
 </work-manager-shutdown-trigger>
</work-manager>

Self-Tuning Thread Pool

WebLogic Server maintains three groups of threads for the self-tuning thread pool:

	Running threads: threads that are currently executing work requests submitted to Work Managers

	Idle threads: threads that are idly waiting for a work request

Idle threads include threads that have completed their previous work requests and are waiting for new requests, as well as threads that are created by the self-tuning thread pool based on usage statistics in order to anticipate future workload.

	Standby threads: threads that are not currently processing or waiting for work requests

Standby threads do not count toward the self-tuning thread pool thread count. When the self-tuning thread pool decides to decrease the thread count based on usage statistics, threads are moved from the group of idle threads into the group of standby threads. Conversely, when the self-tuning thread pool decides to increase the thread count, it first tries to find threads in the standby thread group to move to the idle thread group. The self-tuning thread pool only creates new threads if there are not enough threads in the standby group.

Threads are shut down when the number of standby threads reaches an internal maximum limit of 256. Ideally, a number of standby threads are ready if WebLogic Server needs to increase the self-tuning thread pool count occurs so that the WebLogic Server instance can avoid creating new threads at a time when workload is high. Standby threads can also be created and used to satisfy minimum threads constraints. For more information, see Constraints.

Self-Tuning Thread Pool Size

By default, the self-tuning thread pool size limit is 400. This limit includes all running and idle threads, but does not include any standby threads. You can configure the limit using the SelfTuningThreadPoolSizeMax attribute in the KernelMBean. You may choose a higher size limit if your system can support additional workload even when the self-tuning thread pool has reached its upper thread count limit. Contrarily, you may choose to lower the limit if your system resources, such as CPU, become overloaded at a lower thread count. However, if lowering the SelfTuningThreadPoolSizeMax limit, note that if the value is set too low, the self-tuning thread pool may not be allowed to create enough threads to handle the system workload. This could result in a backlog of pending work requests on some Work Managers.

Note:
Minimum threads constraints can affect the number of threads that are executing work requests for Work Managers, especially if the WebLogic Server instance is under heavy load.

The self-tuning thread pool does not consider the SelfTuningThreadPoolSizeMax attribute when creating a new standby thread to process incoming work requests for a Work Manager to satisfy its allocated minimum threads constraint. This is due to the importance of allocating threads for processing work requests for Work Managers with minimum threads constraints, which are designed to be used to avoid server-to-server deadlocks.

As a result, the maximum possible number of threads maintained by the self-tuning thread pool is the sum of the configured SelfTuningThreadPoolSizeMax attribute value and the sum of the values for all minimum threads constraints configured in the WebLogic Server instance, assuming a worst-case scenario where the configured number of threads are allocated to all configured minimum threads constraints.

ThreadLocal Clean Out

To clean up stray ThreadLocal use by applications and third-party libraries, configure the eagerThreadLocalCleanup attribute in the KernelMBean. The eagerThreadLocalCleanup attribute specifies whether to clean up all ThreadLocal storage from self-tuning thread pools after they have finished processing each work request.

By default, the eagerThreadLocalCleanup attribute is set to false, in which the self-tuning thread pool only cleans up ThreadLocal storage when a thread returns to a standby pool and after an application is undeployed.

Setting the eagerThreadLocalCleanup attribute to true ensures that all thread pool threads have no leftover ThreadLocal values from previous requests when running work for a new request. However, overhead occurs from cleaning up ThreadLocal storage after each work request and then reestablishing ThreadLocal values for each new request. Since some applications cache objects that are expensive to create in the ThreadLocal storage, cleaning up ThreadLocal values after each request may negatively impact performance on those applications.

Work Manager Scope

Essentially, there are three types of Work Managers, each one characterized by its scope and how it is defined and used.

	The Default Work Manager

	Global Work Managers

	Application-scoped Work Managers

The Default Work Manager

To handle thread management and perform self-tuning, WebLogic Server implements a default Work Manager. This Work Manager is used by an application when no other Work Managers are specified in the application's deployment descriptors.

In many situations, the default Work Manager may be sufficient for most application requirements. WebLogic Server thread-handling algorithms assign each application its own fair share by default. Applications are given equal priority for threads and are prevented from monopolizing them.

Overriding the Default Work Manager

You can override the behavior of the default Work Manager by creating and configuring a global Work Manager called default. This allows you to control the default thread-handling behavior of WebLogic Server.

Note:
When you override the default Work Manager, all instances are overridden.

When to Use Work Managers

Use the following are guidelines to help you determine when you might want to use Work Managers to customize thread management:

	The default fair share (50) is not sufficient.

This usually occurs in situations where one application needs to be given a higher priority over another.

	A response time goal is required.

	A minimum thread constraint needs to be specified to avoid server deadlock

Global Work Managers

You can create global Work Managers that are available to all applications and modules deployed on a server, in the WebLogic Server Administration Console and in config.xml.

An application uses a globally-defined Work Manager as a template. Each application creates its own instance which handles the work associated with that application and separates that work from other applications. This separation is used to handle traffic directed to two applications which are using the same dispatch policy. Handling each application's work separately, allows an application to be shut down without affecting the thread management of another application. Although each application implements its own Work Manager instance, the underlying components are shared.

Application-scoped Work Managers

In addition to globally-scoped Work Managers, you can also create Work Managers that are available only to a specific application or module. You can define application-scoped Work Managers in the WebLogic Server Administration Console and in the following descriptors:

	weblogic-application.xml

	weblogic-ejb-jar.xml

	weblogic.xml

If you do not explicitly assign a Work Manager to an application, it uses the default Work Manager.

A method is assigned to a Work Manager, using the <dispatch-policy> element in the deployment descriptor. The <dispatch-policy> can also identify a custom execute queue, for backward compatibility. For an example, see Example 2-2.

Using Work Managers, Request Classes, and Constraints

Work Managers, Request Classes, and Constraints require the following:

	A definition. You may define Work Managers, Request Classes, or Constraints globally in the domain's configuration using the WebLogic Server Administration Console, (see Environments > Work Managers in the WebLogic Server Administration Console) or you may define them in one of the deployment descriptors listed previously. In either case, you assign a name to each.

	A mapping. In your deployment descriptors you reference one of the Work Managers, Request Classes, or Constraints by its name.

Dispatch Policy for EJB

weblogic-ejb-jar.xml—The value of the existing dispatch-policy tag under weblogic-enterprise-bean can be a named dispatch-policy. For backwards compatibility, it can also name an ExecuteQueue. In addition, Oracle allows dispatch-policy, max-threads, and min-threads, to specify named (or unnamed with a numeric value for constraints) policy and constraints for a list of methods, analogously to the present isolation-level tag.

Dispatch Policy for Web Applications

weblogic.xml—Also supports mappings analogous to the filter-mapping of the web.xml, where named dispatch-policy, max-threads, or min-threads are mapped for url-patterns or servlet names.

Deployment Descriptor Examples

This section contains examples for defining Work Managers in various types of deployment descriptors.

For additional reference, see the schema for these deployment descriptors:

	weblogic-ejb-jar.xml schema: http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.6/weblogic-ejb-jar.xsd

	weblogic-application.xml schema: http://xmlns.oracle.com/weblogic/weblogic-application/1.7/weblogic-application.xsd

	weblogic.xml schema: See "weblogic.xml Deployment Descriptor Elements" in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

Example 2-5 weblogic-ejb-jar.xml With Work Manager Entries
<weblogic-ejb-jar xmlns="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar
 http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.6/weblogic-ejb-jar.xsd">

<weblogic-enterprise-bean>
 <ejb-name>WorkEJB</ejb-name>
 <jndi-name>core_work_ejb_workbean_WorkEJB</jndi-name>
 <dispatch-policy>weblogic.kernel.System</dispatch-policy>
</weblogic-enterprise-bean>

<weblogic-enterprise-bean>
 <ejb-name>NonSystemWorkEJB</ejb-name>
 <jndi-name>core_work_ejb_workbean_NonSystemWorkEJB</jndi-name>
 <dispatch-policy>workbean_workmanager</dispatch-policy>
</weblogic-enterprise-bean>

<weblogic-enterprise-bean>
 <ejb-name>MinThreadsWorkEJB</ejb-name>
 <jndi-name>core_work_ejb_workbean_MinThreadsWorkEJB</jndi-name>
 <dispatch-policy>MinThreadsCountFive</dispatch-policy>
</weblogic-enterprise-bean>

<work-manager>
 <name>workbean_workmanager</name>
</work-manager>

<work-manager>
 <name>stuckthread_workmanager</name>
 <work-manager-shutdown-trigger>
 <max-stuck-thread-time>30</max-stuck-thread-time>
 <stuck-thread-count>2</stuck-thread-count>
 </work-manager-shutdown-trigger>
</work-manager>

<work-manager>
 <name>minthreads_workmanager</name>
 <min-threads-constraint>
 <name>MinThreadsCountFive</name>
 <count>5</count>
 </min-threads-constraint>
</work-manager>

<work-manager>
 <name>lowpriority_workmanager</name>
 <fair-share-request-class>
 <name>low_priority</name>
 <fair-share>10</fair-share>
 </fair-share-request-class>
</work-manager>

<work-manager>
<name>highpriority_workmanager</name>
 <fair-share-request-class>
 <name>high_priority</name>
 <fair-share>100</fair-share>
 </fair-share-request-class>
</work-manager>

<work-manager>
<name>veryhighpriority_workmanager</name>
 <fair-share-request-class>
 <name>veryhigh_priority</name>
 <fair-share>1000</fair-share>
 </fair-share-request-class>
</work-manager>

The EJBs in Example 2-6 are configured to get as many threads as there are instances of a resource they depend upon—a connection pool, and an application-scoped connection pool.

Example 2-6 weblogic-ejb-jar.xml with Connection Pool Based Max Thread Constraint
<weblogic-ejb-jar xmlns="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar
 http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.6/weblogic-ejb-jar.xsd">

 <weblogic-enterprise-bean>
 <ejb-name>ResourceConstraintEJB</ejb-name>
 <jndi-name>core_work_ejb_resource_ResourceConstraintEJB</jndi-name>
 <dispatch-policy>test_resource</dispatch-policy>
 </weblogic-enterprise-bean>

 <weblogic-enterprise-bean>
 <ejb-name>AppScopedResourceConstraintEJB</ejb-name>
 <jndi-name>core_work_ejb_resource_AppScopedResourceConstraintEJB
 </jndi-name>
 <dispatch-policy>test_appscoped_resource</dispatch-policy>
 </weblogic-enterprise-bean>

<work-manager>
 <name>test_resource</name>
 <max-threads-constraint>
 <name>pool_constraint</name>
 <pool-name>testPool</pool-name>
 </max-threads-constraint>
</work-manager>

<work-manager>
 <name>test_appscoped_resource</name>
 <max-threads-constraint>
 <name>appscoped_pool_constraint</name>
 <pool-name>AppScopedDataSource</pool-name>
 </max-threads-constraint>
</work-manager>
</weblogic-ejb-jar>

Example 2-7 weblogic-ejb-jar.xml with commonJ Work Managers

For information using commonJ, see Using CommonJ With WebLogic Server and the commonJ Javadocs.

Example 2-8 weblogic-application.xml
<weblogic-application xmlns="http://xmlns.oracle.com/weblogic/weblogic-application"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-application
 http://xmlns.oracle.com/weblogic/weblogic-application/1.7/weblogic-application.xsd">

 <max-threads-constraint>
 <name>j2ee_maxthreads</name>
 <count>1</count>
 </max-threads-constraint>

 <min-threads-constraint>
 <name>j2ee_minthreads</name>
 count>1</count>
 </min-threads-constraint>

 <work-manager>
 <name>J2EEScopedWorkManager</name>
 </work-manager>
</weblogic-application>

The Web application in Example 2-9 is deployed as part of the Enterprise application defined in Example 2-8. This Web application's descriptor defines two Work Managers. Both Work Managers point to the same max threads constraint, j2ee_maxthreads, which is defined in the application's weblogic-application.xml file. Each Work Manager specifies a different response time request class.

Example 2-9 Web Application Descriptor
<weblogic xmlns="http://xmlns.oracle.com/weblogic"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic
 http://xmlns.oracle.com/weblogic/1.0/weblogic.xsd">

 <work-manager>
 <name>fast_response_time</name>
 <response-time-request-class>
 <name>fast_response_time</name>
 <goal-ms>2000</goal-ms>
 </response-time-request-class>
 <max-threads-constraint-name>j2ee_maxthreads
 </max-threads-constraint-name>
 </work-manager>

 <work-manager>
 <name>slow_response_time</name>
 <max-threads-constraint-name>j2ee_maxthreads
 </max-threads-constraint-name
 <response-time-request-class>
 <name>slow_response_time</name>
 <goal-ms>5000</goal-ms>
 </response-time-request-class>
 </work-manager>

</weblogic>

The descriptor in Example 2-10 defines a Work Manager using the context-request-class.

Example 2-10 Web Application Descriptor
<?xml version="1.0" encoding="UTF-8"?>
<weblogic-web-app xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app"
xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.8/weblogic-web-app.xsd">
 <work-manager>
 <name>foo-servlet-1</name>
 <request-class-name>test-fairshare2</request-class-name>
 <max-threads-constraint>
 <name>foo-mtc</name>
 <pool-name>oraclePool</pool-name>
 </max-threads-constraint>
 </work-manager>

 <work-manager>
 <name>foo-servlet</name>
 <context-request-class>
 <name>test-context</name>
 <context-case>
 <user-name>anonymous</user-name>
 <request-class-name>test-fairshare1</request-class-name>
 </context-case>

 <context-case>
 <group-name>everyone</group-name>
 </context-request-class>
 </work-manager>
</weblogic-web-app>

Work Managers and Execute Queues

This section describes how to enable backward compatibility with Execute Queues and how to migrate applications from using Execute Queues to Work Managers.

Enabling Execute Queues

WebLogic Server, Version 8.1, implemented Execute Queues to handle thread management in which you created thread-pools to determine how workload was handled. WebLogic Server still provides Execute Queues for backward compatibility, primarily to facilitate application migration. However, when developing new applications, you should use Work Managers to perform thread management more efficiently.

You can enable Execute Queues in the following ways:

	Using the command line option -Dweblogic.Use81StyleExecuteQueues=true

	Setting the Use81StyleExecuteQueues property via the Kernel MBean in config.xml.

Enabling Execute Queues disables all Work Manager configuration and thread self tuning. Execute Queues behave exactly as they did in WebLogic Server 8.1.

When enabled, Work Managers are converted to Execute Queues based on the following rules:

	If the Work Manager implements a minimum or maximum threads constraint, then an Execute Queue is created with the same name as the Work Manager. The thread count of the Execute Queue is based on the value defined in the constraint.

	If the Work Manager does not implement any constraints, the global default Execute Queue is used.

Migrating from Execute Queues to Work Managers

When an application is migrated from WebLogic Server 8.1, any Execute Queues defined in the server configuration before migration will still be present. WebLogic Server does not automatically convert the Execute Queues to Work Managers.

When an 8.1 application implementing Execute Queues is deployed on WebLogic Server 9.x, the Execute Queues are created to handle thread management for requests. However, only those requests whose dispatch-policy maps to an Execute Queue will take advantage of this feature.

Accessing Work Managers Using MBeans

Work Managers can be accessed using the WorkManagerMBean configuration MBean. For more information, see WorkManagerMBean.

WorkManagerMBean is accessed in the runtime tree or configuration tree depending on how the Work Manager is accessed by an application.

	If the Work Manager is defined at the module level, the WorkManagerRuntime MBean is available through the corresponding ComponentRuntimeMBean.

	If a Work Manager is defined at the application level, then WorkManagerRuntime is available through ApplicationRuntime.

	If a Work Manager is defined globally in config.xml, each application creates its own instance of the Work Manager. Each application has its own corresponding WorkManagerRuntime available at the application level.

Using CommonJ With WebLogic Server

WebLogic Server Work Managers provide server-level configuration that allows administrators a way to set dispatch-policies to their servlets and EJBs.

WebLogic Server also provides a programmatic way of handling work from within an application. This is provided via the CommonJ API. Weblogic Server implements the commonj.work and commonj.timers packages of the CommonJ specification.

For specific information on the WebLogic Server implementation of CommonJ, see the CommonJ Javadocs.

The WebLogic Server implementation of CommonJ enables an application to break a single request task into multiple work items, and assign those work items to execute concurrently using multiple Work Managers configured in WebLogic Server. Applications that do not need to execute concurrent work items can also use configured Work Managers by referencing or creating Work Managers in their deployment descriptors or, for Java EE Connectors, using the JCA API.

The following are some differences between the WebLogic Server implementation and the CommonJ specification:

	The RemoteWorkItem interface is an optional interface provided by the CommonJ specification and is not supported in WebLogic Server. WebLogic Server implements its own cluster load balancing and failover policies. Workload management is based on these policies.

	WebLogic CommonJ timers behave differently than java.util.Timer. When the execution is greater that twice the period, the WebLogic CommonJ timer will skip some periods to avoid falling further behind. The java.util.Timer does not do this.

	In a WebLogic Server environment, the WorkListener.WorkRejected method is called when a thread becomes stuck.

Accessing CommonJ Work Managers

Unlike WebLogic Server Work Managers, which can only be accessed from an application via dispatch policies, you can access CommonJ Work Managers directly from an application. The following code example demonstrates how to lookup a CommonJ Work Manager using JNDI:

InitialContext ic = new InitialContext();
commonj.work.WorkManager wm =
(commonj.work.WorkManager)ic.lookup("java:comp/env/wm/myWM");

For more information on using CommonJ Work Managers, see the CommonJ Javadocs.

Mapping CommonJ to WebLogic Server Work Managers

You can map an externally defined CommonJ Work Manager to a WebLogic Server Work Manager. For example, if you have a CommonJ Work Manager defined in a descriptor, ejb-jar.xml, for example, as:

<resource-ref>
 <res-ref-name>minthreads_workmanager</res-ref-name>
 <res-type>commonj.work.WorkManager</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

You can link this to a WebLogic Server Work Manager by ensuring that the name element is identical in the WebLogic Server descriptor such as weblogic-ejb-jar.xml:

<work-manager>
 <name>minthreads_workmanager</name>
 <min-threads-constraint>
 <count>5</count>
 </min-threads-constraint>
</work-manager>

This procedure is similar for a resource-ref defined in web.xml. The WebLogic Server Work Manager can be defined in either a module descriptor (weblogic-ejb-jar.xml or weblogic.xml, for example) or in the application descriptor (weblogic-application.xml).

3 Avoiding and Managing Overload

This chapter describes the features that WebLogic Server has for detecting, avoiding, and recovering from overload conditions. WebLogic Server's overload protection features help prevent the negative consequences that can result from continuing to accept requests when the system capacity is reached. These consequences are degraded application performance and stability.

This chapter includes the following sections:

	Configuring WebLogic Server to Avoid Overload Conditions

	WebLogic Server Self-Monitoring

	WebLogic Server Exit Codes

Configuring WebLogic Server to Avoid Overload Conditions

When system capacity is reached, if an application server continues to accept requests, application performance and stability can deteriorate. The following sections demonstrate how you can configure WebLogic Server to minimize the negative results of system overload.

Limiting Requests in the Thread Pool

In WebLogic Server, all requests, whether related to system administration or application activity—are processed by a single thread pool. An administrator can throttle the thread pool by defining a maximum queue length. Beyond the configured value, WebLogic Server will refuse requests, except for requests on administration channels.

Note:
Administration channels allow access only to administrators. The limit you set on the execute length does not effect administration channel requests, to ensure that reaching the maximum thread pool length does not prevent administrator access to the system. To limit the number of administration requests allowed in the thread pool, you can configure an administration channel, and set the MaxConnectedClients attribute for the channel.

When the maximum number of enqueued requests is reached, WebLogic Server immediately starts rejecting:

	Web application requests.

	Non-transactional RMI requests with a low fair share, beginning with those with the lowest fair share.

If the overload condition continues to persist, higher priority requests will start getting rejected, with the exception of JMS and transaction-related requests, for which overload management is provided by the JMS and the transaction manager.

Throttle the thread pool by setting the Shared Capacity For Work Managers field in the WebLogic Server Administration Console (see Environments > Servers > server_name > Configuration > Overload). The default value of this field is 65536.

Work Managers and Thread Pool Throttling

An administrator can configure Work Managers to manage the thread pool at a more granular level, for sets of requests that have similar performance, availability, or reliability requirements. A Work Manager can specify the maximum requests of a particular request class that can be queued. The maximum requests defined in a Work Manager works with the global thread pool value. The limit that is reached first is honored.

See Using Work Managers to Optimize Scheduled Work.

Limiting HTTP Sessions

An administrator can limit the number of active HTTP sessions based on detection of a low memory condition. This is useful in avoiding out of memory exceptions.

WebLogic Server refuses requests that create new HTTP sessions after the configured threshold has been reached. In a WebLogic Server cluster, the proxy plug-in redirects a refused request to another Managed Server in the cluster. A non-clustered server instance can redirect requests to alternative server instance.

The Servlet container takes one of the following actions when maximum number of sessions is reached:

	If the server instance is in a cluster, the servlet container throws a SessionCreationException. Your application code should handle this run-time exception and send a relevant response.

To implement overload protection, you should handle this exception and send a 503 response explicitly. This response can then be handled by the proxy or load balancer.

You set a limit for the number of simultaneous HTTP sessions in the deployment descriptor for the Web application. For example, the following element sets a limit of 12 sessions:

<session-descriptor>
 <max-in-memory-sessions>12</max-in-memory-sessions>
</session-descriptor>

Exit on Out of Memory Exceptions

Administrators can configure WebLogic Server to exit upon an out of memory exception. This feature allows you to minimize the impact of the out of memory condition—automatic shutdown helps avoid application instability, and you can configure Node Manager or another high availability (HA) tool to automatically restart WebLogic Server, minimizing down-time.

You can configure this using the WebLogic Server Administration Console, or by editing the following elements in config.xml:

<overload-protection>
 <panic-action>system-exit</panic-action>
</overload-protection>

For more information, see the attributes of the OverloadProtectionMBean.

Stuck Thread Handling

WebLogic Server checks for stuck threads periodically. If all application threads are stuck, a server instance marks itself failed, if configured to do so, exits. You can configure Node Manager or a third-party high-availability solution to restart the server instance for automatic failure recovery.

You can configure these actions to occur when not all threads are stuck, but the number of stuck threads have exceeded a configured threshold:

	Shut down the Work Manager if it has stuck threads. A Work Manager that is shut down will refuse new work and reject existing work in the queue by sending a rejection message. In a cluster, clustered clients will fail over to another cluster member.

	Shut down the application if there are stuck threads in the application. The application is shutdown by bringing it into admin mode. All Work Managers belonging to the application are shut down, and behave as described above. Once the stuck thread condition is cleared, the application automatically returns to running mode.

	Mark the server instance as failed and shut it down it down if there are stuck threads in the server. In a cluster, clustered clients that are connected or attempting to connect will fail over to another cluster member.

For more information, see the attributes of the OverloadProtectionMBean

WebLogic Server Self-Monitoring

The following sections describe WebLogic Server features that aid in determining and reporting overload conditions.

Overloaded Health State

WebLogic Server has a health state—OVERLOADED—which is returned by the ServerRuntimeMBean.getHealthState() when a server instance whose life cycle state is RUNNING becomes overloaded. This condition occurs as a result of low memory.

Upon entering the OVERLOADED state, server instances start rejecting requests from the Work Manager queue (if a Work Manager is configured), HTTP requests return a 503 Error (Service Unavailable), and RMI requests fail over to another server if clustered, otherwise, a remote exception is returned to the client.

The server instances health state returns to OK after the overload condition passes. An administrator can suspend or shut down an OVERLOADED server instance.

WebLogic Server Exit Codes

When WebLogic Server exits it returns an exit code. The exit codes can be used by shell scripts or HA agents to decide whether a server restart is necessary. See "WebLogic Server Exit Codes and Restarting After Failure" in Administering Server Startup
and Shutdown for Oracle WebLogic Server.

4 Configuring Network Resources

This chapter describes how to configure WebLogic Server network resources, including network channels and domain-wide administration ports. These configurable network resources help you effectively use the network features of the machines that host your applications and manage quality of service.

This chapter includes the following sections:

	Overview of Network Configuration

	Understanding Network Channels

	Configuring a Channel

	Assigning a Custom Channel to an EJB

	Using IPv6 with IPv4

Overview of Network Configuration

For many development environments, configuring WebLogic Server network resources is simply a matter of identifying a Managed Server listen address and listen port. However, in most production environments, administrators must balance finite network resources against the demands placed upon the network. The task of keeping applications available and responsive can be complicated by specific application requirements, security considerations, and maintenance tasks, both planned and unplanned.

WebLogic Server lets you control the network traffic associated with your applications in a variety of ways, and configure your environment to meet the varied requirements of your applications and end users. You can:

	Designate the Network Interface Cards (NICs) and ports used by Managed Servers for different types of network traffic.

	Support multiple protocols and security requirements.

	Specify connection and message time-out periods.

	Impose message size limits.

You specify these and other connection characteristics by defining a network channel—the primary configurable WebLogic Server resource for managing network connections. You configure a network channel in the WebLogic Server Administration Console (Servers > Protocols > Channels) or by using the NetworkAccessPointMBean.

Understanding Network Channels

The sections that follow describe network channels and the standard channels that WebLogic Server pre-configures, and discusses common applications for channels.

What Is a Channel?

A network channel is a configurable resource that defines the attributes of a network connection to WebLogic Server. For instance, a network channel can define:

	The protocol the connection supports.

	The listen address.

	The listen ports for secure and non-secure communication.

	Connection properties such as the login time-out value and maximum message sizes.

	Whether or not the connection supports tunneling.

	Whether the connection can be used to communicate with other WebLogic Server instances in the domain, or used only for communication with clients.

Rules for Configuring Channels

Follow these guidelines when configuring a channel.

	You can assign a particular channel to only one server instance.

	You can assign multiple channels to a server instance.

	Each channel assigned to a particular server instance must have a unique combination of listen address, listen port, and protocol.

	You can configure a custom identity keystore, and other channel-specific SSL attributes, that are separate from and that override the default keystore and SSL configuration settings for the Managed Server instance or the domain.

	If you assign non-SSL and SSL channels to the same server instance, make sure that they do not use the same port number.

Custom Channels Can Inherit Default Channel Attributes

If you do not assign a channel to a server instance, it uses the WebLogic Server default channel, which is automatically configured by WebLogic Server, based on the attributes in ServerMBean or SSLMBean; the operating system determines the network interface. The default channel is described in The Default Network Channel.

ServerMBean and SSLMBean represent a server instance and its SSL configuration. When you configure a server instance listen address, listen port, and SSL listen port, using the Server > Configuration > General page, those values are stored in the ServerMBean and SSLMBean for the server instance.

If you do not specify a particular connection attribute in a custom channel definition, the channel inherits the value specified for the attribute in ServerMBean. For example, if you create a channel, and do not define its listen address, the channel uses the listen address defined in ServerMBean. Similarly, if a Managed Server cannot bind to the listen address or listen port configured in a channel, the Managed Server uses the defaults from ServerMBean or SSLMBean.

Why Use Network Channels?

You use network channels to manage quality of service, meet varying connection requirements, and improve utilization of your systems and network resources. For example, network channels allow you to:

	Segregate different types of network traffic—You can configure whether or not a channel supports outgoing connections. By assigning two channels to a server instance—one that supports outgoing connections and one that does not—you can independently configure network traffic for client connections and server connections, and physically separate client and server network traffic on different listen addresses or listen ports.

You cannot create an outbound only network channel; there always has to be a corresponding inbound interface, port, and protocol associated with the channel. However, you can avoid directing your traffic to it or use a firewall to block it. Also remember that a custom channel is protocol specific, so you will need a network channel defined per protocol (HTTP, HTTPS, t3, t3s, and such). See, also NetworkAccessPointMBean.OutboundEnabled.

You can also segregate instance administration and application traffic by configuring a domain-wide administration port or administration channel. For more information, see Administration Port and Administrative Channel.

	Support varied application or user requirements on the same Managed Server—You can configure multiple channels on a Managed Server to support different protocols, or to tailor properties for secure versus non-secure traffic.

By configuring a network channel to use a custom identity keystore, you can assert an identity on that channel that is different from the identity configured for the Managed Server or domain.

	Segregate internal application network traffic—You can assign a specific channel to a an EJB.

If you use a network channel with a server instance on a multihomed machine, you must enter a valid listen address either in ServerMBean or in the channel. If the channel and ServerMBean listen address are blank or specify the localhost address (IP address 0.0.0.0 or 127.*.*.*), the server binds the network channel listen port and SSL listen ports to all available IP addresses on the multihomed machine. See The Default Network Channel for information on setting the listen address in ServerMBean.

Handling Channel Failures

When initiating a connection to a remote server, and multiple channels with the same required destination, protocol and quality of service exist, WebLogic Server will try each in turn until it successfully establishes a connection or runs out of channels to try.

Upgrading Quality of Service Levels for RMI

For RMI lookups only, WebLogic Server may upgrade the service level of an outgoing connection. For example, if a T3 connection is required to perform an RMI lookup, but an existing channel supports only T3S, the lookup is performed using the T3S channel.

This upgrade behavior does not apply to server requests that use URLs, since URLs embed the protocol itself. For example, the server cannot send a URL request beginning with http:// over a channel that supports only https://.

Standard WebLogic Server Channels

WebLogic Server provides pre-configured channels that you do not have to explicitly define.

	Default channel—Every Managed Server has a default channel.

	Administrative channel—If you configure a domain-wide administration port, WebLogic Server configures an administrative channel for each Managed Server in the domain.

The Default Network Channel

Every WebLogic Server domain has a default channel that is generated automatically by WebLogic Server. The default channel is based on the listen address and listen port defined in the ServerMBean and SSLMBean. It provides a single listen address, one port for HTTP (non-secure) communication (7001 by default), and one port for HTTPS (secure) communication (7002 by default). You can configure the listen address and listen port using the Configuration > General page in the WebLogic Server Administration Console; the values you assign are stored in attributes of the ServerMBean and SSLMBean.

The default configuration may meet your needs if:

	You are installing in a test environment that has simple network requirements.

	Your server uses a single NIC, and the default port numbers provide enough flexibility for segmenting network traffic in your domain.

Using the default configuration ensures that third-party administration tools remain compatible with the new installation, because network configuration attributes remain stored in ServerMBean and SSLMBean.

Even if you define and use custom network channels for your domain, the default channel settings remain stored in ServerMBean and SSLMBean, and are used if necessary to provide connections to a server instance.

Note:
Unless specified, WebLogic Server uses the non-secure default channel for cluster communication to send session information among cluster members. If you disable the non-secure channel, there is no other channel available by default for the non-secure communication of cluster session information. To address this, you can:

	Enable the secureReplicationEnabled attribute of the ClusterMBean so that the cluster uses a secure channel for communication. See Configuring a Replication Channel.

	Create a custom channel for non-secure communication. See Custom Channels Can Inherit Default Channel Attributes.

Administration Port and Administrative Channel

You can separate administration traffic from application traffic in your domain by defining an optional administration port. When configured, the administration port is used by each Managed Server in the domain exclusively for communication with the domain Administration Server. If an administration port is enabled, WebLogic Server automatically generates an administrative channel for your domain, based on the port settings upon server instance startup. The administrative channel provides a listen address and listen port to handle administration traffic.

Administration Port Capabilities

An administration port enables you to:

	Start a server in standby state. This allows you to administer a Managed Server, while its other network connections are unavailable to accept client connections. For more information on the standby state, see "STANDBY State" in Administering Server Startup
and Shutdown for Oracle WebLogic Server.

	Separate administration traffic from application traffic in your domain. In production environments, separating traffic ensures that critical administration operations (starting and stopping servers, changing a server's configuration, and deploying applications) do not compete with high-volume application traffic on the same network connection.

	Administer a deadlocked server instance using WLST. If you do not configure an administration port, administrative commands such as threadDump and shutdown will not work on deadlocked server instances.

Administration Port Restrictions

The administration port accepts only secure, SSL traffic, and all connections via the port require authentication. Enabling the administration port imposes the following restrictions on your domain:

	The Administration Server and all Managed Servers in your domain must be configured with support for the SSL protocol. Managed Servers that do not support SSL cannot connect with the Administration Server during startup—you will have to disable the administration port in order to configure them.

	Because all server instances in the domain must enable or disable the administration port at the same time, you configure the administration port at the domain level. You can change an individual Managed Server administration port number, but you cannot enable or disable the administration port for an individual Managed Server. The ability to change the port number is useful if you have multiple server instances with the same listen address.

	After you enable the administration port, you must establish an SSL connection to the Administration Server in order to start any Managed Server in the domain. This applies whether you start Managed Servers manually, at the command line, or using Node Manager. For instructions to establish the SSL connection, see Administration Port Requires SSL.

	After enabling the administration port, all WebLogic Server Administration Console traffic must connect via the administration port.

	If multiple server instances run on the same computer in a domain that uses a domain-wide administration port, you must either:

	Host the server instances on a multihomed machine and assign each server instance a unique listen address, or

	Override the domain-wide port on all but one of the servers instances on the machine. Override the port using the Local Administration Port Override option in the Advanced Attributes section of the Server > Connections > SSL Ports page in the WebLogic Server Administration Console.

Administration Port Requires SSL

The administration port requires SSL, which is enabled by default when you install WebLogic Server. If SSL has been disabled for any server instance in your domain, including the Administration Server and all Managed Servers, re-enable it using the Server > Configuration > General page in the WebLogic Server Administration Console.

Ensure that each server instance in the domain has a configured default listen port or default SSL listen port. The default ports are those you assign on the Server > Configuration > General page in the WebLogic Server Administration Console. A default port is required in the event that the server cannot bind to its configured administration port. If an additional default port is available, the server will continue to boot and you can change the administration port to an acceptable value.

By default WebLogic Server is configured to use demonstration certificate files. To configure production security components, follow the steps in "Configuring SSL" in Administering Security for Oracle
WebLogic Server.

Configure Administration Port

Enable the administration port as described in "Enabling the Domain-Wide Administration Port" in Oracle WebLogic Server Administration
Console Online Help.

After configuring the administration port, you must restart the Administration Server and all Managed Servers to use the new administration port.

Booting Managed Servers to Use Administration Port

If you reboot Managed Servers at the command line or using a start script, specify the administration port in the port portion of the URL. The URL must specify the https:// prefix, rather than http://, as shown below.

-Dweblogic.management.server=https://host:admin_port

Note:
If you use Node Manager for restarting the Managed Servers, it is not necessary to modify startup settings or arguments for the Managed Servers. Node Manager automatically obtains and uses the correct URL to start a Managed Server.

If the hostname in the URL is not identical to the hostname in the Administration Server's certificate, disable hostname verification in the command line or start script, as shown below:

-Dweblogic.security.SSL.ignoreHostnameVerification=true

Booting Managed Servers to Use Administrative Channels

To allow a Managed Server to bind to an administrative channel during reboot, use the following command-line option:

-Dweblogic.admin.ListenAddress=<addr>

This allows the Managed Server to startup using an administrative channel. After the initial bootstrap connection, a standard administrative channel is used.

Note:
This option is useful to ensure that the appropriate NIC semantics are used before config.xml is downloaded.

Custom Administrative Channels

If the standard WebLogic Server administrative channel does not satisfy your requirements, you can configure a custom channel for administrative traffic. For example, a custom administrative channel allows you to segregate administrative traffic on a separate NIC.

To configure a custom channel for administrative traffic, configure the channel as described in Configuring a Channel, and select "admin" as the channel protocol. Note the configuration and usage guidelines described in:

	Administration Port Requires SSL

	Booting Managed Servers to Use Administration Port

Using Internal Channels

Previous version of WebLogic Server allowed you to configure multiple channels for external traffic, but required you to use the default channel for internal traffic between server instances. WebLogic Server now allows you to create network channels to handle administration traffic or communications between clusters. This can be useful in the following situations:

	Internal administration traffic needs to occur over a secure connection, separate from other network traffic.

	Other types of network traffic, for example replication data, need to occur over a separate network connection.

	Certain types of network traffic need to be monitored.

Channel Selection

All internal traffic is handled via a network channel. If you have not created a custom network channel to handle administrative or clustered traffic, WebLogic Server automatically selects a default channel based on the protocol required for the connection. For more information on default channels, see The Default Network Channel.

Internal Channels Within a Cluster

Within a cluster, internal channels can be created to handle to the following types of server-to-server connections:

	Multicast traffic

	Replication traffic

	Administration traffic

For more information on configuring channels within a cluster, see Configuring Network Channels For a Cluster.

Configuring a Channel

You can configure a network channel using Servers > Protocols > Channels page in the WebLogic Server Administration Console or using the NetworkAccessPointMBean.

To configure a channel for clustered Managed Servers see, Configuring Network Channels For a Cluster.

For a summary of key facts about network channels, and guidelines related to their configuration, see Guidelines for Configuring Channels.

Guidelines for Configuring Channels

Follow these guidelines when configuring a channel.

Channels and Server Instances

	Each channel you configure for a particular server instance must have a unique combination of listen address, listen port, and protocol.

	A channel can be assigned to a single server instance.

	You can assign multiple channels to a server instance.

	If you assign non-SSL and SSL channels to the same server instance, make sure that they do not use the same combination of address and port number.

Dynamic Channel Configuration

	In WebLogic Server, you can configure a network channel without restarting the server. Additionally, you can start and stop dynamically configured channels while the server is running. However, when you shutdown a channel while the server is running, the server does not attempt to gracefully terminate any work in progress.

Channels and Identity

	By default, when you configure a network channel, the channel uses the SSL configuration that is set for the server instance. This means that the channel uses the same identity and trust that is established for the server. The server might use a custom identity that is specific to that server, or it might be a single domain-wide identity, depending on how the server instance and domain are configured.

	You can configure a network channel to use a custom identity keystore, and other SSL attributes, that are specific to that channel. This allows you to use an identity on that channel that is different from the one configured for the server. Using this capability, you can configure a server that can switch to a different identity when communicating with a particular client.

For more information, see "Configuring an Identity Keystore Specific to a Network Channel" in Administering Security for Oracle
WebLogic Server.

Channels and Protocols

	Some protocols do not support particular features of channels. In particular the COM protocol does not support SSL or tunneling.

	You must define a separate channel for each protocol you wish the server instance to support, with the exception of HTTP.

HTTP is enabled by default when you create a channel, because RMI protocols typically require HTTP support for downloading stubs and classes. You can disable HTTP support on the Advanced Options portion of the Servers > Protocols > Channels page in the WebLogic Server Administration Console.

Reserved Names

	WebLogic Server uses the internal channel names .WLDefaultChannel and .WLDefaultAdminChannel and reserves the .WL prefix for channel names. Do not begin the name of a custom channel with the string .WL.

Channels, Proxy Servers, and Firewalls

If your configuration includes a a firewall between a proxy Web server and a cluster (as described in "Firewall Between Proxy Layer and Cluster" in Administering Clusters for Oracle
WebLogic Server), and the clustered servers are configured with two custom channels for segregating HTTPS and HTTP traffic, those channels must share the same listen address. Furthermore, if both HTTP and HTTPS traffic needs to be supported, there must be a custom channel for each—it is not possible to use the default configuration for one or the other.

If either of those channels has a PublicAddress defined, as is likely given the existence of the firewall, both channels must define PublicAddress, and they both must define the same PublicAddress.

Configuring Network Channels For a Cluster

To configure a channel for clustered Managed Servers, note the information in Guidelines for Configuring Channels, and follow the guidelines described in the following sections.

Create the Cluster

If you have not already configured a cluster you can:

	Use the Configuration Wizard to create a new, clustered domain, following the instructions in "Create a Clustered Domain" in Administering Clusters for Oracle
WebLogic Server, or

	Use the WebLogic Server Administration Console to create a cluster in an existing domain, following the instructions "Create and configure clusters" in Oracle WebLogic Server Administration
Console Online Help.

For information and guidelines about configuring a WebLogic Server cluster, see "Before You Start" in Administering Clusters for Oracle
WebLogic Server.

Create and Assign the Network Channel

Use the instructions in "Configuring a Network Channel" in Oracle WebLogic Server Administration
Console Online Help to create a new network channel for each Managed Server in the cluster. When creating the new channels:

	For each channel you want to use in the cluster, configure the channel identically, including its name, on each Managed Server in the cluster.

	Make sure that the listen port and SSL listen port you define for each Managed Server's channel are different than the Managed Server's default listen ports. If the custom channel specifies the same port as a Managed Server's default port, the custom channel and the Managed Server's default channel will each try to bind to the same port, and you will be unable to start the Managed Server.

	If a cluster address has been explicitly configured for the cluster, it will be appear in the Cluster Address field on the Server > Protocols > Channels > Configuration page.

If you are using dynamic cluster addressing, the Cluster Address field will be empty, and you do not need to supply a cluster address. For information about the cluster address, and how WebLogic Server can dynamically generate the cluster address, see "Cluster Address" in Administering Clusters for Oracle
WebLogic Server.

Note:
If you want to use dynamic cluster addressing, do not supply a cluster address on the Server > Protocols > Channels > Configuration page. If you supply a cluster address explicitly, that value will take precedence and WebLogic Server will not generate the cluster address dynamically.

Configuring a Replication Channel

A replication channel is a network channel that is designated to transfer replication information between clusters. If a replication channel is not explicitly defined, WebLogic Server uses a default network channel to communicate replication information.

When WebLogic Server uses a default network channel as the replication channel, it does not use SSL encryption by default. You must enable SSL encryption using the secureReplicationEnabled attribute of the ClusterMBean. You can also update this setting from the WebLogic Server Administration Console.

Enabling SSL encryption can have a direct impact on clustered application throughput as session replication is blocking by design. in other words, no response is sent to the client until replication is completed. You should consider this when deciding to enable SSL on the replication channel.

If a replication channel is explicitly defined, the channel's protocol is used to transmit replication traffic.

Increase Packet Size When Using Many Channels

Use of more than about twenty channels in a cluster can result in the formation of multicast header transmissions that exceed the default maximum packet size. The MTUSize attribute in the Server element of config.xml sets the maximum size for packets sent using the associated network card to 1500. Sending packets that exceed the value of MTUSize can result in a java.lang.NegativeArraySizeException. You can avoid exceptions that result from packet sizes in excess of MTUSize by increasing the value of MTUSize from its default value of 1500.

Assigning a Custom Channel to an EJB

You can assign a custom channel to an EJB. After you configure a custom channel, assign it to an EJB using the network-access-point element in weblogic-ejb-jar.xml. For more information, see "network-access-point" in Developing Enterprise JavaBeans,
Version 2.1, for Oracle WebLogic Server.

Using IPv6 with IPv4

WebLogic Server supports host machines configured to use either Internet Protocol (IP) versions 4 or 6 (IPv4 and IPv6).

If you have a domain that includes some machines that use IPv4 in network communications and others that use IPv6, and the Administration Server is hosted on a machine using IPv4, the status of the Managed Server instances hosted on the machines using IPv6 might be displayed as "unknown" in the WebLogic Server Administration Console.

To make the status of these Managed Server instances available in the WebLogic Server Administration Console, you must specify a listen address for them. If your server is running, you will have to restart it after specifying the listen address. For information on assigning the listen address for a Managed Server in an existing domain using the WebLogic Server Administration Console, see "Configure listen addresses" in the Oracle WebLogic Server Administration Console Online Help.

You can also specify the listen address for your Managed Server when configuring it with the Configuration Wizard. On the Managed Servers page, enter the physical IP address of each Managed Server in the Listen Address field, save changes and continue configuring.

5 Configuring Web Server Functionality

This chapter describes how to configure a Java EE Web application hosted on WebLogic Server to function as a standard HTTP Web server hosting static content. Web applications also can host dynamic content such as JSPs and Servlets. See Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

This chapter includes the following sections:

	Overview of Configuring Web Server Components

	Configuring the Server

	Web Applications

	Configuring Virtual Hosting

	How WebLogic Server Resolves HTTP Requests

	Setting Up HTTP Access Logs

	Preventing POST Denial-of-Service Attacks

	Setting Up WebLogic Server for HTTP Tunneling

	Using Native I/O for Serving Static Files (Windows Only)

Overview of Configuring Web Server Components

In addition to hosting dynamic Java-based distributed applications, WebLogic Server functions as a Web server that handles high-volume Web sites, serving static files such as HTML files and image files, as well as servlets and JavaServer Pages (JSP). WebLogic Server supports the HTTP 1.1 standard.

Configuring the Server

You can specify the port that each WebLogic Server listens on for HTTP requests. Although you can specify any valid port number, if you specify port 80, you can omit the port number from the HTTP request used to access resources over HTTP. For example, if you define port 80 as the listen port, you can use the form http://hostname/myfile.html instead of http://hostname:portnumber/myfile.html.

On UNIX systems, binding a process to a port lower than 1025 must be done from the account of a privileged user, usually root. Consequently, if you want WebLogic Server to listen on port 80, you must start WebLogic Server as a privileged user; yet it is undesirable from a security standpoint to allow long-running processes like WebLogic Server to run with more privileges than necessary. WebLogic Server needs root privileges only until the port is bound.

WebLogic Server provides capabilities to switch its UNIX user ID (UID) and/or UNIX group ID (GID) after it binds to port 80. You can change the UID (or GID) either through the WebLogic Server Administration Console (see Configuring the Listen Port) or by accessing UnixMachineMBean using WLST. Use UnixMachineMBbean.setPostBindUID() to set the UID and enable the switch by setting UnixMachineMBean.setPostBindUIDEnabled() to true. Similarly, the GID can be changed using methods UnixMachineMBean.setPostBindGID() and UnixMachineMBean.setPostBindGIDEnabled().

You can switch to the UNIX account "nobody," which is the least privileged user on most UNIX systems. If desired, you may create a UNIX user account expressly for running WebLogic Server. Make sure that files needed by WebLogic Server, such as log files and the WebLogic classes, are accessible by the non-privileged user. Once ownership of the WebLogic process has switched to the non-privileged user, WebLogic will have the same read, write, and execute permissions as the non-privileged user.

You define a separate listen port for non-SSL and secure (using SSL) requests. For additional information on configuring listen ports, see Understanding Network Channels.

Configuring the Listen Port

	Use the WebLogic Server Administration Console to set the listen port to port 80. See "Configure Listen Ports".
	If the machine hosting WebLogic Server is running Windows, skip to step 8.
	Use the WebLogic Server Administration Console to create a new Unix Machine. See "Configure Machines".
	Select the Enable Post-Bind UID field.
	Enter the user name you want WebLogic Server to run as in the Post-Bind UID field.
	Select the Enable Post-Bind GID fields.
	Enter the group name you want WebLogic Server to run as in the Post-Bind GID field.
	Click Save.
	To activate these changes, in the Change Center of the WebLogic Server Administration Console, click Activate Changes.

Web Applications

HTTP and Web applications are deployed according to the Java EE Servlet 3.0 and JSP 2.2 specifications, which describe Web Applications as a standard for grouping the components of a Web-based application. These components include JSP pages, HTTP servlets, and static resources such as HTML pages or image files. In addition, a Web application can access external resources such as EJBs and JSP tag libraries. Each server can host any number of Web applications. You typically use the name of the Web application as part of the URI you use to request resources from the Web application.

For more information, see Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

Web Applications and Clustering

Web applications can be deployed to a WebLogic Server cluster. When a user requests a resource from a Web application, the request is routed to one of the servers in the cluster that host the Web application. If an application uses a session object, then sessions must be replicated across the nodes of the cluster. Several methods of replicating sessions are provided.

For more information, see Administering Clusters for Oracle
WebLogic Server.

Configuring Virtual Hosting

Virtual hosting allows you to define host names that servers or clusters respond to. When you use virtual hosting you use DNS to specify one or more host names that map to the IP address of a WebLogic Server instance or cluster, and you specify which Web applications are served by the virtual host. When used in a cluster, load balancing allows the most efficient use of your hardware, even if one of the DNS host names processes more requests than the others.

For example, you can specify that a Web application called books responds to requests for the virtual host name www.books.com, and that these requests are targeted to WebLogic Servers A,B, and C, while a Web application called cars responds to the virtual host name www.autos.com and these requests are targeted to WebLogic Servers D and E. You can configure a variety of combinations of virtual host, WebLogic Server instances, clusters, and Web applications, depending on your application and Web server requirements.

For each virtual host that you define you can also separately define HTTP parameters and HTTP access logs. The HTTP parameters and access logs set for a virtual host override those set for a server. You may specify any number of virtual hosts.

You activate virtual hosting by targeting the virtual host to a server or cluster of servers. Virtual hosting targeted to a cluster will be applied to all servers in the cluster.

Virtual Hosting and the Default Web Application

You can also designate a default Web Application for each virtual host. The default Web application for a virtual host responds to all requests that cannot be resolved to other Web applications deployed on the same server or cluster as the virtual host.

Unlike other Web applications, a default Web application does not use the Web application name (also called the context path) as part of the URI used to access resources in the default Web application.

For example, if you defined virtual host name www.mystore.com and targeted it to a server on which you deployed a Web application called shopping, you would access a JSP called cart.jsp from the shopping Web application with the following URI:

http://www.mystore.com/shopping/cart.jsp

If, however, you declared shopping as the default Web application for the virtual host www.mystore.com, you would access cart.jsp with the following URI:

http://www.mystore.com/cart.jsp

For more information, see How WebLogic Server Resolves HTTP Requests.

When using multiple Virtual Hosts with different default Web applications, you can not use single sign-on, as each Web application will overwrite the JSESSIONID cookies set by the previous Web application. This will occur even if the CookieName, CookiePath, and CookieDomain are identical in each of the default Web applications.

Setting Up a Virtual Host

	Use the to define a virtual host. See "Virtual Host".
	Add a line naming the virtual host to the etc/hosts file on your server to ensure that the virtual host name can be resolved.

How WebLogic Server Resolves HTTP Requests

When WebLogic Server receives an HTTP request, it resolves the request by parsing the various parts of the URL and using that information to determine which Web application and/or server should handle the request. Table 5-1 demonstrates various combinations of requests for Web applications, virtual hosts, servlets, JSPs, and static files and the resulting response.

Note:
If you package your Web application as part of an Enterprise application, you can provide an alternate name for a Web application that is used to resolve requests to the Web application. For more information, see Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

Table 5-1 provides some sample URLs and the file that is served by WebLogic Server. The Index Directories Checked column refers to the Index Directories attribute that controls whether or not a directory listing is served if no file is specifically requested.

Table 5-1 Examples of How WebLogic Server Resolves URLs

	URL	Index Directories Checked?	This file is served in response
	http://host:port/apples

	No

	Welcome file* defined in the apples Web application.

	http://host:port/apples

	Yes

	Directory listing of the top-level directory of the apples Web application.

	http://host:port/oranges/naval

	Does not matter

	Servlet mapped with <url-pattern> of /naval in the oranges Web application.

There are additional considerations for servlet mappings. For more information, see "Configuring Servlets" in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

	http://host:port/naval

	Does not matter

	Servlet mapped with <url-pattern> of /naval in the oranges Web application and oranges is defined as the default Web application.

For more information, see "Configuring Servlets" in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

	http://host:port/apples/pie.jsp

	Does not matter

	pie.jsp, from the top-level directory of the apples Web application.

	http://host:port

	Yes

	Directory listing of the top-level directory of the default Web application

	http://host:port

	No

	Welcome file* from the default Web application.

	http://host:port/apples/myfile.html

	Does not matter

	myfile.html, from the top-level directory of the apples Web application.

	http://host:port/myfile.html

	Does not matter

	myfile.html, from the top-level directory of the default Web application.

	http://host:port/apples/images/red.gif

	Does not matter

	red.gif, from the images subdirectory of the top-level directory of the apples Web application.

	http://host:port/myFile.html

Where myfile.html does not exist in the apples Web application and a default servlet has not been defined.

	Does not matter

	Error 404

	http://www.fruit.com/

	No

	Welcome file from the default Web application for a virtual host with a host name of www.fruit.com.

	http://www.fruit.com/

	Yes

	Directory listing of the top-level directory of the default Web application for a virtual host with a host name of www.fruit.com.

	http://www.fruit.com/oranges/myfile.html

	Does not matter

	myfile.html, from the oranges Web application that is targeted to a virtual host with host name www.fruit.com.

Setting Up HTTP Access Logs

WebLogic Server can keep a log of all HTTP transactions in a text file, in either common log format or extended log format. Common log format is the default. Extended log format allows you to customize the information that is recorded. You can set the attributes that define the behavior of HTTP access logs for each server instance or for each virtual host that you define.

To set up HTTP logging for a server or a virtual host, refer to the following topics in the Oracle WebLogic Server Administration
Console Online Help:

	"Enabling and Configuring HTTP Access Logs"

	"Specifying HTTP Log File Settings for a Virtual Host"

Log Rotation

You can rotate the log file based on either the size of the file or after a specified amount of time has passed. When either criterion is met, the current access log file is closed and a new access log file is started. If you do not configure log rotation, the HTTP access log file grows indefinitely. You can configure the name of the access log file to include a time and date stamp that indicates when the file was rotated. If you do not configure a time stamp, each rotated file name includes a numeric portion that is incremented upon each rotation. Separate HTTP access logs are kept for each Virtual Host you have defined.

Common Log Format

The default format for logged HTTP information is the common log format (see http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format). This standard format follows the pattern:

host RFC931 auth_user [day/month/year:hour:minute:second
 UTC_offset] "request" status bytes

where:

	host
	Either the DNS name or the IP number of the remote client

	RFC931
	Any information returned by IDENTD for the remote client; WebLogic Server does not support user identification

	auth_user
	If the remote client user sent a userid for authentication, the user name; otherwise "-"

	day/month/year:hour:minute:second UTC_offset
	Day, calendar month, year and time of day (24-hour format) with the hours difference between local time and GMT, enclosed in square brackets

	"request"
	First line of the HTTP request submitted by the remote client enclosed in double quotes

	status
	HTTP status code returned by the server, if available; otherwise "-"

	bytes
	Number of bytes listed as the content-length in the HTTP header, not including the HTTP header, if known; otherwise "-"

Setting Up HTTP Access Logs by Using Extended Log Format

WebLogic Server also supports extended log file format, version 1.0, an emerging standard defined by the draft specification from the W3C at http://www.w3.org/TR/WD-logfile.html. The current definitive reference is on the W3C Technical Reports and Publications page at http://www.w3.org/TR/.

The extended log format allows you to specify the type and order of information recorded about each HTTP communication. To enable this format in the WebLogic Server Administration Console:

	Navigate to the server-name > Logging > HTTP page.
	Make sure that HTTP access log file enabled is checked.
	Click Advanced.
	In the field labeled Format, select Extended.

In the field labeled Extended Logging Format Fields, you can select one or more of the fields described in Supported Field Identifiers. If you want to add custom fields to an HTTP access log file, see Creating Custom Field Identifiers for details.

You specify the information that should be recorded in the log file with directives, included in the actual log file itself. A directive begins on a new line and starts with a pound sign (#). If the log file does not exist, a new log file is created with default directives. However, if the log file already exists when the server starts, it must contain valid directives at the head of the file.

Creating the Fields Directive

The first line of your log file must contain a directive stating the version number of the log file format. You must also include a Fields directive near the beginning of the file:

#Version: 1.0
#Fields: xxxx xxxx xxxx ...

Where each xxxx describes the data fields to be recorded. Field types are specified as either simple identifiers, or may take a prefix-identifier format, as defined in the W3C specification. For example:

#Fields: date time cs-method cs-uri

This identifier instructs the server to record the date and time of the transaction, the request method that the client used, and the URI of the request for each HTTP access. Each field is separated by white space, and each record is written to a new line, appended to the log file.

Note:
The #Fields directive must be followed by a new line in the log file, so that the first log message is not appended to the same line.

Supported Field Identifiers

The following identifiers are supported, and do not require a prefix.

	date
	Date at which transaction completed, field has type <date>, as defined in the W3C specification.

	time
	Time at which transaction completed, field has type <time>, as defined in the W3C specification.

	time-taken
	Time taken for transaction to complete in seconds, field has type <fixed>, as defined in the W3C specification.

	bytes
	Number of bytes transferred, field has type <integer>.

Note that the cached field defined in the W3C specification is not supported in WebLogic Server.

The following identifiers require prefixes, and cannot be used alone. The supported prefix combinations are explained individually.

IP Address Related Fields

These fields give the IP address and port of either the requesting client, or the responding server. These fields have type <address>, as defined in the W3C specification. The supported fields are:

	c-ip
	The IP address of the client.

	s-ip
	The IP address of the server.

DNS Related Fields

These fields give the domain names of the client or the server and have type <name>, as defined in the W3C specification. The supported fields are:

	c-dns
	The domain name of the requesting client.

	s-dns
	The domain name of the requested server.

	sc-status
	Status code of the response, for example (404) indicating a ""File not found" status. This field has type <integer>, as defined in the W3C specification.

	sc-comment
	The comment returned with status code, for instance "File not found". This field has type <text>.

	cs-method
	The request method, for example GET or POST. This field has type <name>, as defined in the W3C specification.

	cs-uri
	The full requested URI. This field has type <uri>, as defined in the W3C specification.

	cs-uri-stem
	Only the stem portion of URI (omitting query). This field has type <uri>, as defined in the W3C specification.

	cs-uri-query
	Only the query portion of the URI. This field has type <uri>, as defined in the W3C specification.

Diagnostic Message Correlation Fields

These fields give message correlation information for diagnostic messages, helping you to determine relationships between messages across components. These fields are logged if the diagnostic context is present and populated for the executed request. The diagnostic context may be present if it is propagated into the server with the incoming request, or it may be created for the request by WebLogic Server if the diagnostic context is enabled. The supported fields are:

	ctx-ecid
	The Execution Context ID (ECID). The ECID is a globally unique identifier associated with the execution of a particular request.

	ctx-rid
	The Relationship ID (RID). The RID distinguishes the work done in one thread on one process, from work done by any other threads on this and other processes on behalf of the same request.

If the diagnostic context does not exist, or the values of the ECID and RID are not available in the diagnostic context, a hyphen (-) is logged as their values. For more information about the ECID and RID, see "Correlating Messages Across Log Files and Components" in Administering Oracle Fusion
Middleware.

Creating Custom Field Identifiers

You can also create user-defined fields for inclusion in an HTTP access log file that uses the extended log format (ELF). To create a custom field, you identify the field in the ELF log file using the Fields directive and then you create a matching Java class that generates the desired output. You can create a separate Java class for each field, or the Java class can output multiple fields. For a sample of the Java source for such a class, see Example 5-1.

To create a custom field:

	Include the field name in the Fields directive, using the form:x-myCustomField.

Where myCustomField is a fully-qualified class name.

For more information about the Fields directive, see Creating the Fields Directive.

	Create a Java class with the same fully-qualified class name as the custom field you defined with the Fields directive (for example myCustomField). This class defines the information you want logged in your custom field. The Java class must implement the following interface:weblogic.servlet.logging.CustomELFLogger

In your Java class, you must implement the logField() method, which takes a HttpAccountingInfo object and FormatStringBuffer object as its arguments:

	Use the HttpAccountingInfo object to access HTTP request and response data that you can output in your custom field. Getter methods are provided to access this information. For a complete listing of these get methods, see Get Methods of the HttpAccountingInfo Object.

	Use the FormatStringBuffer class to create the contents of your custom field. Methods are provided to create suitable output.

	Compile the Java class and add the class to the CLASSPATH statement used to start WebLogic Server. You will probably need to modify the CLASSPATH statements in the scripts that you use to start WebLogic Server.Note:
Do not place this class inside of a Web application or Enterprise application in exploded or jar format.

	Configure WebLogic Server to use the extended log format. For more information, see Setting Up HTTP Access Logs by Using Extended Log Format.Note:
When writing the Java class that defines your custom field, do not execute any code that is likely to slow down the system (For instance, accessing a DBMS or executing significant I/O or networking calls.) Remember, an HTTP access log file entry is created for every HTTP request.

Note:
If you want to output more than one field, delimit the fields with a tab character. For more information on delimiting fields and other ELF formatting issues, see "Extended Log Format" at http://www.w3.org/TR/WD-logfile-960221.html.

Get Methods of the HttpAccountingInfo Object

The following methods return various data regarding the HTTP request. These methods are similar to various methods of javax.servlet.ServletRequest, javax.servlet.http.Http.ServletRequest, and javax.servlet.http.HttpServletResponse.

The Javadoc for these interfaces is available at the following locations:

	http://docs.oracle.com/javaee/7/api/javax/servlet/ServletRequest.html

	http://docs.oracle.com/javaee/7/api/javax/servlet/ServletResponse.html

	http://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html

For details about these methods, see the corresponding methods in the Java interfaces listed in the following table, or refer to the specific information contained in this table.

Table 5-2 Getter Methods of HttpAccountingInfo

	HttpAccountingInfo Methods	Method Information
	Object getAttribute(String name);

	javax.servlet.ServletRequest

	Enumeration getAttributeNames();

	javax.servlet.ServletRequest

	String getCharacterEncoding();

	javax.servlet.ServletRequest

	int getResponseContentLength();

	javax.servlet.ServletResponse.setContentLength()

This method gets the content length of the response, as set with the setContentLength() method.

	String getContentType();

	javax.servlet.ServletRequest

	Locale getLocale();

	javax.servlet.ServletRequest

	Enumeration getLocales();

	javax.servlet.ServletRequest

	String getParameter(String name);

	javax.servlet.ServletRequest

	Enumeration getParameterNames();

	javax.servlet.ServletRequest

	String[] getParameterValues(String name);

	javax.servlet.ServletRequest

	String getProtocol();

	javax.servlet.ServletRequest

	String getRemoteAddr();

	javax.servlet.ServletRequest

	String getRemoteHost();

	javax.servlet.ServletRequest

	String getScheme();

	javax.servlet.ServletRequest

	String getServerName();

	javax.servlet.ServletRequest

	int getServerPort();

	javax.servlet.ServletRequest

	boolean isSecure();

	javax.servlet.ServletRequest

	String getAuthType();

	javax.servlet.http.HttpServletRequest

	String getContextPath();

	javax.servlet.http.HttpServletRequest

	Cookie[] getCookies();

	javax.servlet.http.HttpServletRequest

	long getDateHeader(String name);

	javax.servlet.http.HttpServletRequest

	String getHeader(String name);

	javax.servlet.http.HttpServletRequest

	Enumeration getHeaderNames();

	javax.servlet.http.HttpServletRequest

	Enumeration getHeaders(String name);

	javax.servlet.http.HttpServletRequest

	int getIntHeader(String name);

	javax.servlet.http.HttpServletRequest

	String getMethod();

	javax.servlet.http.HttpServletRequest

	String getPathInfo();

	javax.servlet.http.HttpServletRequest

	String getPathTranslated();

	javax.servlet.http.HttpServletRequest

	String getQueryString();

	javax.servlet.http.HttpServletRequest

	String getRemoteUser();

	javax.servlet.http.HttpServletRequest

	String getRequestURI();

	javax.servlet.http.HttpServletRequest

	String getRequestedSessionId();

	javax.servlet.http.HttpServletRequest

	String getServletPath();

	javax.servlet.http.HttpServletRequest

	Principal getUserPrincipal();

	javax.servlet.http.HttpServletRequest

	boolean isRequestedSessionIdFromCookie();

	javax.servlet.http.HttpServletRequest

	boolean isRequestedSessionIdFromURL();

	javax.servlet.http.HttpServletRequest

	boolean isRequestedSessionIdFromUrl();

	javax.servlet.http.HttpServletRequest

	boolean isRequestedSessionIdValid();

	javax.servlet.http.HttpServletRequest

	byte[] getURIAsBytes();

	Returns the URI of the HTTP request as byte array, for example: If GET /index.html HTTP/1.0 is the first line of an HTTP Request, /index.html is returned as an array of bytes.

	long getInvokeTime();

	Returns the starting time of currentTimeMillis().

To get the length of time taken by the servlet to send the response to the client, use the following code:

long milsec = System.currentTimeMillis() - metrics.getInvokeTime();

Float sec = new Float(milsec / 1000.0);

	int getResponseStatusCode();

	javax.servlet.http.HttpServletResponse

	String getResponseHeader(String name);

	javax.servlet.http.HttpServletResponse

Example 5-1 Java Class for Creating a Custom ELF Field
import weblogic.servlet.logging.CustomELFLogger;
import weblogic.servlet.logging.FormatStringBuffer;
import weblogic.servlet.logging.HttpAccountingInfo;
/* This example outputs the User-Agent field into a
 custom field called MyCustomField
*/
public class MyCustomField implements CustomELFLogger{
public void logField(HttpAccountingInfo metrics,
 FormatStringBuffer buff) {
 buff.appendValueOrDash(metrics.getHeader("User-Agent"));
 }
}

Preventing POST Denial-of-Service Attacks

A Denial-of-Service attack is a malicious attempt to overload a server with phony requests. One common type of attack is to send huge amounts of data in an HTTP POST method. You can set three attributes in WebLogic Server that help prevent this type of attack. These attributes are set in the Console, under Servers or Virtual Hosts. If you define these attributes for a virtual host, the values set for the virtual host override those set under Servers.

	PostTimeoutSecs
	Amount of time that WebLogic Server waits between receiving chunks of data in an HTTP POST.

The default value for PostTimeoutSecs is 30.

	MaxPostTimeSecs
	Maximum time that WebLogic Server spends receiving post data. If this limit is triggered, a PostTimeoutException is thrown and the following message is sent to the server log:

Post time exceeded MaxPostTimeSecs.

The default value for MaxPostTimeSecs is 30.

	MaxPostSize
	Maximum number of bytes of data received in a POST from a single request. If this limit is triggered, a MaxPostSizeExceeded exception is thrown and the following message is sent to the server log:

POST size exceeded the parameter MaxPostSize.

An HTTP error code 413 (Request Entity Too Large) is sent back to the client.

If the client is in listening mode, it gets these messages. If the client is not in listening mode, the connection is broken.

The default value for MaxPostSize is -1.

Setting Up WebLogic Server for HTTP Tunneling

HTTP tunneling provides a way to simulate a stateful socket connection between WebLogic Server and a Java client when your only option is to use the HTTP protocol. It is generally used to tunnel through an HTTP port in a security firewall. HTTP is a stateless protocol, but WebLogic Server provides tunneling functionality to make the connection appear to be a regular T3Connection. However, you can expect some performance loss in comparison to a normal socket connection.

Configuring the HTTP Tunneling Connection

Under the HTTP protocol, a client may only make a request, and then accept a reply from a server. The server may not voluntarily communicate with the client, and the protocol is stateless, meaning that a continuous two-way connection is not possible.

WebLogic HTTP tunneling simulates a T3Connection via the HTTP protocol, overcoming these limitations. There are attributes that you can configure in the to tune a tunneled connection for performance. It is advised that you leave them at their default settings unless you experience connection problems. These properties are used by the server to determine whether the client connection is still valid, or whether the client is still alive.

	Enable Tunneling
	Enables or disables HTTP tunneling. HTTP tunneling is disabled by default.

Note that the server must also support both the HTTP and T3 protocols in order to use HTTP tunneling.

	Tunneling Client Ping
	When an HTTP tunnel connection is set up, the client automatically sends a request to the server, so that the server may volunteer a response to the client. The client may also include instructions in a request, but this behavior happens regardless of whether the client application needs to communicate with the server. If the server does not respond (as part of the application code) to the client request within the number of seconds set in this attribute, it does so anyway. The client accepts the response and automatically sends another request immediately.

Default is 45 seconds; valid range is 20 to 900 seconds.

	Tunneling Client Timeout
	If the number of seconds set in this attribute have elapsed since the client last sent a request to the server (in response to a reply), then the server regards the client as dead, and terminates the HTTP tunnel connection. The server checks the elapsed time at the interval specified by this attribute, when it would otherwise respond to the client's request.

Default is 40 seconds; valid range is 10 to 900 seconds.

Connecting to WebLogic Server from the Client

When your client requests a connection with WebLogic Server, all you need to do in order to use HTTP tunneling is specify the HTTP protocol in the URL. For example:

Hashtable env = new Hashtable();
env.put(Context.PROVIDER_URL, "http://wlhost:80");
Context ctx = new InitialContext(env);

On the client side, a special tag is appended to the http protocol, so that WebLogic Server knows this is a tunneling connection, instead of a regular HTTP request. Your application code does not need to do any extra work to make this happen.

The client must specify the port in the URL, even if the port is 80. You can set up your WebLogic Server instance to listen for HTTP requests on any port, although the most common choice is port 80 since requests to port 80 are customarily allowed through a firewall.

You specify the listen port for WebLogic Server in the under the "Servers" node, under the "Network" tab.

Using Native I/O for Serving Static Files (Windows Only)

When running WebLogic Server on Windows NT/2000/XP you can specify that WebLogic Server use the native operating system call TransmitFile instead of using Java methods to serve static files such as HTML files, text files, and image files. Using native I/O can provide performance improvements when serving larger static files.

To use native I/O, add two parameters to the web.xml deployment descriptor of a Web application containing the files to be served using native I/O. The first parameter, weblogic.http.nativeIOEnabled should be set to TRUE to enable native I/O file serving. The second parameter, weblogic.http.minimumNativeFileSize sets the minimum file size for using native I/O. If the file being served is larger than this value, native I/O is used. If you do not specify this parameter, a value of 4K is used.

Generally, native I/O provides greater performance gains when serving larger files; however, as the load on the machine running WebLogic Server increases, these gains diminish. You may need to experiment to find the correct value for weblogic.http.minimumNativeFileSize.

The following example shows the complete entries that should be added to the web.xml deployment descriptor. These entries must be placed in the web.xml file after the <distributable> element and before <servlet> element.

<context-param>
 <param-name>weblogic.http.nativeIOEnabled</param-name>
 <param-value>TRUE</param-value>
</context-param>
<context-param>
 <param-name>weblogic.http.minimumNativeFileSize</param-name>
 <param-value>500</param-value>
</context-param>

weblogic.http.nativeIOEnabled can also be set as a context parameter in the FileServlet.

6 Using the Plug-in for Oracle Virtual Assembly Builder

This chapter describes the WebLogic Server introspection plug-in for Oracle Virtual Assembly Builder, which examines a single WebLogic domain. The domain specified and the Oracle home are captured.

Note:
This chapter describes the WebLogic Server plug-in that is included with the WebLogic Server installation program. Older versions of this plug-in are included with the Oracle Virtual Assembly Builder installation program. For information about using an older plug-in, see Release Notes for Oracle Virtual
Assembly Builder.

This chapter includes the following sections:

	Overview

	Introspection Plug-in Parameters

	Reference System Prerequisites

	Plug-in Usage Requirements

	Resulting Artifact Type

	Wiring

	Wiring Properties

	WebLogic Server Appliance Properties

	Oracle Coherence*Web Introspection Extension

	Supported Template Types

Overview

The following topics provide a brief overview of Oracle Virtual Assembly Builder and the WebLogic Server introspection plug-in:

	About Oracle Virtual Assembly Builder

	About the WebLogic Server Introspection Plug-in

About Oracle Virtual Assembly Builder

Oracle Virtual Assembly Builder is a tool for virtualizing installed Oracle components, modifying those components, and then deploying them into your own environment. Using Oracle Virtual Assembly Builder, you capture the configuration of existing software components in artifacts called software appliances. Appliances can then be grouped, and their relationships defined into artifacts called software assemblies which provide a blueprint describing a complete multi-tier application topology.

Oracle Virtual Assembly Builder allows the logical connections between appliances within an assembly to be reconfigured by a process known as assembly editing. When a desired assembly configuration has been achieved, you use Oracle Virtual Assembly Builder to prepare the assembly for deployment and then deploy it into your environment.

For more information, see Using Oracle Virtual Assembly
Builder.

About the WebLogic Server Introspection Plug-in

Introspection is an operation performed on a software component or a group of related components to create an appliance or assembly. During introspection, Oracle Virtual Assembly Builder creates an XML description of the component and captures a component-specific set of configuration files. This information forms a snapshot of the component's configuration at the time of introspection.

The introspection architecture is plug-in based. A plug-in is available for each supported component type, including a plug-in for WebLogic Server. Typically the result of introspecting a component is an appliance. However, when you use Oracle Virtual Assembly Builder to introspect a WebLogic Server domain, the introspection plug-in generates an assembly. The generated assembly contains:

	An appliance representing the Administration Server.

	One appliance for each standalone Managed Server.

	One appliance for each cluster. (This appliance encompasses all Managed Server instances contained in that cluster.)

The WebLogic Server introspection plug-in fully supports WebLogic domains that are configured with dynamic clusters and dynamic servers.

Setting Up the WebLogic Server Introspection Plug-in

The following steps summarize the process of making the WebLogic Server introspection plug-in available for us with Oracle Virtual Assembly Builder:

	Install the Oracle Fusion Middleware Infrastructure software (wls_jrf_generic.jar), as described in Planning an Installation of
Oracle Fusion Middleware.For installation type, select Fusion Middleware Infrastructure.

	Install Oracle Virtual Assembly Builder, as described in Installing Oracle Virtual Assembly
Builder.
	Install the WebLogic Server plug-in for Oracle Virtual Assembly Builder using the following command:$AB_INSTANCE/bin/abctl installPlugins -productRoot $ORACLE_HOME/wlserver

In the preceding command, $AB_INSTANCE is the environment variable set to the Studio instance home directory.

Introspection Plug-in Parameters

Table 6-1 lists the introspection parameters for the WebLogic Server plug-in for Oracle Virtual Assembly Builder. The specific set of parameters that are available for use depend on whether you are using the abctl command or Oracle Virtual Assembly Builder Studio. The column labeled Command-Line Support indicates whether the corresponding parameter may be specified using the abctl command. The column labeled Required indicates whether the parameter must be specified for the plug-in.

Table 6-1 WebLogic Server Plug-in Introspection Parameters

	Parameter	Description	Command-Line Support	Required
	domainRoot

	The fully qualified path to the domain you want to introspect. This should be the directory that contains the config directory.

	Yes

	Yes

	wlsHome

	The fully qualified path to the WebLogic home directory. For example, /u01/Oracle/Middleware/Oracle_Home/wlserver.

	Yes

	Yes

	adminUser

	The administrative user for the WebLogic domain.

	Yes

	Yes

	adminPassword

	The password for the administrative user corresponding to the adminUser parameter.

	No

	Yes

	nodeManagerUser

	The Node Manager user name. If you specify this parameter during introspection time, the specified user name is used when the domain is rehydrated. If you specify this option in the abctl command, you are automatically prompted for the nodeManagerPassword, which is used during dehydration.

If you do not specify this parameter, the value of the adminUser parameter is used by default as the Node Manager user.

	Yes

	No

	nodeManagerPassword

	The password for the user specified with the nodeManagerUser parameter.

	No

	Yes1

	nodeManagerDir

	The non-default directory that contains the Node Manager configuration. If this parameter is not specified, the following value is used by default:

$WL_HOME/common/nodemanager

	Yes

	No

	identityKeystorePassPhrase

	The password for the identity keystore that is used if the domain is configured to have a custom identity keystore.

	No

	No

	privateKeyPassPhrase

	The password for the private key contained in the custom identity keystore.

	No

	No

Reference System Prerequisites

The Administration Server for the domain must be running and introspection must target the Administration Server host machine.

Plug-in Usage Requirements

Table 6-2 lists and describes the requirements for using the introspection plug-in. Some requirements listed in this table pertain to the WebLogic Server plug-in, while others pertain overall to Oracle Virtual Assembly Builder. For more information, see Installing Oracle Virtual Assembly
Builder.

Table 6-2 Requirements for Using the Introspection Plug-in

	Requirement	Description
	Editable domain

	You must ensure that any WebLogic domain being introspected is configured to be editable. This allows edits to be performed successfully during deployment. For more information, see Understanding Domain Configuration
for Oracle WebLogic Server.

	Oracle Internet Directory

	Oracle recommends the use of Oracle Internet Directory as the LDAP identity store on the reference system, not a file-based LDAP server. File-based LDAP cannot work properly in a deployed system due to synchronization issues.

	Remote user

	The remote user specified for remote introspection of WebLogic Server must be able to access files created by the user who owns the WebLogic Server process. When possible Oracle recommends that the remote user specified be the same as the user who owns the WebLogic Server process.

	Applications accessing Web services

	For each application that accesses a Web service hosted on the WebLogic Server reference system, you must:

	Update the application to access the Web service WSDL on the new Oracle VM host.

	Redeploy the application to the Oracle VM WebLogic Server environment, using any of the administration tools listed in "Summary of System Administration Tools and APIs" in Understanding Oracle WebLogic
Server.

	Avoid creating templates on individual servers

	You must not create a template on an individual server in WebLogic Server. Such templates cannot be deployed because they lack certain deployment artifacts (the domain template jar in content, and data at the assembly level).

	Administration Server URL

	If you want to perform manual starts from the context of the Guest-OS, you must manually modify the StartManagedServer script to provide the correct Administration Server URL (Administration Server host name). This is required to provide the default Administration Server URL the correct value (the machine name of the Administration Server is not known at the time of template creation).

Resulting Artifact Type

An atomic assembly that contains an appliance for the Administration Server and appliances for any clusters found and any standalone (that is, non-clustered) Managed Servers found. One appliance is created for a cluster regardless of the number of Managed Servers in that cluster. The WebLogic Server plug-in assumes that every Managed Server in a cluster is configured identically. The names and the number of Managed Servers in the cluster are saved as 'scale out' information in the appliance metadata.

Note:
An atomic assembly cannot be edited to add or remove appliances. To wire other appliances to an atomic WebLogic Server assembly a non-atomic assembly must be created and the WebLogic Server assembly must be added to the non-atomic assembly.

Wiring

Inputs are created on the WebLogic Server assembly for all the channels the servers in the domain are listening on. Typically Oracle HTTP Server outputs would be connected to the WebLogic Server inputs.

Outputs are created on the WebLogic Server assembly for the following types of configuration that are found:

	JDBC

	LDAP

	JMS messaging bridges

	Foreign JMS

These outputs must all be connected to either an external resource or to an appliance before deployment. The description on the output and the protocol supported by the output provide hints about the type of appliance to connect the output to.

Wiring Properties

All input endpoints have the following wiring properties:

	Two editable properties: port and description.

	One non-editable property: a list of protocols. The protocols indicate the type of outputs that can be connected to the input.

All output endpoints have the following wiring properties:

	One editable property: description.

	The following non-editable properties:

	protocol — Indicates the type of input that can be connected to the output.

	singleton — Indicates the type of appliance that the output can be connected to. If singleton is true, the output can be connected only to an input on an appliance that has a scalability absolute max value of 1.

Table 6-3 describes common WebLogic Server appliance input user properties:

Table 6-3 Common WebLogic Server Appliance Input User Properties

	Name	Type	Req'd	Default	Description
	keepLocalHost

	Boolean

	false

	none

	If this input was originally bound to localhost explicitly, this property will exist and be set to true. Connections should not be made to this input if this property exists and its value is not overridden to false.

	readymetric-naming-password

	String

	false

	none

	The password to use for the connection made to the server when doing the ready metric check.

	readymetric-naming-protocol

	String

	false

	none

	Optional protocol you can specify for naming connections used for the ready metric check (for example, iiop).

	readymetric-naming-user

	String

	false

	none

	The user to use for the connection made to the server when doing the ready metric check (for example, weblogic).

	readymetric-server-protocol

	String

	false

	none

	The protocol to use for the connection made to the server when doing the ready metric check (for example, iiop).

Table 6-4 describes common WebLogic Server appliance input properties. These are not user-modifiable properties.

Table 6-4 Common WebLogic Server Appliance Input Properties

	Name	Type	Req'd	Default	Description
	originalBindAddresses

	String

	false

	none

	The original address of the system that was introspected.

	originalDefaultHostname

	String

	false

	none

	The original host name of the system that was introspected. (For example, example.com).

Table 6-5 describes the Administration Server appliance input system properties:

Table 6-5 Administration Server Appliance Input Properties

	Name	Type	Req'd	Default	Description
	admin-password

	String

	true

	none

	The admin user's password. This is a user-modified property, specified in the deployment plan, that allows a deployer to introspect a well-known domain and deploy it multiple times, each deployed instance having a custom password.

	admin-username

	String

	true

	none

	The admin user name for connecting to the Administration Server (for example, weblogic).

Table 6-6 through Table 6-9 describe Administration Server appliance output user properties for JDBC, foreign JMS, JMS messaging bridge, and LDAP.

Table 6-6 describes Administration Server appliance output user and system properties for JDBC. The password and username properties are user properties, and original-url is a system property.

Table 6-6 Administration Server Appliance Output Properties: JDBC

	Name	Type	Req'd	Default	Description
	password

	String

	false

	<empty>

	The password for the user needed for the data source connection.

	username

	String

	false

	none

	The user needed for the data source connection. The value will be the original user for the data source connection.

	original-url

	String

	false

	none

	The original JDBC URL from the introspected WebLogic domain. For example, jdbc:oracle:thin:@adc2100927.example.com:1521:orcl.

Table 6-7 describes Administration Server appliance output user properties for foreign JMS:

Table 6-7 Administration Server Appliance Output Properties: Foreign JMS

	Name	Type	Req'd	Default	Description
	original-connection-url

	String

	false

	none

	The original URL for the foreign JMS server.

Table 6-8 describes Administration Server appliance output system properties for JMS messaging bridge:

Table 6-8 Administration Server Appliance Output Properties: JMS Messaging Bridge

	Name	Type	Req'd	Default	Description
	original-url

	String

	false

	none

	The original URL for the JMS messaging bridge server.

	original-username

	String

	false

	none

	The original username for the JMS messaging bridge server.

	original-password

	String

	false

	none

	The original password for the JMS messaging bridge server, encrypted.

Table 6-9 describes Administration Server appliance output system properties for LDAP:

Table 6-9 Administration Server Appliance Output Properties: LDAP

	Name	Type	Req'd	Default	Description
	original-name

	String

	false

	none

	The original name for the LDAP security provider.

	original-host

	String

	false

	none

	The original host for the LDAP security provider.

	original-port

	String

	false

	none

	The original port for the LDAP security provider.

	original-user

	String

	false

	none

	The original user for the LDAP security provider.

WebLogic Server Appliance Properties

This section discusses the following properties for assemblies with a WebLogic Server appliance. Those properties include assembly-level properties, properties on the inputs and outputs of each application, and properties of the appliances themselves. This section contains the following subsections:

	Assembly-Level System Properties

	Properties Common to Administration Server and Managed Server Appliances

	Administration Server Appliance Properties

Assembly-Level System Properties

Table 6-10 describes assembly-level system properties:

Table 6-10 Assembly-level System Properties

	Name	Type	Req'd	Default	Description
	admin-password

	String

	true

	none

	The admin user password for the domain.

	admin-username

	String

	true

	none

	The admin user for the domain (for example, weblogic).

	admsvr-jmx-input

	String

	true

	none

	Indicates what input on the Administration Server appliance should be used when making JMX connections (for example, Default).

	admsvr-jmx-protocol

	String

	true

	none

	The protocol to use when making a JMX connection to the Administration Server (for example, iiop).

	domain-name

	String

	false

	none

	The domain name of the domain that was introspected (for example, test_domain).

	usesOracleHomes

	boolean

	true

	none

	Indicates that this is not a core WebLogic Server installation and as such has an Oracle home associated with it. This will be true for SOA and WebCenter domains. Allowable values are true and false.

Properties Common to Administration Server and Managed Server Appliances

The following information describes properties common to Administration Server and Managed Server appliances.

Table 6-11 describes common WebLogic Server appliance user properties:

Table 6-11 Common WebLogic Server Appliance User Properties

	Name	Type	Req'd	Default	Description
	NodeManagerPort

	Integer

	true

	5556

	The port the Node Manager should listen on (for example, 5556). This will only be present if the Node Manager was found to be configured on the reference system.

	readymetric-attribute-compare-type

	String

	false

	EQUALS

	The comparison to make between the readymetric-attribute's value and the value specified for the property readymetric-attribute-value.

Valid values are EQUALS, LESSER_THAN, GREATER_THAN, LESSER_THAN_OR_EQUAL, and GREATER_THAN_OR_EQUAL.

	readymetric-attribute-name

	String

	false

	State

	The MBean attribute to check.

	readymetric-attribute-type

	String

	false

	STRING

	The type of the MBean attribute.

Valid values (but specific to the attribute being examined) are STRING, INTEGER, SHORT, LONG, DOUBLE, FLOAT, and BOOLEAN.

	readymetric-attribute-value

	String

	false

	RUNNING

	The value the property readymetric-attribute-name must have for the check to be considered successful.

	readymetric-instance-name-0

	String

	false

	com.bea:Name=AdminServer,Type=ServerRuntime

	The instance name to use for the JMX ready metric check.

	readymetric-max-wait-period

	String

	false

	600

	The maximum time in seconds to wait for a successful ready metric check.

	readymetric-naming-input

	String

	false

	none

	The input to use for the ready metric check (for example, "Default").

	readymetric-polling-period

	String

	false

	none

	The time between connection attempts, in seconds, for the ready metric check.

	readymetric-server-input

	String

	false

	none

	The input to use for the ready metric check (for example, "Default").

	readymetric-trust-store-0

	String

	false

	none

	The location of the trust store to use if the ready metric check is using an SSL enabled port.

	readymetric-type

	String

	false

	JMX

	The type of ready metric to use for the appliance.

	readymetric-verify

	String

	false

	true

	If this property is set to true the ready metric check will be performed. Otherwise it will be skipped.

	useTemplate

	String

	false

	OEL

	Specifies the template type to use by default when creating a template for the appliance.

Administration Server Appliance Properties

Table 6-12 describes Administration Server appliance system properties:

Table 6-12 Administration Server Appliance System Properties

	Name	Type	Req'd	Default	Description
	admin-input-name

	String

	false

	none

	The input to use for connecting to the Administration Server admin-input-protocol (for example, "Default").

	admin-input-protocol

	String

	false

	none

	The protocol to use for connecting to the Administration Server (for example, "http").

Table 6-13 describes Administration Server appliance user properties:

Table 6-13 Administration Server Appliance User Properties

	Name	Type	Req'd	Default	Description
	<cluster name>-cluster-address

	String

	false

	<empty>

	The cluster address for the cluster named by the first part of the property name.

	<cluster name>-frontend-host

	String

	false

	<empty>

	The front-end host for the cluster named by the first part of the property name.

	<cluster name>-frontend-http-port

	String

	false

	<empty>

	The non-secure front-end port for the cluster named by the first part of the property name.

	<cluster name>-frontend-https-port

	String

	false

	<empty>

	The secure front-end port for the cluster named by the first part of the property name.

Oracle Coherence*Web Introspection Extension

The Oracle Coherence*Web introspection extension extends the functionality of the WebLogic Server Introspector. It examines the configuration of Coherence cache clusters and servers configured as part of a WebLogic domain. For more information, see the Oracle Coherence documentation.

Supported Template Types

The supported template type is Oracle Enterprise Linux (OEL).

1 Required only if the Node Manager user name is specified.

7 Configuring Concurrent Managed Objects

This chapter describes the Concurrent Managed Objects (CMOs) implemented by WebLogic Server to provide support for defining and implementing the Concurrency Utilities for Java EE 1.0 (JSR 236).

This chapter includes the following sections:

	About Java EE Concurrency Utilities

	How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

	Default Java EE CMOs

	Customized CMOs in Configuration Files

	Global CMO Templates

	Configuring Concurrent Constraints

	Querying CMOs

About Java EE Concurrency Utilities

The Concurrency Utilities for Java EE 1.0 (JSR 236) implements a standard API for providing asynchronous capabilities to Java EE application components, such as servlets and EJBs.

As described in the Java EE 7 Tutorial, the two main concurrency concepts are processes and threads:

	Processes are primarily associated with applications running on the operating system (OS). A process has specific runtime resources to interact with the underlying OS and allocate other resources, such as its own memory, just as the JVM process does. A JVM is in fact a process.

	Threads share some features with processes, since both consume resources from the OS or the execution environment. But threads are easier to create and consume many fewer resources than a process.

The primary components of the concurrency utilities are:

	ManagedExecutorService (MES): Used by applications to execute submitted tasks asynchronously. Tasks are executed on threads that are started and managed by the container. The context of the container is propagated to the thread executing the task.

	ManagedScheduledExecutorService (MSES): Used by applications to execute submitted tasks asynchronously at specific times. Tasks are executed on threads that are started and managed by the container. The context of the container is propagated to the thread executing the task.

	ManagedThreadFactory (MTF): Used by applications to create managed threads. The threads are started and managed by the container. The context of the container is propagated to the thread executing the task.

	ContextService: Used to create dynamic proxy objects that capture the context of a container and enable applications to run within that context at a later time or be submitted to a Managed Executor Service. The context of the container is propagated to the thread executing the task.

For more detailed information, see "Concurrency Utilities for Java EE" in The Java EE 7 Tutorial. Also see the Java Specification Request 236: Concurrency Utilities for Java EE 1.0 (http://jcp.org/en/jsr/detail?id=236).

Concurrency 1.0 Code Examples in WebLogic Server

When you install WebLogic Server complete with the examples, the examples source code is placed in the EXAMPLES_HOME\examples\src\examples directory. The default path is ORACLE_HOME\wlserver\samples\server. From this directory, you can access the source code and instruction files for the Concurrency 1.0 examples without having to set up the samples domain.

The ORACLE_HOME\user_projects\domains\wl_server directory contains the WebLogic Server examples domain; it contains your applications and the XML configuration files that define how your applications and Oracle WebLogic Server will behave, as well as startup and environment scripts. For more information about the WebLogic Server code examples, see "Sample Applications and Code Examples" in Understanding Oracle WebLogic
Server.

	Using Concurrency ContextService – demonstrates how to use ContextService interface to create dynamic proxy objects.

EXAMPLES_HOME/wl_server/examples/src/examples/javaee7/concurrency/dynamicproxy

	Using Concurrency Executor – demonstrates how to use javax.enterprise.concurrent.ManagedExecutorService for submitting tasks.

EXAMPLES_HOME/examples/src/examples/javaee7/concurrency/executor

	Using Concurrency Schedule – demonstrates how to use javax.enterprise.concurrent.ManagedScheduledExecutorService for submitting delayed or periodic tasks.

EXAMPLES_HOME/examples/src/examples/javaee7/concurrency/schedule

	Using Concurrency Threads – demonstrates how to use javax.enterprise.concurrent.ManagedThreadFactory to obtain a thread from the Java EE container.

EXAMPLES_HOME/examples/src/examples/javaee7/concurrency/threads

Oracle recommends that you run these examples before programming your own applications that use concurrency.

How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

This section discusses how WebLogic Server provides concurrency capabilities to Java EE applications by associating the Concurrency Utilities API with the Work Manager to make threads container-managed.

	How WebLogic Server Handles Asynchronous Tasks in Application Components

	Concurrent Managed Objects (CMOs)

	CMOs versus CommonJ API

	CMO Context Propagation

	Self Tuning for CMO Tasks

	Threads Interruption When CMOs Are Shutting Down

	CMO Constraints for Long-Running Threads

How WebLogic Server Handles Asynchronous Tasks in Application Components

With JSR236 Concurrent Utilities, WebLogic Server can recognize the asynchronous tasks in a server application component, and then manages them by:

	Providing the proper execution context. See CMO Context Propagation.

	Submitting tasks to the single server-wide self-tuning thread pool to make them prioritized based on defined rules and run-time metrics. See Self Tuning for CMO Tasks.

	Interrupting the thread that the task is executed in when the component that created the task is shutting down. See Threads Interruption When CMOs Are Shutting Down.

	Limiting the number of new running threads to be created by managed objects when the task is not suitable to be dispatched to the self-tuning thread pool. See CMO Constraints for Long-Running Threads.

Concurrent Managed Objects (CMOs)

In WebLogic Server, asynchronous task management is provided by four types of Concurrent Managed Objects (or CMOs).

Table 7-1 summarizes the CMOs that provide asynchronous task management.

Table 7-1 CMOs that Provide Asynchronous Task Management

	Managed Object	Context Propagation	Self Tuning	Thread Interruption While Shutting Down	Limit of Concurrent Long-Running New Threads
	Managed Executor Service (MES)

	Contexts are propagated based on configuration. See CMO Context Propagation.

	Only short-running tasks are dispatched to the single self-tuning thread pool by a specified work manager. See Self Tuning for CMO Tasks.

	When Work Manager is shutting down, all the unfinished task will be canceled. See Threads Interruption When CMOs Are Shutting Down.

	The maximum number of long-running threads created by MES/MSES can be configured to avoid excessive number of these threads making negative effect on server. See CMO Constraints for Long-Running Threads.

	Managed Scheduled Executor Service (MSES)

	Contexts are propagated based on configuration. See CMO Context Propagation.

	Same behavior as MES. See Self Tuning for CMO Tasks.

	Same behavior as MES. See Threads Interruption When CMOs Are Shutting Down.

	Same behavior as MES. See CMO Constraints for Long-Running Threads.

	Context Service

	Contexts are propagated based on configuration. See CMO Context Propagation.

	n/a

	n/a

	n/a

	Managed Thread Factory (MTF)

	Contexts are propagated based on configuration. See CMO Context Propagation.

	Threads returned by the newThread() method are not from the single self-tuning thread pool and will not be put into the thread pool when the task is finished. See Self Tuning for CMO Tasks.

	Threads created by the newThread() method will be interrupted when the MTF is shutting down. See Threads Interruption When CMOs Are Shutting Down.

	The maximum number of new threads created by MTF can be configured to avoid excessive number of these threads making negative effect on server. See CMO Constraints for Long-Running Threads.

There are three types of JSR236 CMOs in WebLogic Server, each one characterized by its scope and how it is defined and used.

	Default Java EE CMOs – Required by the Java EE standard that default resources be made available to applications, and defines specific JNDI names for these default resources.

	Customized CMOs in Configuration Files – Can be defined at the application and module level or referenced from an application component environment (ENC) that is bound to JNDI.

	Global CMO Templates – Can be defined globally as templates in the domain's configuration by using the WebLogic Server Administration Console and configuration MBeans.

Similar to Work Managers, global CMO templates can be defined at the domain or server level using the WebLogic Server Administration Console or configuration MBeans. For more information see, Configuring CMO Templates using the Administration Console and Using MBeans to Configure CMO Templates.

CMOs versus CommonJ API

The CommonJ API (commonj.work) in WebLogic Server provides a set of interfaces that allows an application to execute multiple work items concurrently within a container. CMOs and CommonJ APIs operate at the same level: they both dispatch tasks to work managers and programmatically handle work from within an application. However, there are distinct differences between CMOs and the CommonJ API, such as:

	CommonJ API is Weblogic specific and CMOs have been standardized.

	CommonJ API provides functions similar to the CMO Managed Executor Service and Managed Scheduled Executor Service, but it does not provides CMO functions like the Managed Thread Factory and the Context Service.

For information about using the CommonJ API, see "Using the Timer and Work Manager API" in Developing CommonJ Applications
for Oracle WebLogic Server.

CMO Context Propagation

This section explains the four context types that are propagated for CMOs and the context invocation points in WebLogic Server for MES and MSES managed objects.

Propagated Context Types

Table 7-2 summarizes the contexts types that are propagated for the four types of managed objects.

Table 7-2 Propagated Context Types

	Context Type 	Description	Context Tasks Run with...
	JNDI

	JNDI namespace

	For MES, MSES, and ContextService, tasks can access the application-scoped JNDI tree (such as java:app, java:module, java:comp) of the submitting thread.

For MTF, tasks can access application-scoped JNDI tree of the component that created the ManagedThreadFactory instance.

	ClassLoader

	Context Class loader

	For MES, MSES, and ContextService, tasks run with the context classloader of the submitting thread.

For MTF, tasks run with the classloader of the component that created the ManagedThreadFactory instance

	Security

	Subject identity

	For MES, MSES, and ContextService, tasks run with the subject identity of the submitting thread.For MTF, tasks run with the anonymous subject.

	WorkArea

	WorkArea contexts with PropagationMode WORK

	For MES, MSES, and Context Service there is a new WorkArea context type, and so all tasks run with a WorkContextMap, which contains all the submitting thread's contexts with WORK mode.

For MTF, all tasks run with an empty WorkContextMap.

Note: While the WorkContextMap is a new instance, the contained values are not, so updating the contents of the values can affect the contents of the submitting thread.

Contextual Invocation Points

Table 7-3 summarizes the callback methods of the Contextual Invocation Points in WebLogic Server and the context that the Contextual Invocation Point runs with for the MES and MSES managed objects.

Table 7-3 Contextual Invocation Points

	Concurrent Managed Objects	Contextual Invocation Points	Context with which the Contextual Invocation Point Runs
	ManagedExecutorService

	callback method: javax.enterprise.concurrent.ManagedTaskListener

	The Contextual Invocation Points run with the context of the application component instance that called the submit(), invokeAll(), invokeAny() methods.

	ManagedScheduledExecutorService

	callback methods: javax.enterprise.concurrent.ManagedTaskListener and javax.enterprise.concurrent.Trigger

	The application component instance that called the submit(), invokeAll(), invokeAny(), schedule(), scheduleAtFixedRate(), scheduleWithFixedDelay() methods.

Self Tuning for CMO Tasks

Short-running tasks submitted to the MES or the MSES are dispatched to the single self-tuning thread pool by associating with the Work Manager specified in deployment descriptors.

The execution of the tasks will be consistent with the rules defined for the specified Work Manager. For tasks submitted to the execute method in MES and MSES, if the Work Manager's overload policy rejects the task, the following events will occur:

	The java.util.concurrent.RejectedExecutionException will be thrown in the submit or execute method.

	The overload reason parameter passed to weblogic.work.Work will be set to the RejectedExecutionException.

	If the user registered the task with the ManagedTaskListener, this listener will not be notified because user can receive the overload message through the RejectedExecutionException.

Note: A ManagedTaskListener is used to monitor the state of a task's Future. For more information see, Package javax.enterprise.concurrent.

For the invokeAll() and invokeAny() methods in the MES and MSES, for any of the submitted tasks that are is rejected by the Work Manager overload policy, the following events will occur:

	The user-registered ManagedTaskListener's taskSubmitted() method will be called.

	The user-registered ManagedTaskListener's taskDone() method will be called and the throwableParam will be javax.enterprise.concurrent.AbortedException.

	The overload reason parameter passed to weblogic.work.Work will be set to the AbortedException.

For the schedule(), scheduleAtFixRate(), scheduleAtFixDelay(), and schedule(Trigger)() methods, if the task is rejected by the Work Manager's overload policy, the following events will occur:

	The user-registered ManagedTaskListener's taskDone() method will be called, the throwableParam will be javax.enterprise.concurrent.AbortedException.

	The overload reason parameter passed to weblogic.work.Work will be set to the AbortedException.

	 If the task is periodic, the next run of task will still be scheduled.

Threads Interruption When CMOs Are Shutting Down

When either the MES or MSES is shut down:

	None of the waiting tasks will be executed.

	All the running threads will be interrupted. The user should check the Thread.isInterrupted() method and terminate their tasks because WebLogic Server will not force it to terminate.

	An executor returned Future object will throw the java.util.concurrent.CancellationException() if the Future.get() method is called.

	User registered ManagedTaskListener's taskAborted() method will be called and paramThrowable will be the CancellationException().

When the MTF is shut down:

	All threads that it has created using the newThread() method are interrupted. Calls to the isShutdown() method in the ManageableThread interface on these threads return true.

	All subsequent calls to the newThread() method throw a java.lang.IllegalStateException.

For the ContextService, no thread is interrupted. However:

	All invocations to any of the proxied interface methods will fail with a java.lang.IllegalStateException.

CMO Constraints for Long-Running Threads

As mentioned above, long-running tasks submitted to MES and MSES and the calling of newThread() method of MTF need to create new threads that will not be managed as a part of the self-tuning thread pool. Because an excessive number of running threads can have a negative affect on server performance and stability, configurations are provided to specify the maximum number of running threads that are created by concurrency utilities API.

Setting Limits for Maximum Concurrent Long Running Requests

The limit of concurrent long-running requests submitted to MES and MSES can be specified in managed object and server levels. All levels of configurations are independent and the maximum of the concurrent long-running requests cannot exceed any of them.

Table 7-4 summarizes the limit of concurrent long-running requests with the max-concurrent-long-running-requests element that can be defined in the deployment descriptors.

Table 7-4 Limit of Concurrent Long-running Requests

	Scope	Deployment Descriptor	Description	<max-concurrent-long-running-requests> Element Details
	Server

	In config.xml:

As the sub-element of <domain><server> or <domain><server-template>

	Limit of concurrent Long-running requests specified for that server.

	Optional

Range: [0-65534]. When out of range, the default value will be used

Default value: 100

	Managed Object

	In weblogic-application.xml, weblogic-ejb-jar.xml, or weblogic.xml:

As the sub-element of <managed-executor-service> or <managed-scheduled-executor-service>

in config.xml:

As the sub-element of <managed-executor-service-template> or <managed-scheduled-executor-service-template>

	Limit of concurrent long-running requests specified for that MES or MSES.

	The same as above with the exception that the default value is 10.

When the specified limit is exceeded, the MES or MSES will take following actions for new long-running tasks submitted to them:

	The java.util.concurrent.RejectedExecutionException will be thrown when calling the task submission API.

	If the user registered the task with the ManagedTaskListener, then this listener will not be notified because the submit method failed.

Note that above rule is not applied for the invokeAll() and invokeAny() methods. If any of the tasks submitted by these methods is rejected by the specified limit, the following events will occur:

	The user-registered ManagedTaskListener's taskSubmitted() method will be called.

	The user-registered ManagedTaskListener's taskDone() method will be called and the throwableParam will be javax.enterprise.concurrent.AbortedException.

	Other submitted tasks will not be affected.

	The method will not throw the RejectedExecutionException.

Example 7-1 demonstrates how the value specified for the max-concurrent-long-running-requests element in the config.xml can affect the maximum number of long-running requests.

	place 1 – Affects the MES and MSES defined in the server instance myserver. All the MES and MSES running in that server instance can only create a maximum of 50 long-running-requests in total.

	place 2 – Only affects MES and MSES defined in the domain. All the MES and MSES running in the domain can create a maximum of 10 long-running-requests in total.

	place 3 – Affects MES & MSES defined in the server instances that apply to the template mytemplate. All the MES and MSES running in that server instance can only create a maximum of 50 long-running-requests in total.

Example 7-2 demonstrates how the value specified for the max-concurrent-long-running-requests element in the config.xml can affect the maximum number of long-running requests.

In the following cases, none of the limits are exceeded and the above actions will not be taken:

	Assume 120 long-running tasks were submitted to managed-executor-service1, 115 of them were finished, 5 of them are being executed, if one more long-running task is submitted to managed-executor-service1, it will be executed because no limit is exceeded.

In the following cases, one of the limits is exceeded and the above actions will be taken:

	Assume 10 long-running tasks are being executed by managed-scheduled-executor-service1, if one more long-running task is submitted to managed-scheduled-executor-service1, then the limit of managed-scheduled-executor-service1 is exceeded.

	Assume 10 long-running tasks are being executed by application1, 90 are being executed by application2, if one more long-running task is submitted to application1 or application2, then the limit of server1 is exceeded.

Example 7-1 Sample Placements of max-concurrent-long-running-requests in config.xml
<domain>
 <server>
 <name>myserver</server>
 <max-concurrent-long-running-requests>50</max-concurrent-long-running-requests> (place 1)
 </server>
 <max-concurrent-long-running-requests>10</max-concurrent-long-running-requests> (place 2)
 <server-template>
 <name>mytemplate</name>
 <max-concurrent-long-running-requests>50</max-concurrent-long-running-requests> (place 3)
 </server-template>
</domain>

Example 7-2 Sample Configurations of max-concurrent-long-running-requests
server1(100)
 |---application1
 |---managed-scheduled-executor-service1(not specified)
 |---module1
 |---managed-executor-service1(20)
 |---managed-scheduled-executor-service2(not specified)
 |---application2

Setting Limits for Maximum Concurrent New Threads

The limit of concurrent new running threads created by calling the newThread() method of the MTF can be specified in a managed object, domain, and server level. All levels of configurations are independent and the maximum of the concurrent new running threads can not exceed any of them.

Note that the meaning of running thread is a thread that has been created by the MTF and which has not finished its run() method.

Table 7-5 summarizes the limit of concurrent new running threads with an element <max-concurrent-new-threads> that can be defined in the deployment descriptors.

Table 7-5 Limit of Concurrent New Running Threads

	Scope	Deployment Descriptor	Description	<max-concurrent-long-running-requests> Element Details
	Server

	In config.xml:

As the sub-element of <domain><server> or <domain><server-template>

	Limit of concurrent new running threads specified for that server.

	Optional

Range: [0-65534]. When out of range, the default value will be used

Default value: 100

	Managed Object

	In weblogic-application.xml, weblogic-ejb-jar.xml, or weblogic.xml:

As the sub-element of <managed-executor-service> or <managed-scheduled-executor-service>

in config.xml:

As the sub-element of <managed-executor-service-template> or <managed-scheduled-executor-service-template>

	Limit of concurrent new running threads specified for that ManagedThreadFactory

	The same as above with the exception that the default value is 10.

When the specified limit is exceeded, calls to the newThread() method of the MTF will return null to be consistent with the ThreadFactory.newThread Javadoc.

To see a sample snippet of using max-concurrent-new-threads, refer to Example 7-2.

Default Java EE CMOs

The Java EE standard specifies that certain default resources be made available to applications, and defines specific JNDI names for these default resources. WebLogic Server makes these names available through the use of logical JNDI names, which map Java EE standard JNDI names to specific WebLogic Server resources.

	Default Managed Executor Service

	Default Managed Scheduled Executor Service

	Default Context Service

	Default Managed Thread Factory

Default Managed Executor Service

There is a default MES instance for each application. It is automatically bound to the default JNDI name of java:comp/DefaultManagedExecutorService of all the sub-components when deployed.

	Uses the default Work Manager as the dispatch policy

	Propagates all the context-info

	The long-running request limit default is 10

	The long-running thread priority defaults to normal

You can also use the default MES in applications with the @Resource annotation. For example:

 package com.example;
 public class TestServlet extends HttpServlet {
 @Resource
 private ManagedExecutorService service;

Overriding the Default MES

The behavior of the default MES can be overridden by:

	Defining an executor template named DefaultManagedExecutorService in the config.xml. All applications will use this template to create a default MES.

	Defining a custom managed-executor-service in the weblogic-application.xml, using either deployment descriptors or annotations. This will also override the default MES definition in config.xml in the application. See Custom Managed Executor Service Configuration Elements.

You cannot define a default executor named DefaultManagedExecutorService in the weblogic.xml or weblogic-ejb-jar.xml; doing so will cause the deployment to fail.

Default Managed Scheduled Executor Service

The default MSES instance is similar to the default MES instance, but is automatically bound to the default JNDI name of java:comp/DefaultManagedScheduledExecutorService of all the sub-components when deployed. It has the same default settings and propagates all the context information.

You can also use the default MSES in applications with the @Resource annotation. For example:

 package com.example;
 public class TestServlet extends HttpServlet {
 @Resource
 private ManagedScheduledExecutorService service;

Overriding the Default MSES

The behavior of the default MSES can be overridden by:

	Defining a scheduled executor template named DefaultManagedScheduledExecutorService in the config.xml. All applications will use this template to create a default MSES.

	Defining a custom <managed-scheduled-executor-service> in the weblogic-application.xml, using either deployment descriptors or annotations. This will also override the default MSES definition in config.xml in the application. See Custom Managed Scheduled Executor Service Configuration Elements.

You cannot define a default scheduled executor named DefaultManagedExecutorService in the weblogic.xml or weblogic-ejb-jar.xml; doing so will cause the deployment to fail.

Default Context Service

There is a default context service instance for each application. It is automatically bound to the default JNDI name of java:comp/DefaultContextService of all the sub-components when deployed and propagates all types of supported contexts.

The default Context Service can also be bound to java:comp/env/concurrent/cs under an application component environment (ENC) using the resource-env-ref or @Resource annotation.

Note that the behavior of the default context service cannot be overridden.

Example 7-3 shows how to use the default context service in a webl.xml file using the resource-env-ref element:

Example 7-3 Using the Default Context Service with <resource-env-ref> in a Web App
<!-- web.xml -->
<resource-env-ref>
 <resource-env-ref-name>concurrent/cs</resource-env-ref-name>
 <resource-env-ref-type>javax.enterprise.concurrent.ContextService</resource-env-ref-type>
</resource-env-ref>

Example 7-4 shows how to use the default context service in a servlet with the @Resource annotation:

Example 7-4 Using the Default Context Service with @Resource in a Servlet
// when using @Resource, the following 2 ways are correct.
@Resource(lookup="java:comp/env/concurrent/cs")
// @Resource(name="concurrent/cs")
private ContextService service;

// when using JNDI Naming Context to lookup:
// initialContext.lookup("java:comp/env/concurrent/cs")

Default Managed Thread Factory

There is a default MTF instance for each application. It is automatically bound to the default JNDI name of java:comp/DefaultManagedThreadFactory of all the sub-components when deployed.

	Propagates all types of supported contexts for new threads

	The default priority for long-running threads created by newThread() is normal

	The default limit for running concurrent new threads is 10

You can also use the default MTF in applications with the @Resource annotation. For example:

 package com.example;
 public class TestServlet extends HttpServlet {
 @Resource
 private ManagedThreadFactory service;

Overriding the Default MTF

The behavior of the default MTF can be overridden by:

	Defining a thread factory template named DefaultManagedThreadFactory in the config.xml. All applications will use this template to create a default MTF.

	Defining a custom managed-thread-factory in the weblogic-application.xml, using either deployment descriptors or annotations. This will also override the default MTF definition in config.xml in the application. See Custom Managed Thread Factory Configuration Elements.

You cannot define a default thread factory named DefaultManagedThreadFactory in the weblogic.xml or weblogic-ejb-jar.xml; doing so will cause the deployment to fail.

Customized CMOs in Configuration Files

Customized CMOs can be defined at the application and module level or referenced from an application component environment (ENC) that is bound to JNDI.

	Defining CMOs in WebLogic Configuration Files

	Binding CMOs to JNDI Under an Application Component Environment

	Custom Managed Executor Service Configuration Elements

	Custom Managed Scheduled Executor Service Configuration Elements

	Custom Managed Thread Factory Configuration Elements

	Transaction Management for CMOs

Note:
In the current release, a custom Context Service cannot be configured.

Defining CMOs in WebLogic Configuration Files

Customized CMOs can be defined at the application and module level in one of these configuration files:

	weblogic-application.xml—CMOs specified at the application level can be assigned to that application, or any component of that application.

	weblogic-ejb-jar.xml or weblogic.xml—CMOs specified at the component level can be assigned to that component.

Binding CMOs to JNDI Under an Application Component Environment

Executor and thread factory CMOs can also be bound to JNDI under an application component environment (ENC) using the resource-env-ref element or the @Resource annotation. The resource-env-ref referencing a CMO can only be defined in web.xml, ejb-jar.xml, or application.xml.

The four ENC namespaces (java:comp, java:module, java:application, and java:global) are supported for resource-env-ref-name and @Resource.

If you bind an executor in an application, AppA, to the java:global JNDI namespace, the executor can be looked up and used by another application, AppB. Tasks submitted by AppB are canceled when AppA or AppB is shutdown

JNDI Binding Using <resource-env-ref>

Example 7-5 demonstrates how to map an MES named MyExecutor to the java:comp/env JNDI namespace.

In weblogic.xml the resource-link element specifies which executor is being mapped, which in Example 7-5 is named MyExecutor.

Executors defined in weblogic.xml are searched first, followed by weblogic-application.xml, and then the managed-executor-service-template in config.xml to find a executor name attribute that matches the one specified in resource-link.

If the resource-env-description is defined in weblogic-ejb-jar.xml, then weblogic-ejb-jar.xml is searched first, then weblogic-application.xml, and then config.xml.

Example 7-5 Binding an Executor to JNDI Using <resource-env-ref>
 weblogic.xml
 <resource-env-description>
 <resource-env-ref-name>concurrent/MyExecutor</resource-env-ref-name>
 <resource-link>MyExecutor</resource-link>
 </resource-env-description>

 web.xml
 <resource-env-ref>
 <resource-env-ref-name>concurrent/MyExecutor</resource-env-ref-name>
 <resource-env-ref-type>javax.enterprise.concurrent.ManagedExecutorService</resource-env-ref-type>
 </resource-env-ref>

JNDI Binding Using @Resource

The mapping rules for @Resource annotation are equivalent to those for resource-env-ref, but uses different these naming conventions:

	resource-env-ref-name is the name attribute value in @Resource.

	resource-link is equivalent to the mappedName attribute value defined in @Resource.

If @Resource is used under a web component, it is equivalent to define an resource-env-ref under web.xml

If @Resource is used under an EJB component, it is equivalent to define an resource-env-ref under ejb-jar.xml.

The annotation can also be used on class or methods as defined in the Java EE specification.

Example 7-6 using the resource-env-ref definition is equivalent to Example 7-6 using @Resource.

In this example, if the mappedName attribute of @Resource is not specified, then the default executor is used.

If you define both the resource-env-ref and @Resource, and the resource-env-ref-name and name attribute of @Resource are the same, then the resource-env-ref defined executor will be injected into the @Resource field.

You can also use @Resource with a look-up attribute or InitialContext.lookup to find a executor bound by resource-env-ref.

Example 7-6 Binding an Executor to JNDI Using @Resource
 package com.example;
 public class TestServlet extends HttpServlet {
 @Resource(name="concurrent/MyExecutor" mappedName="MyExecutor")
 private ManagedExecutorService service;

Updated Schemas for Custom CMO Modules

The following WebLogic Server schemas include elements for configuring CMO deployment descriptors:

	weblogic-javee.xsd – Describes common elements shared among all WebLogic-specific deployment descriptors:

http://xmlns.oracle.com/weblogic/weblogic-javaee/1.4/weblogic-javaee.xsd

	weblogic-application.xsd – The WebLogic Server-specific deployment descriptor extension for the application.xml Java EE deployment descriptor, where you configure features such as shared Java EE libraries referenced in an application and EJB caching.

See "weblogic-application.xml Deployment Descriptor Elements" in Developing Applications for
Oracle WebLogic Server.

	weblogic-web-app.xsd – The WebLogic Server-specific deployment descriptor for Web applications.

See "weblogic.xml Deployment Descriptor Elements" in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

	weblogic-ejb-jar.xsd – The WebLogic-specific XML Schema-based (XSD) deployment descriptor file for EJB deployments.

See "weblogic-ejb-jar.xml Deployment Descriptor Reference in Developing Enterprise JavaBeans,
Version 2.1, for Oracle WebLogic Server.

Example 7-7 shows the CMO-related elements in the weblogic-web-app.xsd.

Example 7-7 CMO Elements in weblogic-web-app.xsd
<xs:complexType name="weblogic-web-appType">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 ...
 <!-- added for JSR236 -->
 <xs:element name="managed-executor-service" type="wls:managed-executor-serviceType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="managed-scheduled-executor-service" type="wls:managed-scheduled-executor-serviceType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="managed-thread-factory" type="wls:managed-thread-factoryType" minOccurs="0" maxOccurs="unbounded"/>
 <!-- added end -->
 ...

Updated System Module Beans for CMOs

The following WebLogic Server system module beans include attributes for configuring CMOs in applications and modules:

	ManagedExecutorServiceBean

	ManagedScheduledExecutorServiceBean

	ManagedThreadFactoryBean

	WeblogicApplicationBean

	WebLogicEjbJarBean

	WebLogicWebAppBean

For more information, see the "WebLogic Server System Module MBeans" section in the MBean Reference for Oracle WebLogic
Server.

Custom Managed Executor Service Configuration Elements

This section defines the configuration elements for a managed executor service.

Table 7-6 Managed Executor Service Configuration Elements

	Name	Description	Required	Default Value	Range
	name

	The name of the MES.

An MES with the same name cannot be configured in the same scope. For example, if the same MES name is used in an application or module scope, the deployment of the application will fail.

An MES can have the same name as other types of managed objects, such as a ContextService, in any scope and it will be no relationship between them.

An MES with the same name can only be configured in different scopes if:

	If there are more than one MES with same name configured in the server template, partition template, or application scope, the partition MES template executor will override the server template, and the application scope MES will override the other two levels.

	If there is a MES A defined in module scope which name is same with the executor B defined in server template, partition template or application scope. A and B will both exists. Which executor is used is determined by the location referencing the executor.

	Yes

	n/a

	An arbitrary non-empty string.

	dispatch-policy

	The name of the Work Manager. The rule of which Work Manager should be used is:

	Search module scope Work Manager first if the ManagedExecutorService is defined in module scope.

	If not found, search application level.

	f still not found, the default Work Manger is used. (This behavior is consistent with servlet and EJB's dispatch policy resolving strategy.)

	No

	Default Work Manager

	n/a

	max-concurrent-long-running-requests)

	Maximum number of concurrent long running tasks.

See Setting Limits for Maximum Concurrent Long Running Requests.

	No

	10

	[0-65534].

When out of range, the default value will be used.

	long-running-priority

	An integer that specifies the long-running daemon thread's priority. If specified, all long-running threads will be affected.

See Setting Limits for Maximum Concurrent New Threads.

	No

	Thread.NORM_PRIORITY

	1-10

Range between Thread.MIN_PRIORITY and Thread.MAX_PRIORITY. When out of range, the default value will be used.

Deployment Descriptor Examples

Example 7-8 is an example of a custom MES definition in a Web application's weblogic.xml file:

Example 7-8 Using Deployment Descriptor to Define a Custom MES in an Application
<!-- weblogic.xml -->
 <managed-executor-service>
 <name>MyExecutor</name>
 <dispatch-policy>MyWorkManager</dispatch-policy>
 <long-running-priority>10</long-running-priority>
 <max-concurrent-long-running-requests>10</max-concurrent-long-running-requests>
 </managed-executor-service>

Example 7-9 is an example of a custom MES reference in the weblogic.xml descriptor using the <resource-env-ref> element:

Example 7-9 Referencing a Custom MES Using <resource-env-ref> in an Application
weblogic.xml
 <resource-env-description>
 <resource-env-ref-name>concurrent/MyExecutor</resource-env-ref-name
 <resource-link>MyExecutor</resource-link>
 </resource-env-description>

Example 7-10 is an example of a custom MES reference in a webl.xml file using the <resource-env-ref> element:

Example 7-10 Referencing a Custom MES Using <resource-env-ref> in a Web App
web.xml
 <resource-env-ref>
 <resource-env-ref-name>concurrent/MyExecutor</resource-env-ref-name
 <resource-env-ref-type>javax.enterprise.concurrent.ManagedExecutorService</resource-env-ref-type>
 </resource-env-ref>

Example 7-11 is an example of a custom MES reference in a servlet using the @Resource annotation.

Example 7-11 Referencing a Custom MES in a Servlet Using @Resource in a Servlet
package com.example;
public class TestServlet extends HttpServlet {
@Resource(name="concurrent/MyExecutor" mappedName="MyExecutor")
private ManagedExecutorService service;

Custom Managed Scheduled Executor Service Configuration Elements

This section defines the configuration elements for a managed scheduled executor service.

Table 7-7 Managed Scheduled Executor Service Configuration Elements

	Name	Description	Required	Default Value	Range
	name

	The name of the MSES.

For naming convention rules, see Table 7-6.

	Yes

	n/a

	An arbitrary non-empty string.

	dispatch-policy

	The name of the Work Manager.

For Work Manager usage rules, see Table 7-6.

	No

	Default Work Manager

	n/a

	max-concurrent-long-running-requests

	Maximum number of concurrent long running tasks.

See Setting Limits for Maximum Concurrent Long Running Requests.

	No

	10

	[0-65534].

When out of range, the default value is used.

	long-running-priority

	An integer that specifies the long-running daemon thread's priority. If specified, all long-running threads will be affected.

See Setting Limits for Maximum Concurrent New Threads.

	No

	5 Thread.NORM_PRIORITY

	1-1

Range between Thread.MIN_PRIORITY and Thread.MAX_PRIORITY. When out of range, the default value is used.

ScheduledFuture.get() Method

The ScheduledFuture.get() method will block until the latest run of the task finishes. For example, if the Trigger method requires the task being scheduled to run two times (i.e., Trigger.getNextRunTime returns null on the third call), and the first run of the task is finished at time A, the second run of the task is finished at time B, then:

	If Future.get() is called before time A, it will wait for the first run to finish and return the first run result. If it is called after time A and before time B, it will wait to the second run finish and return the second run's result.

	If Future.get() is called after time B, it will immediately return the second run result. Also, if the first run fails and throws a exception, then the first Futhur.get call will throw that exception and the second run will still be scheduled (this is different with scheduleAtFixRate). If the Trigger.skipRun returns true on the first run, then the first Future.get call will throw a SkipException.

Deployment Descriptor Examples

Example 7-12 is an example of a custom MSES definition in a Web application's weblogic.xml file:

Example 7-12 Using Deployment Descriptor to Define a Custom MSES in an Application
<!-- weblogic.xml -->
 <managed-scheduled-executor-service>
 <name>MyScheduledExecutor</name>
 <dispatch-policy>MyExecutor</dispatch-policy>
 </managed-scheduled-executor-service>

Custom Managed Thread Factory Configuration Elements

This section defines the configuration elements for a managed thread factory.

Table 7-8 Managed Thread Factory Configuration Elements

	Name	Description	Required	Default Value	Range
	name

	The name of the MTF.

For naming convention rules, see Table 7-6.

	Yes

	n/a

	An arbitrary non-empty string.

	priority

	The priority to assign to the thread. (The higher the number, the higher the priority.)

See Setting Limits for Maximum Concurrent New Threads.

	No

	5 Thread.NORM_PRIORITY

	1-10 Range between Thread.MIN_PRIORITY and Thread.MAX_PRIORITY. When out of range, the default value is used.

	max-concurrent-new-threads

	The maximum number of threads created by the MTF and are still executing the run() method of the tasks.

See Setting Limits for Maximum Concurrent New Threads.

	No

	10

	[0-65534]

When out of range, the default value is used.

Contexts of Threads Created by MTF

According to JSR236, the Managed Thread Factory is different from the other managed objects because when the thread is started using the Thread.start() method, the runnable that is executed will run with the context of the application component instance that created the ManagedThreadFactory instance. Therefore, the context of the runnable depends on the application component that created the MTF instance.

In WebLogic Server, new MTF instances are created when an application or a component is started, as follows. (A component means a web module or an EJB.)

	A default MTF is created by that component.

	If there is @Resource annotation to get an MTF, an MTF instance is created by that component.

	If there is a <resource-env-ref> defined in web.xml/ejb-jar.xml, and there is also a corresponding <resource-env-description> defined in weblogic.xml/weblogic-ejb-jar.xml with a <resource-link> for an MTF, then an MTF instance is created by that component.

	If there is a <resource-env-ref> defined in application.xml, and there is also a corresponding <resource-env-description> defined in weblogic-application.xml with a <resource-link> for an MTF, then an MTF instance is created by that application.

When an MTF is created by a component in the case of items 1, 2, and 3 listed above, the Runnable runs with the context of that component, as follows:

	ClassLoader: the class loader of that component.

	JNDI: The JNDI tree of that component that contains java:app, java:module, and java:comp.

	Security: Fixed to be the anonymous subject because there is no component-specific subject.

	WorkArea: Fixed to be an empty WorkContextMap because there is no component-specific WorkContextMap.

When an MTF is created by an application in the case of 4, the Runnable run with the context of that application as follows:

	ClassLoader: The class loader of that application.

	JNDI: The JNDI tree of that component that contains java:app but without java:module and java:comp.

	Security: Fixed to be the anonymous subject because there is no application-specific subject.

	WorkArea: Fixed to be an empty WorkContextMap because there is no application-specific WorkContextMap.

Deployment Descriptor Examples

Example 7-13 is an example of a custom MTF definition in a Web application's weblogic.xml file:

Example 7-13 Using Deployment Descriptors to Define a Custom MTF in an Application
<!-- weblogic.xml -->
 <managed-thread-factory>
 <name>factory1</name>
 <priority>3</priority>
 <max-concurrent-new-threads>20</max-concurrent-new-threads>
 </managed-executor-service>

Example 7-9 is an example of a custom MTF reference in a Web application's weblogic.xml file:

Example 7-14 Referencing a Custom MTF Using <resource-env-ref> in an Application
weblogic.xml
 <resource-env-description>
 <resource-env-ref-name>ref-factory1</resource-env-ref-name
 <resource-link>factory1</resource-link>
 </resource-env-description>

Example 7-10 is an example of a custom MTF reference in a Web application's weblogic.xml file:

Example 7-15 Referencing a Custom MTF Using <resource-env-ref> in a Web App
web.xml
 <resource-env-ref>
 <resource-env-ref-name>ref-factory1</resource-env-ref-name
 <resource-env-ref-type>javax.enterprise.concurrent.ManagedThreadFactory</resource-env-ref-type>
 </resource-env-ref>

Example 7-11 is an example of a custom MTF reference in a servlet using the @Resource annotation:

Example 7-16 Referencing a Custom MTF Using @Resource in a Servlet
package com.example;
public class TestServlet extends HttpServlet {
@Resource(lookup="java:comp/env/ref-factory1")
private ManagedThreadFactory factory;

Transaction Management for CMOs

This section explains how transactions are managed by WebLogic Server for CMOs.

Transaction Management for MES and MSES

When using an MES, transactions are managed as follows:

	There are no transaction running in the Work Manager thread before the task is begun.

	The UserTransaction.getStatus() method is always Status.STATUS_NO_TRANSACTION unless the Transaction API is used to start a new transaction.

	User should always finish its transaction in user tasks; otherwise, the transaction will be rolled backed.

Therefore ManagedTask.TRANSACTION and related attributes will be ignored.

Transaction Management for Context Service

By default, or by setting the value of execution property ManagedTask.TRANSACTION to ManagedTask.SUSPEND:

	Any transaction that is currently active on the thread will be suspended.

	A javax.transaction.UserTransaction accessible in the local JNDI namespace as java:comp/UserTransaction will be available so contextual proxy object may begin, commit, and roll back a transaction.

	If a transaction begun by a contextual proxy object is not completed before the method ends, a WARNING log will be output, and the transaction will be rolled back.

	The original transaction, if any was active on the thread, will be resumed when the task or contextual proxy object method returns.

By setting the value of execution property ManagedTask.TRANSACTION to ManagedTask.USE_TRANSACTION_OF_EXECUTION_THREAD:

	The transaction will managed by the execution thread and the task themselves, so that any transaction that is currently active on the thread will not be suspended when contextual proxy object method begins, and will not be resumed when contextual proxy object method returns.

	If there is a currently active transaction on the thread, any resources used by the contextual proxy object will be enlisted to that transaction.

	If a transaction began by the contextual proxy object is not completed before the method ends, WebLogic Server will do nothing about it because there is the possibility that the transaction is completed by another method of the contextual proxy object.

Transaction Management for MTF

When using the MTF, transactions are managed as follows:

	The task runs without an explicit transaction (they do not enlist in the application component's transaction), so the UserTransaction.getStatus() method always returns Status.STATUS_NO_TRANSACTION, unless a new transaction is started in the task.

	If the transaction is not completed before the task method ends, a WARNING log will be output, the transaction will be rolled back.

Global CMO Templates

In addition to the JSR236 default CMOs, you can also define global CMOs as templates in the domain's configuration by using the WebLogic Server Administration Console and configuration MBeans. CMOs specified in config.xml can be assigned to any application, or application component, in the domain.

Note:
Partitioned domains for multi-tenancy are only available in WebLogic Server Premium Edition. For more information, see LINK TO INTRO TO WEBLOGIC SERVER MT.

Note:
You should normally use the Administration Console to configure WebLogic Server's manageable objects and services and allow WebLogic Server to maintain the config.xml file.

You can define three types of CMO templates in a domain:

	Managed Executor Service Template

	Managed Scheduled Executor Service Template

	Managed Thread Factory Template

For example, if you define a managed-executor-service-template, a unique MES instance is created for each application deployed in the domain.

Configuring CMO Templates using the Administration Console

CMO templates can be configured globally in the domain's configuration using the WebLogic Server Administration Console.

	In the Domain Structure tree, expand Environment and click Concurrent Templates.
	Click New and choose one of the following template options:	Managed Executor Service Template

	Managed Scheduled Executor Service Template

	Managed Thread Factory Template

	On the Create New Template page, enter the template properties as required. The properties vary depending on which type of concurrent template you are creating.	Custom Managed Executor Service Configuration Elements

	Custom Managed Scheduled Executor Service Configuration Elements

	Custom Managed Thread Factory Configuration Elements

	Click Next.
	Select whether to target the concurrent template to a specific WebLogic Server instance or to a WebLogic Server cluster.Only applications that have been deployed to the selected servers or clusters can use this concurrent template.

	Click Finish. The Summary of Concurrent Templates page displays and the new concurrent template is listed.
	Repeat these steps to create other concurrent templates as necessary.

For instructions about using the WebLogic Server Administration Console to manage a WebLogic Server domain, see the Oracle WebLogic Server Administration Console Online Help.

Using MBeans to Configure CMO Templates

CMO templates can be configured using the following configuration MBeans under the DomainMBean.

	ManagedExecutorServiceTemplateMBean

	ManagedScheduledExecutorServiceTemplateMBean

	ManagedThreadFactoryTemplateMBean

For more information, see the "Domain Configuration MBeans" section in the MBean Reference for Oracle WebLogic
Server.

Configuring Concurrent Constraints

Constraints can also be defined globally in the domain's configuration using the WebLogic Server Administration Console and configuration MBeans. Concurrent constraints specified in config.xml can be assigned to any application, or application component, in the domain.

	Using the Administration Console to Configure Concurrent Constraints

	Using MBeans to Configure Concurrent Constraints

Using the Administration Console to Configure Concurrent Constraints

Concurrent constraints can be configured in the domain configuration, in specified server instances, and in server templates for dynamic clusters, using the Administration Console.

Domain-level Concurrent Constraints

To configure concurrent constraints for a domain:

	In the Domain Structure tree, select the domain name at the top of the tree.
	Select the Configuration > Concurrency tab.
	On the Concurrency page, specify a value for any or all of the available options:	Max Concurrent Long Running Requests – The limit of concurrent long-running requests submitted to the Managed Executor Service or Managed Scheduled Executor Service. See Setting Limits for Maximum Concurrent Long Running Requests.

	Max Concurrent New Threads – The maximum number of concurrent new threads created by the Managed Thread Factory outside of the self-tuning thread pool. See Setting Limits for Maximum Concurrent New Threads.

	Click Save.

Server-level Concurrent Constraints

To configure concurrent constraints for specific server instances in a domain:

	In the Domain Structure tree, expand Environment and click Servers.
	In the Summary of Servers table, select a server instance.
	On the Concurrency page, specify a value for any or all of the available options:	Max Concurrent Long [Running] Requests – The limit of concurrent long-running requests submitted to the Managed Executor Service or Managed Scheduled Executor Service. See Setting Limits for Maximum Concurrent Long Running Requests.

	Max Concurrent New Threads – The maximum number of concurrent new threads created by the Managed Thread Factory outside of the self-tuning thread pool. See Setting Limits for Maximum Concurrent New Threads.

	Click Save.

Dynamic Cluster-level Concurrent Constraints

To configure concurrent constraints for server templates in a dynamic cluster:

	In the Domain Structure tree, expand Environment, expand Clusters, and click Server Templates.
	In the Summary of Server Templates table, select a server template instance.
	Select the Configuration > Concurrency tab.
	On the Concurrency page, specify a value for any or all of the available options:	Max Concurrent Long Requests – The limit of concurrent long-running requests submitted to the Managed Executor Service or Managed Scheduled Executor Service. See Setting Limits for Maximum Concurrent Long Running Requests.

	Max Concurrent New Threads – The maximum number of concurrent new threads created by the Managed Thread Factory outside of the self-tuning thread pool. See Setting Limits for Maximum Concurrent New Threads.

	Click Save.

Using MBeans to Configure Concurrent Constraints

Concurrent constraints can be configured globally in the domain's configuration, in specified server instances, and in server templates for dynamic clusters using the following methods under the DomainMBean, ServerMBean, and ServerTemplateMBean:

	maxConcurrentLongRunningRequests() – See Setting Limits for Maximum Concurrent Long Running Requests.

	maxConcurrentNewThreads() – See Setting Limits for Maximum Concurrent New Threads.

For more information about using WebLogic Server MBeans, see "Accessing WebLogic Server MBeans with JMX" in Developing Custom Management
Utilities Using JMX for Oracle WebLogic Server.

Querying CMOs

Global CMOs can be queried using these administrative tools:

	Using the Administration Console to Monitor CMO Threads

	Using MBeans to Monitor CMOs

	Using MBeans to Monitor Concurrent Constraints

Using the Administration Console to Monitor CMO Threads

CMOs can be monitored using the Administration Console.

To monitor the threads created by CMOs in a server instance:

	In the Domain Structure tree, expand Environment and click Servers.
	In the Summary of Servers table, select a server template instance.
	On the Settings page, select the Monitoring > Concurrency tab.The tab displays the statistics for CMO threads created in the global runtime.

Monitor JSR236 CMOs for All Deployed Applications and Modules

To monitor the statistics for all JSR236 CMOs in a domain:

	In the Domain Structure tree, click Deployments.

	In the Summary of Deployments page, select the Monitoring > Concurrency tab.

The tab displays the statistics for all the CMOs of all the deployed applications and modules in the domain by calling the relevant runtime MBeans.

Monitor JSR236 CMOs for a Deployed EAR or Module

To monitor the statistics for all JSR236 CMOs in a domain:

	In the Domain Structure tree, click Deployments.

	In the Summary of Deployments page, select the EAR or module that you want to monitor.

	On the Settings page, select the Monitoring > Concurrency tab.

Depending on what type of application or module was selected, the tab displays the statistics from the corresponding runtime MBean:

	EAR Application – displays statistics for all the concurrent objects of that application (by calling ApplicationRuntimeMBean).

	Web app or EJB module within an EAR – Displays statistics for all the concurrent objects of that module (by calling ComponentRuntimeMBean).

	Standalone Web app or EJB module – displays statistics for all the concurrent objects of that Web app or module (by calling ApplicationRuntimeMBean and ComponentRuntimeMBean).

Using MBeans to Monitor CMOs

CMOs can be monitored using the following runtime MBeans under the DomainMBean.

	ManagedExecutorServiceRuntimeMBean

The ManagedExecutorServiceRuntimeMBean can be accessed from the following MBean attributes:

	ApplicationRuntimeMBean.ManagedExecutorServiceRuntimes – Provides statistics for all the Managed Executor Services of that application.

	ComponentRuntimeMBean.ManagedExecutorServiceRuntimes – Provides statistics for all the Managed Executor Services of that module.

See the ManagedExecutorServiceTemplateMBean in the MBean Reference for Oracle WebLogic
Server

	ManagedScheduledExecutorServiceRuntimeMBean

The ManagedScheduledExecutorServiceRuntimeMBean can be accessed from the following MBean attributes:

	ApplicationRuntimeMBean.ManagedScheduledExecutorServiceRuntimes – Provides statistics for all the Managed Scheduled Executor Services of that application.

	ComponentRuntimeMBean.ManagedScheduledExecutorServiceRuntimes – Provides statistics for all the Managed Scheduled Executor Services of that module.

See the ManagedScheduledExecutorServiceRuntimeMBean in the MBean Reference for Oracle WebLogic
Server

	ManagedThreadFactoryRuntimeMBean

The ManagedThreadFactoryRuntimeMBean can be accessed from the following MBean attributes:

	ApplicationRuntimeMBean.ManagedThreadFactoryRuntimes – Provides statistics for all the Managed Thread Factories of that application.

	ComponentRuntimeMBean.ManagedThreadFactoryRuntimes – Provides statistics for all the Managed Thread Factories of that module.

See the ManagedThreadFactoryRuntimeMBean in the MBean Reference for Oracle WebLogic
Server

For more information about using WebLogic Server MBeans, see "Accessing WebLogic Server MBeans with JMX" in Developing Custom Management
Utilities Using JMX for Oracle WebLogic Server.

Using MBeans to Monitor Concurrent Constraints

A server's concurrent constraints can be monitored using the ConcurrentManagedObjectsRuntimeMBean, which can be accessed from the following MBean attribute:

	ServerRuntimeMBean.ConcurrentManagedObjectsRuntime – Provides statistics for threads created by concurrent managed objects of global runtime.

See the ConcurrentManagedObjectsRuntimeMBean in the MBean Reference for Oracle WebLogic
Server

For more information about using WebLogic Server MBeans, see "Accessing WebLogic Server MBeans with JMX" in Developing Custom Management
Utilities Using JMX for Oracle WebLogic Server.

8 Using the Batch Runtime

This chapter describes the batch runtime implemented by WebLogic Server to provide support for defining, implementing, and running batch jobs, as defined for Java EE 7 in Batch Applications for the Java Platform (JSR 352).

This chapter includes the following sections:

	About Batch Jobs

	Using the Default Batch Runtime Configuration with the Derby Database

	Configuring the Batch Runtime to Use a Dedicated Database

	Querying the Batch Runtime

	Troubleshooting Tips

About Batch Jobs

Batch jobs are tasks that can be executed without user interaction and are best suited for non-interactive, bulk-oriented and long-running tasks that are resource intensive, can execute sequentially or parallel, and may be initiated ad hoc or through scheduling.

As described in the Java EE 7 Tutorial, the batch framework consists of:

	A job specification language based on XML.

	A set of batch annotations and interfaces for application classes that implement the business logic.

	A batch container that manages the execution of batch jobs.

	Supporting classes and interfaces to interact with the batch container.

For detailed information about batch jobs, batch processing, and the batch processing framework, see "Batch Processing" in The Java EE 7 Tutorial. Also see the Java Specification Request 352: Batch Applications for the Java Platform (http://jcp.org/en/jsr/detail?id=352). The specification defines the programming model for batch applications and the runtime for scheduling and executing batch jobs.

Batch 1.0 Code Examples in WebLogic Server

When you install WebLogic Server complete with the examples, the examples source code is placed in the EXAMPLES_HOME\examples\src\examples directory. The default path is ORACLE_HOME\wlserver\samples\server. From this directory, you can access the source code and instruction files for the Batch 1.0 examples without having to set up the samples domain.

The ORACLE_HOME\user_projects\domains\wl_server directory contains the WebLogic Server examples domain; it contains your applications and the XML configuration files that define how your applications and Oracle WebLogic Server will behave, as well as startup and environment scripts. For more information about the WebLogic Server code examples, see "Sample Applications and Code Examples" in Understanding Oracle WebLogic
Server.

	Using the Batch Job Operator – demonstrates how to use the javax.batch.operations.JobOperator interface to submit batch jobs. The JobOperator interface provides a set of operations to start, stop, restart, and inspect jobs. This sample will also demonstrates how to use listeners to notify about specific event occurring during the batch processing execution.

EXAMPLES_HOME/examples/src/examples/javaee7/batch/joboperator-api

	Using Batch Parallelization Model to Run Partitioned Job Steps – demonstrates how to use the PartitionMapper interface to enable finer control over parallel processing.

EXAMPLES_HOME/examples/src/examples/javaee7/batch/partition

	Avitek Medical Records (MedRec) – A comprehensive educational sample application that demonstrates WebLogic Server and Java EE features, as well as best practices. For Java EE 7, Medrec showcases batch processing's capability by compiling drug statistics in the background for the administrator. The statistics sum up the cost by record, physician and drug perspectives with a start date and end date, altogether in one batch, but with three outputs.

Avitek Medical Records is optionally installed with the WebLogic Server installation. You can start MedRec from the ORACLE_HOME/user_projects/domains/medrec directory, where ORACLE_HOME is the directory you specified as the Oracle Home when you installed Oracle WebLogic Server.

Oracle recommends that you run these examples before programming your own applications that use batch.

Using the Default Batch Runtime Configuration with the Derby Database

Batch applications can be deployed and started on WebLogic Server out-of-the-box with no runtime configuration. This is useful for smaller development environments that do not process and store large amounts of data.

When no batch runtime configuration exists, WebLogic Server uses:

	The demo Derby database to create a data source needed to update the JobRepository to persist batch job details.

	The executor service that is bound to default JNDI name of java:comp/DefaultManagedExecutorService (as required by the Java EE 7 specification).

In orders to access the default batch runtime configuration, WebLogic Server must be started using the startWeblogic.sh script.

For information about querying the batch runtime, see Querying the Batch Runtime.

Configuring the Batch Runtime to Use a Dedicated Database

The batch runtime in WebLogic Server uses an XA-capable data source to access the JobRepository tables for batch jobs and a managed executor service to execute asynchronous batch jobs. The managed executor service processes the jobs and the JobRepository data source stores the status of current and past jobs.

The default batch runtime in a WebLogic domain can be used without any configuration, which is useful in development mode environments that only require the Derby demo database. For data-driven production environments that use a database schema, you can configure a dedicated JobRepository data source and managed executor service for the domain.

	Prerequisite Steps Configure the JobRepository Tables, Batch Data Source, and Managed Executor Service

	Configuring the Batch Runtime Using the Administration Console

	Configuring the Batch Runtime Using WLST

Prerequisite Steps Configure the JobRepository Tables, Batch Data Source, and Managed Executor Service

For enterprise-level production environments that process and store large amounts of data, a dedicated batch runtime can be configured to store the batch job details in a specific database.

Create the JobRepository Tables

The database administrator must create the JobRepository tables needed to persist batch job details. The schema name used to created these tables will be denoted by the getSchemaName() method in the BatchConfigMBean when configuring the batch runtime for the domain. See Configure the Batch Runtime to Use a Dedicated Batch Data Source and Managed Executor Service.

The JobRepository tables can be created using the Repository Create Utility (RCU) or using SQL scripts for the databases supported for use with WebLogic Server 12c. Schemas for creating these tables are in the following location:

ORACLE_HOME/oracle_common/common/sql/wlservices/batch/dbname

Iwhere ORACLE_HOME represents the top-level installation directory for Oracle WebLogic Server, and dbname represents the name of the database.

For information about the supported databases for WebLogic Server 12c, see the Oracle Fusion Middleware Supported System Configurations page on Oracle Technology Network.

Creating JobRepository Tables Using RCU

It is important to note the following when using RCU to create the JobRepository tables and schema owner:

	On the Select Components page, select WebLogic Services as the component. Also, note that Schema Owner name will default to the schema prefix string you chose plus "WLS", such as JBatch_WLS. Write this name down because you will use it when you create the batch data source and the batch runtime.
	On the Schema Passwords page, choose the Select same password for all schemas option.
	When you click Finish, RCU will create tables and schemas for all WebLogic related components, including Batch, EJB Timers, Diagnostics, etc.

Now you can create the batch data source, as described in Create a JDBC Data Source for the JobRepository. Remember that you must use the schema owner you chose on the Select Components page as the data source's user name.

Note:
The batch runtime caches the schema name and when it acquires a connection to update the JobRepository tables, it sets the schema name on the connection. Due to this limitation, it is not possible to use the same data source for both application and JobRepository (if they use separate schemas).

For more information about the Repository Clean Utility (RCU), see Creating Schemas with the Repository Creation Utility.

Creating JobRepository Tables Using an SQL Script

If you are not using RCU utility to create the JobRepository tables for batch, you can use the SQL command-line utility and the provided batch.sql script to create them. For example, when you create JobRepository tables for Oracle Database and Oracle EBR (Edition-Based Redefinition), which require SQL to create the tables.

The batch.sql SQL script is provided for all supported databases (such as, mysql, db2, etc.) to create the JobRepository tables, and are in the following location:

ORACLE_HOME/oracle_common/common/sql/wlservices/batch/dbname

To use the batch.sql SQL script to create the tables, follow these steps:

	Open an SQL command-line session for your database.
	Create a new user called jbatch that will be identified by the batch.sql script.
	Grant Connect privileges to user jbatch.
	Grant Resource privileges to user jbatch.
	Run the batch.sql script from the directory containing the Oracle database's SQL scripts. For example:ORACLE_HOME/oracle_common/common/sql/wlservices/batch/oracle/batch.sql

Now you can create the batch data source, as described in Create a JDBC Data Source for the JobRepository. Remember that you must use the jbatch schema owner you created as the data source's user name.

Create a JDBC Data Source for the JobRepository

For a dedicated batch runtime within a domain, the WebLogic administrator must configure an XA-capable data source for the database that will contain the JobRepository tables. When a Java EE component submits a batch job, the batch runtime updates the JobRepository tables using this XA data source, which is obtained by looking up the data source's JNDI name.

When you create the batch data source using Administration Console or WLST, you must use the schema owner created with RCU (e.g., jbatch_wls) or the SQL script jbatch, as described in Create the JobRepository Tables.

For instructions on configuring JDBC data source, see "Creating a JDBC Data Source" in Administering JDBC Data Sources
for Oracle WebLogic Server.

Optionally, Create a Managed Executor Service Template

For optimum performance, the batch runtime can be configured to use application-scoped Managed Executor Services by configuring Managed Executor Service Templates (MES Template) that use the same name as the batch runtime setBatchJobsManagedExecutorServiceName(). If no MES Template is specified when configuring the batch runtime, it will instead use the default Java EE Managed Executor Service that is bound to (java:comp/DefaultManagedExecutorService).

When a new instance of a Managed Executor Service is created for each MES template, it will then run batch jobs that are submitted for applications that are deployed to the domain. For example, if there are two MES Templates named MES1 and MES2 in a domain, then when BatchApp1 and BatchApp2 are deployed, each application will get an instance of MES1 and MES2.

However, if you have set the setBatchJobsExecutorServiceName("MES2"), then all batch jobs submitted from BatchApp1 or BatchApp1 (or from any application deployed to the domain), will use MES2.

For instructions on configuring a Managed Executor Service Template, see Configuring Concurrent Managed Objects.

Configure the Batch Runtime to Use a Dedicated Batch Data Source and Managed Executor Service

The JobRepository data source and Managed Executor Service you created in Prerequisite Steps Configure the JobRepository Tables, Batch Data Source, and Managed Executor Service can now be used to configure a dedicated batch runtime using any of these WebLogic administrative tools:

	Configuring the Batch Runtime Using the Administration Console

	Configuring the Batch Runtime Using WLST

Tip:
The schema name used in Create the JobRepository Tables must be specified when following the configuration steps in these sections. For example when using MBeans, the schema name must be denoted by getSchemaName() in the BatchConfigMBean for the domain.

Configuring the Batch Runtime Using the Administration Console

A dedicated batch runtime can be configured for a domain scope using the Administration Console. In the Settings for domain-name page, open the Batch page and complete these configuration fields:

	Data Source JNDI Name – Select the JNDI name of the batch runtime's JobRepository data source, which will be used to store data for batch jobs submitted from applications deployed to the domain.

	Schema Name – Enter the schema name used when the JobRepository tables were created by RCU or the JBatch SQL script, as described in Create the JobRepository Tables.

Note that if the data source is shared by applications then this schema name must be the same name that the application expects.

	Executor Service Template – Select the managed executor service (MES) template that will be used to run batch jobs that are submitted from applications deployed in the domain. A MES template by the same name must exist and be targeted to the domain scope when a batch jobs is submitted.

If an MES template is not selected, then the batch runtime will use the default Java EE ManagedExecutorService that is bound to the default JNDI name of: java:comp/DefaultManagedExecutorService.

To configure a Managed Executor Service Template in the domain configuration using the WebLogic Server Administration Console, use the Environment -> Concurrent Templates page. For more information, see Configuring Concurrent Managed Objects.

Configuring the Batch Runtime Using WLST

You can use WLST with the BatchRuntimeConfigMBean and DomainMBean to configure the batch runtime to use a specific database for the JobRepository:

def update_domain_batch_config(domainName, jndiName, schemaName):
 connect('admin','passwd')
 edit()
 startEdit()
 cmo.setDataSourceJndiName(jndiName)
 cd('/BatchConfig/' + domainName)
 cmo.setSchemaName(schemaName)
 save()
 activate()

In this example, if the administrator has created a data source with the JNDI name jdbc/batchDS, then, calling update_domain_batch_config('mydomain','jdbc/batchDS','BATCH') will configure the batch runtime to store all the JobRepository tables in the schema 'BATCH' in the database that is pointed by the data source that is bound to the jndiName: 'jdbc/batchDS'.

You can use WLST to configure the batch runtime to use specific Managed Executor Services for batch job execution. However, you must first create an Managed Executor Service and the name of the Managed Executor Service must be provided to the DomainMBean.

 connect('admin','passwd')
 edit()
 startEdit()
 cmo.setBatchJobsExecutorServiceName('mesName')
 save()
 activate()

where mesName is the name of the Managed Executor Service that has already been created (and targeted) to this domain.

The batch runtime can be configured to use different Managed Executor Services using the getBatchJobsManagedExecutorServiceName() method in the DomainMBean. However, a Managed Executor Service Template by the same name must exist and be targeted to the domain scope when a batch job is submitted.

For more information, see the BatchConfigMBean and DomainMBean in the MBean Reference for Oracle WebLogic
Server.

For more information about using WLST commands, see "WebLogic Server WLST Online and Offline Command Reference" in the WLST Command Reference for WebLogic
Server.

Querying the Batch Runtime

The batch runtime's JobRepository can be queried for domain scope using these administrative tools:

	Using the Administration Console to Query the Batch Runtime

	Using Runtime Mbeans to Query the Batch Runtime

Note:
Make sure that the database that contains the batch JobRepository is running. For example, the default Derby database is not automatically started when you boot WebLogic Server using the java weblogic.Server command. If your database is not running, an exception will be thrown by the Batch RI when you submit a batch job or when you access the BatchJobRepositoryRuntimeMBean, either through WLST or the Administration Console. For more information, see Troubleshooting Tips.

Using the Administration Console to Query the Batch Runtime

A JobRepository can be queried using the Administration Console to obtain details about batch jobs in a domain.

Get Details of all Batch Jobs

In the Settings for domain-name page, open the Monitoring -> Batch Jobs page to view details about all the jobs submitted by applications deployed to the domain.

Table 8-1 All Batch Jobs

	Element Name	Description
	Job Name

	The name of the batch job.

	Application Name

	The name of the application that submitted the batch job.

	Instance ID

	The instance ID.

	Execution ID

	The execution ID.

	Batch Status

	The batch status of this job.

	Start Time

	The start time of the job.

	End Time

	The completion time of the job.

	Exit Status

	The exit status of the job.

Get Details about a Job's Execution

You can view step execution details about a job by selecting it and clicking View.

Table 8-2 Job Executions Details

	Element Name	Description
	Job Name

	The name of the batch job.

	Instance ID

	The instance ID.

	Execution ID

	The execution ID.

	Batch Status

	The batch status of this job.

	Start Time

	The start time of the job.

	End Time

	The completion time of the job.

	Exit Status

	The exit status of the job.

Get Details about a Job's Step Execution

You can view metrics about each step in a job execution by selecting it and clicking View.

Table 8-3 Step Executions Details

	Element Name	Description
	Step Name

	The name of the batch job step.

	Step ID

	The step ID.

	Execution ID

	The execution ID.

	Batch Status

	The batch status of this job.

	Start Time

	The start time of the job.

	End Time

	The completion time of the job.

	Exit Status

	The exit status of the job.

Using Runtime Mbeans to Query the Batch Runtime

The JobRepository can be queried using WLST using the BatchJobRepositoryRuntimeMBean to obtain details about batch jobs in a domain.

For more information, see BatchJobRepositoryRuntimeMBean in the MBean Reference for Oracle WebLogic
Server.

Get Details of all Batch Jobs Using getJobDetails

The getJobDetails() attribute returns details about all the jobs submitted by applications deployed to the domain. Each entry in the collection contains an array of the following elements:

Table 8-4 Elements in getJobDetails() Attribute

	Element Name	Description
	JOB_NAME

	The name of the batch job.

	APP_NAME

	The name of the application that submitted the batch job (String).

	INSTANCE_ID

	The instance ID (long).

	EXECUTION_ID

	The execution ID (long).

	BATCH_STATUS

	The batch status of this job (String).

	START_TIME

	The start time of the job (java.util.Date).

	END_TIME

	The completion time of the job (java.util.Date).

	EXIT_STATUS

	The exit status of the job (String).

Here is an example of a WLST script that uses getJobDetails() to print a list of all batch jobs deployed in a domain.

connect('admin', 'admin123')
domainRuntime()
cd('BatchJobRepositoryRuntime')
cd('myserver')
executions=cmo.getJobDetails(6)
print "JobName AppName InstanceID ExecutionID BatchStatus StartTime EndTime ExitStatus"
 print e[0], " ", e[1], " ", e[2], " ", e[3], " ", e[4], " ", e[5], " ", e[6], ",e[7]

Here is sample output after running getJobDetails():

JobName InstanceID ExecutionID BatchStatus StartTime EndTime ExitStatus
PayrollJob 6 6 COMPLETED Fri Apr 24 10:11:00 PDT 2015 Fri Apr 24 10:11:01 PDT 2015 COMPLETED
PayrollJob 5 5 COMPLETED Fri Apr 24 10:10:57 PDT 2015 Fri Apr 24 10:10:58 PDT 2015 COMPLETED
PayrollJob 4 4 COMPLETED Fri Apr 24 10:10:56 PDT 2015 Fri Apr 24 10:10:56 PDT 2015 COMPLETED
PayrollJob 3 3 COMPLETED Mon Apr 20 11:32:12 PDT 2015 Mon Apr 20 11:32:12 PDT 2015 COMPLETED
PayrollJob 2 2 COMPLETED Mon Apr 20 11:32:10 PDT 2015 Mon Apr 20 11:32:11 PDT 2015 COMPLETED
PayrollJob 1 1 COMPLETED Mon Apr 20 11:25:26 PDT 2015 Mon Apr 20 11:25:26 PDT 2015 COMPLETED

Get Details of a Job Execution Using getJobExecutions

The getJobExections attribute returns details about a particular job execution. Each entry in the collection contains an array of the following elements:

Table 8-5 Elements in getJobExecutions() Attribute

	Element Name	Description
	JOB_NAME

	The name of the batch job (String).

	INSTANCE_ID

	The instance ID (long).

	EXECUTION_ID

	The execution ID (long).

	BATCH_STATUS

	The batch status of this job (String).

	START_TIME

	The start time of the job (java.util.Date).

	END_TIME

	The completion time of the job (java.util.Date).

	EXIT_STATUS

	The exit status of the job (String).

Here is an example of using getJobExectuions() in a WLST script to get details for a given ExecutionID: getJobExecutions(6). To get a list of all ExecutionIDs, use the getJobDetails() method.

connect('admin', 'admin123')
domainRuntime()
cd('BatchJobRepositoryRuntime')
cd('myserver')
executions=cmo.getJobExecutions(6)
print "JobName InstanceID ExecutionID BatchStatus StartTime EndTime ExitStatus"
for e in executions
 print e[0], " ", e[1], " ", e[2], " ", e[3], " ", e[4], " ", e[5], " ", e[6]

Here is sample output after running getJobExecutions():

JobName InstanceID ExecutionID BatchStatus StartTime EndTime ExitStatus
PayrollJob 6 6 COMPLETED Fri Apr 24 10:11:00 PDT 2015 Fri Apr 24 10:11:01 PDT 2015 COMPLETED

Get Details of a Job Step Execution Using getStepExecutions

The getStepExecutions attribute returns metrics about each step in a Job execution. Each entry in the collection contains an array of the following elements:

Table 8-6 Elements in getStepExecutions() Attribute

	Element Name	Description
	STEP_NAME

	The name of the batch job step (String).

	STEP_ID

	The step ID (long).

	EXECUTION_ID

	The execution ID (long).

	BATCH_STATUS

	The batch status of this job (String).

	START_TIME

	The start time of the job (java.util.Date).

	END_TIME

	The completion time of the job (java.util.Date)

	EXIT_STATUS

	The exit status of the job (String).

Here is an example of using getStepExecutions() in a WLST script to get details for a given StepExecutionID: getStepExecutions(6). To get a list of all ExecutionIDs, use the getJobDetails() method.

connect('admin', 'admin123')
domainRuntime()
cd('BatchJobRepositoryRuntime')
cd('myserver')
executions=cmo.getStepExecutions(6)
print "StepName StepExecutionID BatchStatus StartTime EndTime ExitStatus"
 print e[0], " ", e[1], " ", e[2], " ", e[3], " ", e[4], " ", e[5], "]

Here is sample output after running getStepExecutions():

StepName StepExecutionID BatchStatus StartTime EndTime ExitStatus
PayrollJob 6 6 COMPLETED Fri Apr 24 10:11:00 PDT 2015 Fri Apr 24 10:11:01 PDT 2015 COMPLETED

Troubleshooting Tips

This section contain some tips about configuring and using the batch runtime with WebLogic Server.

Make Sure the Database Containing the JobRepository Tables is Running

A common mistake made by users of the Batch RI (reference implementation) is to neglect starting the database that contains the JobRepository tables. For example, if you boot WebLogic using the java weblogic.Server command, the Derby database is not automatically started. If the DB isn't running, then when you submit a batch job or access the JobRepositoryRuntimeMBean (either through WLST or through the Administration Console), that job will fail and a cryptic exception will be thrown by the Batch RI:

[1] Exception thrown by Refernce Implementation (from IBM):

Caused by: weblogic.common.resourcepool.ResourceSystemException: Cannot load driver class org.apache.derby.jdbc.ClientDataSource for datasource '<<<Data Source name>>>>'

Here is another error message that could be thrown by the Batch RI when the JobRepository's database isn't running:

Caused By: com.ibm.jbatch.container.exception.PersistenceException:
weblogic.jdbc.extensions.ConnectionDeadSQLException:
weblogic.common.resourcepool.ResourceDeadException:
0:weblogic.common.ResourceException: Could not create pool connection for datasource '_com_oracle_weblogic_batch_connector@_com_oracle_weblogic_batch_connector_impl_@_com_oracle_weblogic_batch_connector_impl_WLSDatabaseConfigurationBean@_com_oracle_batch_internal__derby_batch_DataSource'.
The DBMS driver exception was: java.net.ConnectException : Error connecting to server localhost on port 1,527 with message Connection refused.
 at
com.ibm.jbatch.container.services.impl.JDBCPersistenceManagerImpl.getConnectionToDefaultSchema(JDBCPersistenceManagerImpl.java:354)
 at
com.ibm.jbatch.container.services.impl.JDBCPersistenceManagerImpl.isDerby(JDBCPersistenceManagerImpl.java:182)
 at
com.ibm.jbatch.container.services.impl.JDBCPersistenceManagerImpl.init(JDBCPersistenceManagerImpl.java:143)
 at
com.ibm.jbatch.container.servicesmanager.ServicesManagerImpl$ServiceLoader.getService(ServicesManagerImpl.java:404)
 at
com.ibm.jbatch.container.servicesmanager.ServicesManagerImpl$ServiceLoader.access$300(ServicesManagerImpl.java:388)

If you see these errors, make sure that the database that contains the Batch JobRepository is running.

Oracle Legal Notices
Copyright Notice
Copyright © 1994-2013, Oracle and/or its affiliates. All rights reserved.
Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Alpha and Beta Draft Documentation Notice
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
[image: Oracle Logo]
OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware
Administering Server
Environments for Oracle
Weblogic Server

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware
Administering Server
Environments for Oracle
Weblogic Server

OEBPS/dcommon/oracle.gif

